IMI-BAS BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Serdica Mathematical Journal >
1996 >
Volume 22 Number 3 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/610

Title: Stability of the Iteration Method for non Expansive Mappings
Authors: Lemaire, B.
Keywords: Convex Minimization
Convergence
Iteration Method
Gradient Method
Monotone Inclusions
Prox Method
Stability
Issue Date: 1996
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Serdica Mathematical Journal, Vol. 22, No 3, (1996), 331p-340p
Abstract: The general iteration method for nonexpansive mappings on a Banach space is considered. Under some assumption of fast enough convergence on the sequence of (“almost” nonexpansive) perturbed iteration mappings, if the basic method is τ−convergent for a suitable topology τ weaker than the norm topology, then the perturbed method is also τ−convergent. Application is presented to the gradient-prox method for monotone inclusions in Hilbert spaces.
URI: http://hdl.handle.net/10525/610
ISSN: 1310-6600
Appears in Collections:Volume 22 Number 3

Files in This Item:

File Description SizeFormat
sjm-vol22-num3-1996-p331-p340.pdf458.79 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!   Creative Commons License DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback