IMI-BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Serdica Mathematical Journal >
1998 >
Volume 24 Number 1 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/542

Title: Isomorphism Problems for the Baire Function Spaces of Topological Spaces
Authors: Choban, Mitrofan
Keywords: Baire Complemented Banach Space
Baire Function
Scattered Space
Baire Topology
D-Set
Issue Date: 1998
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Serdica Mathematical Journal, Vol. 24, No 1, (1998), 5p-20p
Abstract: Let a compact Hausdorff space X contain a non-empty perfect subset. If α < β and β is a countable ordinal, then the Banach space Bα (X) of all bounded real-valued functions of Baire class α on X is a proper subspace of the Banach space Bβ (X). In this paper it is shown that: 1. Bα (X) has a representation as C(bα X), where bα X is a compactification of the space P X – the underlying set of X in the Baire topology generated by the Gδ -sets in X. 2. If 1 ≤ α < β ≤ Ω, where Ω is the first uncountable ordinal number, then Bα (X) is uncomplemented as a closed subspace of Bβ (X). These assertions for X = [0, 1] were proved by W. G. Bade [4] and in the case when X contains an uncountable compact metrizable space – by F.K.Dashiell [9]. Our argumentation is one non-metrizable modification of both Bade’s and Dashiell’s methods.
URI: http://hdl.handle.net/10525/542
ISSN: 1310-6600
Appears in Collections:Volume 24 Number 1

Files in This Item:

File Description SizeFormat
sjm-vol24-num1-1998-p005-p020.pdf510.25 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback