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Abstract

There are applied power mappings in algebras with logarithms induced
by a given linear operator D in order to study particular properties of powers
of logarithms. Main results of this paper will be concerned with the case
when an algebra under consideration is commutative and has a unit and
the operator D satisfies the Leibniz condition, i.e. D(zy) = xDy + yDzx for
x,y € dom D. Note that in the Number Theory there are well-known several
formulae expressed by means of some combinations of powers of logarithmic
and antilogarithmic mappings or powers of logarithms and antilogarithms
(cf. for instance, the survey of Schinzel S[1].
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1. Algebras with logarithms

We recall some notions and properties which will be used in the sequel.

Let X be a linear space over a field F of scalars of the characteristic
zero. Recall that L(X) is the set of all linear operators with domains and
ranges in X and Lo(X) = {A € L(X) : dom A = X}.
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If X is an algebra over F with a D € L(X) such that z,y € dom D
implies zy,yr € dom D, then we shall write D € A(X). The set of
all commutative algebras belonging to A(X) will be denoted by A(X). If
D e A(X), then

fp(z,y) = D(zy) — cp[xDy + (Dz)y] for z,y € dom D,

where cp is a scalar dependent on D only. Clearly, fp is a bilinear (i.e.
linear in each variable) form which is symmetric when X is commutative, i.e.
when D € A(X). This form is called a non-Leibniz component. Non-Leibniz
components have been introduced for right invertible operators D € A(X)
(cf. PR[1]). If D € A(X), then the product rule in X can be written as
follows:

D(xzy) = cplaDy + (Dx)y] + fp(x,y) for z,y € dom D.

If D € A(X) is right invertible, then the algebra X is said to be a
D-algebra.

We shall consider in A(X) the following sets:

e the set of all multiplicative mappings (not necessarily linear) with
domains and ranges in X:

M(X)={A:dom A C X, A(zy) = A(x)A(y) for z,y € dom A};

e the set I(X) of all invertible elements belonging to X;

e the set R(X) of all right invertible operators belonging to L(X);

o the set Rp = {R € Lo(X) : DR = I} of all right inverses to a
D e R(X);

etheset Fp = {F € Lo(X) : F?=F, FX =kerD and3ger, FR =
0} of all initial operators for a D € R(X);

e the set A(X) of all left invertible operators belonging to L(X);

e the set Z(X) of all invertible operators belonging to L(X).

Clearly, if ker D # {0}, then the operator D is right invertible, but not
invertible. Here the invertibility of an operator A € L(X) means that the
equation Az = y has a unique solution for every y € X. Elements of the
kernel of a D € R(X) are said to be constants. If D € Z(X) then Fp = {0}
and Rp = {D~!}. We also have dom D = RX @ ker D independently of
the choice of an Rp (cf. PR[1]).

It is well-known that F' is an initial operator for a D € R(X) if and only
if there is an R € Rp such that F' = I — RD on dom D. Moreover, if F’ is
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any projection onto ker D then F” is an initial operator for D corresponding
to the right inverse R = R— F'R independently of the choice of an R € Rp
(cf. PR[1]).

Suppose that D € A(X). Let Q,,; : dom D — 29°m P be multifunc-
tions defined as follows:

Qu={x €dom D: Du=uDz}, Qu={z € dom D: Du= (Dz)u}
(1.1)
for u € dom D. The equations

Du =uDx for (u,z) € graph Q, , Du = (Dx)u for (u,z) € graph
(1.2)
are said to be the right and left basic equations, respectively. Clearly,

Q; 'z ={u€dom D:Du=uDz}, Q'z={ucdom D:Du=(Dzr)u}

(1.3)
for x € dom D. The multifunctions €2, {); are well-defined and dom £2,. N
dom €; D ker D.

Suppose that (u,,x,) € graph Q, (u;, z;) € graph Q,, L,, L; are selec-
tors of €., (, respectively, and E,., E; are selectors of Q1 Ql_l, respec-
tively. By definitions, L,u, € dom € L E.z, € dom Q,, Lju; € dom Ql_l,
Ejx; € dom € and the following equations are satisfied:

DUT = UTDLTUT7 DE’I‘x'r - (Erxr)Dxr;
Du = (DLyw)w, DEx = (Dx)(E).

Any invertible selector L, of €2, is said to be a right logarithmic mapping
and its inverse E, = L-! is said to be a right antilogarithmic mapping. If
(up,z,) € graph €, and L, is an invertible selector of ., then the element
L,u, is said to be a right logarithm of w, and F,x, is said to be a right
antilogarithm of x,. By G[Q,] we denote the set of all pairs (L,, E,), where
L, is an invertible selector of 2, and E, = L !. Respectively, any invertible
selector L; of € is said to be a left logarithmic mapping and its inverse
E; = Ll_1 is said to be a left antilogarithmic mapping. If (u;,x;) € graph €
and L; is an invertible selector of {2;, then the element L;u is said to be a left
logarithm of u; and Ejx; is said to be a left antilogarithm of x;. By G[{]
we denote the set of all pairs (L;, E;), where L; is an invertible selector of
Q and E; = L; .
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If D € A(X) then Q, = ; and we write , = Q and L, = L; = L,
E,=E =E, (L, E) € G[Q. Selectors L, E of ) are said to be logarithmic
and antilogarithmic mappings, respectively. For any (u,z) € G[()] elements
Lu, Ex are said to be logarithm of v and antilogarithm of x, respectively.
The multifunction €2 has been examined in PRJ[2].

Clearly, by definition, for all (L., E,) € G[Q,], (u,,z,) € graph Q,,
(L, Ey) € G[y], (u,x;) € graph §; we have

E.Lyuy = up, LoErxy =20  EiLjw =, iz = x; (14)

DE,x, = (Eyxy)Dxy, Du, = upDLyuy; (1.5)
DEjx; = (Dx)(Eyxy), Dup = (DLjw)w.

A right (left) logarithm of zero is not defined. If (L,, E,) € G[,], (L;, E}) €
G[], then L,(ker D\ {0}) C ker D, E,(ker D) C ker D, L;(ker D\ {0}) C
ker D, Ej(ker D) C ker D. In particular, E,(0), E;(0) € ker D.

If D € R(X), then logarithms and antilogarithms are uniquely deter-
mined up to a constant.

If D € A(X) and if D satisfies the Leibniz condition: D(zy) = xDy +
(Dx)y for z,y € dom D, then X is said to be a Leibniz algebra.

Let D € A(X). A logarithmic mapping L is said to be of the exponential
type if L(uv) = Lu + Lo for u,v € dom Q. If L is of the exponential type,
then E(z + y) = (Exz)(Fy) for x,y € dom . We have proved that a
logarithmic mapping L is of the exponential type if and only if X is a
commutative Leibniz algebra (cf. PR[2]). In commutative Leibniz algebras
with a right invertible operator D u € dom 2 if and only if u € I(X) (cf.
PR[2]). The Leibniz condition is also a necessary and sufficient condition
for the Trigonometric Identity to be satisfied.

By Lg(D) (Lg, (D), Lg;(D)) we denote the class of these algebras with
unit e € dom 2 for which D € R(X) and there exist invertible selectors of
Q (2, Q, respectively), i.e. there exist (L, E) € G[Q] ((L., E,) € G[Q,],
(Ly, E;) € G[§Y], respectively).

By Lg (D) we denote the class of these commutative algebras with a
left invertible D for which there exist invertible selectors of €2, i.e. there
exists (L, E) € G[Q]. Clearly, if D is left invertible then ker D = {0}. Thus
the multifunction € is single-valued and we may write: £ = L. On the
other hand, if ker D = {0}, then either X is not a Leibniz algebra or X has
no unit (cf. PR[2]).
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Suppose that either F =R or F = C and D € A(X) with unit e is a
complete linear metric space. Write 2 = e and

oo xn
em:Zﬁ forx € X (1.6)

n=0

whenever this series is convergent. The function e® is said to be an expo-
nential function. Observe that here we write e for the number
> !
|
= n!

in order to distinguish between this number and the unit e of the algebra
X.

If X € Lg(D) with unit e € dom Q7! is a complete linear metric space
then we write

Ep(X)={redom Q! : Z % is convergent}. (1.7)

n=0

By definition, ¥ = e%e¥ = eYe” and e’ = e. The same definition can be
used for X € Lgy (D).

X is said to be a complete m-pseudoconvex algebra, if it is an algebra
and a complete locally pseudoconvex space with the topology induced by a
sequence {|| - ||} of submultiplicative p,-homogeneous F-norms, i.e. such
pseudonorms that

lzylln < lzllallylln  for allz,y € X, neN.

2. Powers

We begin with the following
DEFINITION 2.1. Let X € Lg,(D) N Lg)(D). Write for A € F:

E,yu=E,(ALyu) if (L., E,) € G[Q,], v € dom €, (2.1)

EL/\U = El()\Llu) if (Ll,El) S G[Ql], u € dom ).
If X € Lg(D), then we write

Eyu=E\Lu) if (L,E) € G[], u € dom . (2.1)
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The mappings E,», E;x and E) are said to be of the power type with
exponent \ or, if it does not lead to any misunderstanding, shortly, power
mappings.

Note 2.1. Without any additional assumptions, just by definitions, left
and right logarithms and antilogarithms of elements ge, where e is the unit
of X and ¢ € Q, are well-defined (provided that c¢p # 0). In a standard way
we obtain extensions of left and right logarithms and antilogarithms to R
and C in Leibniz algebras (cf. for details PR[2], also PR][3]).

We recall without proofs (which can be found either in PR[2] or in
PRI3]) the following properties of powers. For the sake of brevity, we shall
consider only the commutative case. We get

PROPOSITION 2.1. Suppose that X € Lg(D), (L,E) € G[Q] and the
mappings E) are defined by Formulae (2.1'). Then for all A\, u € F we have
Ey(dom Q) C dom 2, LE\ = AL and E\E,, = E),, i.e. these mappings are
multiplicative functions of the parameter .

THEOREM 2.1. Suppose that X € Lg(D) is a Leibniz algebra and
(L,E) € GQ]. Then for all\ € F andu € I(X)Ndom D Exu™' = (Eyu) ™.
If D € R(X) then E) € M(X).

PROPOSITION 2.2. Suppose that X € Lg(D) is a Leibniz algebra and
(L,E) € G|Q]. Then for all \, p € F and u € dom Q

(Exu)(Eyu) = Exypu;  Esu, Eyu € I(X) and (Eyu)™'' = E_yu.

Proposition 2.2 does not hold in the noncommutative case (cf. PR[2]).

PROPOSITION 2.3. Suppose that X € Lg(D) and (L,E) € Gr1[Q] for
an R € Rpl. If \ € F and u,v € dom 2, Exu, Exv € I(X), then there is a
z € ker D such that
(EXLL)(E)\U) = E{CD)\LU

+R[cpA(Bxv) " 'u” (Du)(Exv) + (Bxv) ' (Exu) fp(Exu, Exv)] + 2.
COROLLARY 2.1. Suppose that all assumptions of Proposition 2.3 are

satisfied and cp = 0. Then the mappings F) are not defined for A # 1. If
A =1 then Fy = I|gom Q-

'Let F be an initial operator for a D € R(X) corresponding to an R € Rp. We denote
by Gr,1[€] the set of these selectors of Q for which F'Lu = 0 for all u € dom D (cf. PR[2])
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Corollary 2.1 implies that for multiplicative D the mappings E) are not
defined (cf. Note 2.1).

Clearly, we can extend Definition 2.1 to left invertible operators. We
get

PROPOSITION 2.4. Suppose that X € Lg, (D), (L, F) € G[L] and the
mapping E) is defined by (2.1'). Let A € F. Then E(dom L) C dom L and
LEy, = AL (cf. Proposition 2.1).

PROPOSITION 2.5. Suppose that X € Lg, (D) and (L, E) € G[L]. Let
A € F. Then Ey € M(X) and DEyu = A(Ex_iju)Du for uw € dom L (cf.
Proposition 2.2).

In general, we have the following

PROPOSITION 2.6. Suppose that X € Lg, (D) and (L,E) € G[L]. If
A € F and u,v € dom L, Eyu, Exv € I(X), then

(E)\u)(E,\v):E{cD/\(Lu—i—Lv)—i—S[(E)\u)_l(E)\v)_lfD(EAu, E)\U)]} (S € ED)
(cf. Proposition 2.3).

COROLLARY 2.2. Suppose that all assumptions of Proposition 2.6 are
satisfied and cp = 0. Then the mapping E\ is not defined for A # 1. If
A =1, then E1 = I|gom o (cf. Corollary 2.1).

DEFINITION 2.2. Suppose that either F = R or F = C, X is a complete
m-pseudoconvex Leibniz algebra with unit e, either X € Lg(D) or X €
Lg,(D), e € dom Q' and (L, E) € G[Q] (Recall that for D € A(X) we
have Q = L). Write

EH(X)={uedom L:\Lu€ Ep(X) for (L,E) e G[Q], N e F} (2.3)
(cf. Formula (1.6)) and

ur = MU for u € EH(X), A €. (2.4)

A

The function u” is said to be a power function.

PROPOSITION 2.7. Suppose that either F = R or F = C, X € Lg(D)
is a Leibniz complete m-pseudoconvex algebra with unit e € dom Q7!,
(L,E) € G[Q] and D is closed. Then for A € F :
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(i) if u € EH(X), A € F, then eM¥ € dom Q, eM¥ = Eyu = v and
Lu® = A\Lu;

(i) if w € I(X) NER(X) then
Dur = M1 Du; (2.5)

(iii) in particular, if A = n € N then

W=ut=u- ... u.
—

n—times

If we restrict ourselves to commutative algebras with right invertible
operators, then Definition 2.2 can be generalized in the following manner.

DEFINITION 2.3. Suppose that X € Lg(D) and (L, F) € G[§2]. Write
T(Q) ={(x,y) : 2 € dom , yLz € dom Q_l}

and
¥ = E(yLxz) whenever (z,y)¢€ T(Q).

By definition, La¥ = yLx. Indeed, La¥ = LE(yLx) = yLz. Let u = z¥ for
(z,y) € T and let y € I(X). Then

= FLr=FE(y 'La¥) = E(y 'Lu) = w
Clearly, =¥ is a generalization of power functions introduced by Definition
2.2 for scalar exponents, so that we call ¥ also a power function.

e 1

Observe that by definition, ¢ = x and x=¢ = 2™, since ¢ = E(eLx) =
ELr = x and 27¢ = FE(—eLx) = E(—Lz) = x~'. Moreover, if u = 2¥ for
(z,y) € T() and y € I(X), then

1

t=FELr=FE(y 'La¥Y) = E(y 'Lu) =u¥ .

Definition 2.3 will be very useful in order to establish the relationship
between the number e and the unit e of an algebra under consideration.

THEOREM 2.2. Suppose that X € Lg(D) is a Leibniz algebra with
unit e and (L, E) € G[Q?]. Then the power function z¥ has the following
properties:

(i) if (x,a),(z,b) € (), then a + b € T(Q) and x%xb = 2¢Y;
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(i) if (2, a),(y,a) € T(Q), then (zy,a) € T(Q) and xy* = (zy)*;

(iii) if (x,y) € T(Q) then ¥ € dom D and Dz¥ = x¥[(Dy)Lz+yx ! Dx],
in particular, if x € ker D then Da¥ = x¥(Dy)Lx, if y € ker D then Dz¥ =
yx¥ ¢Dux;

(iv) if (z,y) € Y(2) and =,y € ker D, then a¥ € ker D, in other words:
a constant to a constant power is again a constant;

(v) if (z,y) € () and a = By, then x"* = a;

(vi) if (x,y) € Y(Q) and a = Lz, then (Ea)¥ = y¥¢;

(vii) e’ = e whenever \ € F;

(viii) if x € dom Q, then 2° = e (cf. (1.7));

(ix) if (z,u),(x* v) € T(Q), then (x,uv) € T(Q) and (z")¥ = z*;

(x) if (z,y) € Y(Q), then (z,—y) € Y (Q), 2¥ € I(X) and (zY)~! = z7Y;

(xi) if the logarithm L is natural (i.e. if L(p,e) = elnp,, where p, is
the n-th prime (n € N)), then (ee)* = Ex whenever z € dom Q~*;

(xii) if X is an m-pseudoconvex D-algebra and \e € Ep(X) for all A € F
(F =R or F = C), then e’ = e’e, in particular, e¢ = ee.

Clearly, when X = C[0,7] and D = %, the introduced power mappings
coincide with the classical power functions.

DEFINITION 2.4. Suppose that all assumptions of Definition 2.3 are
satisfied. Write

L(Y)={ze€Y 3y y" =2} forneN, Y CX} (2.6)

Elements y € Y will be denoted by y = 2/™ and called nth roots of z.

By definition, if y = z/", then

1/n
z=cla, y=e/"Le=cl" " whenever z € Ep(X).

3. Powers of logarithmic mappings

In the sequel we shall admit for the sake of brevity the following condi-
tion:
[L] X € Lg(D) is a Leibniz D-algebra with unit e,

(i.e. a commutative Leibniz algebra with unit and with D € R(X)).
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Condition [L] implies
(Lu)™ = E(mL*u) for (L,E) € G[Q), (u,z) € graph Q (m € Ng). (3.1)
Indeed, (Lu)™ = EL(Lu)™ = E[mL(Lu)] = E(mL?u).
DEFINITION 3.1. Suppose that Condition [L] holds, (L, E) € G[€],

(u,z) € graph Q, = Lu, w = Lz. Let n € N be arbitrarily fixed. Write:

n
Apu = H L/u for L'ucdomQ (j=1,..,n). (3.2)
5=0

ProprosITION 3.1. Suppose that all assumptions of Definition 3.1 are
satisfied. Then:

DL"w = (L"u)DL" 'y (n e Np). (3.3)

P r o o f. By definition, Du = uDLu = uDx. The same definition
implies that for w = Lu we have DLu = Dw = wDLw = (Lu)DL?*u. Hence
Du = uDLu = u(Lu) D L*u. Suppose Formula (3.3) is true for an arbitrarily
fixed (n € N). Then, by the same reasons, DL" "y = (L™ u) DL 2u, i.e.
(3.2) holds for n + 1. n

ProrosiTION 3.2. Suppose that all assumptions of Definition 3.1 are
satisfied. Then:

n—1

Du= (][ Fu)DL™w  (n€Ny). (3.4)
j=0
P r o o f. By induction. ]

Definition 3.1 and Formula (3.3) immediately imply

COROLLARY 3.1. Suppose that all assumptions of Definition 3.1 are
satisfied. Then:

Du = (Ap—1u)DL"u (neN). (3.5)
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DEFINITION 3.2. Suppose that all assumptions of Definition 3.1 are
satisfied. Let k; € N and a; € dom Q for j =0,...,n (n € N). Write:

n
Afekn(ag, o ap)u =TT a; (L)% (3.5)

j=0

and for ag = ... = a, = ¢
Agorotny =TT (Lu). (3.6)
j=0
Clearly,

ARokngy — Aju for kg =Fky = ... = kpy1 = 1, (3.7)

where Apu is defined by Formula (3.2).

THEOREM 3.1. Suppose that all assumptions of Definition 3.2 are sat-
isfied. Then:

n—1 n
[ARo-bn(ag, s an)u]™ = B Laj)E(Y kiLitu)  (m € Np). (3.8)
j=01 3=0

P r o o f. By our assumption, X is a Leibniz algebra. Thus the loga-
rithmic mapping L under consideration is of exponential type, i.e. L(uv) =
Lu + Lv for u,v € dom D. Let n € N be fixed and let m = 1. We have

n
LAFt-kn (g ap)u=L H a;(LIu)ki
=0

n n n
=Y Llaj(Lw)) =Y Laj+ Y kL,
§=0 j=0

J=0

which implies the required Formula (3.8) for E = L~!. Since X is a Leibniz
algebra, L is of the exponential type. Thus E = L~! has the properties:
E(z +vy) = (Ex)(Ey) and E(mz) = (Ex)™ for 7,y € dom Q71 m € N.
Hence Theorem 3.1 and Formula 3.1 together imply the required formula
(3.8). ]
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In particular, we have

n+1
(Apu)™ = E(mY_L/u)  (m,n €Np). (3.9)
j=1

It should be mentioned that the already obtained results have some
connections with the Number Theory, then also with applications in the
cryptography (cf. Schinzel S[1]). There are also some other connections.

4. Functional equations for logarithms, antilogarithms and
powers

Recall the classical results.

Example 4.1. (cf. Kuczma KJ[1]). Suppose that X = R, F = R. Let
f € C*°(R). Then all solutions of the functional equations

fle+y)=f@)+ fly) are z=ct, (c€R),
flzy) = f(x)+ f(y) are z=clog,t, (a € R\0, c€R),
o fla+y)=[f(a)f(y) are z=ce”, (a,c€R),

o flxy)=f(z)f(y) are z=ct? (a,c€R).

THEOREM 4.1. Suppose that Condition [L] holds, (L, F) € G[Q], (u,x),
(v,y) € graph Q, i.e. © = Lu, u = Lz, y = Lv, v = Ey. Let f € I(X) :
dom 2 — dom 2.

(i) If f = L, then L of the exponential type: L(uv) = Lu + Lv.

(ii) If f = E, then E(z +y) = (Ez)(Ey).

(iii) If f is multiplicative: f(xy) = f(x)(f(y), then solutions of this
functional equation are power elements x* = E(aLx), where (x,a) € T(Q)
(cf. Definition 2.3.

(iv) If f is multiplicative, then

L'(uww) = L'u+ L'v, where L' = Lf, (4.12)

i.e. L’ is of the exponential type.
(v) If f is additive, then

L"(uwv) = L"u+ L"v, where L" = fL, (4.13)

i.e. L” is of the exponential type.
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(vi) If f is additive, then
L"(uwv) = L"u+ L"v, where L" = fLf, (4.14)
ie. L' is also additive.

P roof (i) and (ii) are consequences of the Leibniz condition (cf.
PR[2]).

(iii) follows from Theorem 2.2(ii).

(iv) Since f is multiplicative, by (i) we have L'(uwv) = Lf(uv)
= L[f(u)f(0)] = L(w) + Lf(o) = D'(u) + D'(v).

(v) Since f is additive, by (i) we find L”(uv) = fL(uwv) = f(Lu + Lv)
= fLu+ fLv = L"u+ L"v.

(vi) Since f is additive, again by (i) (as in the proof of (iv)), L" (uv) =
fLf(w) = f(Lfu+ Lfv) = L"u+ L"v. [

It is easy to verify the following

COROLLARY 4.1. Suppose that all assumptions of Theorem 4.1 are sat-
isfied. Let h = f~1.

(i) If f = L, then h = E.

(ii) If f = E, then h = L.

(iii) If f is multiplicative, then h is also multiplicative.

(iv) If f is multiplicative, then hE = (Lf)™!, hE(z +y) = (hEx)(hEy)
and the last equation has solutions of the form h™'Ex = fFEx.

(v) If f is additive, then Eh = (fL)~!, Eh(z +vy) = (Ehz)(Ehy) and
the last equation has solutions of the form Eh™ 'z = E fz.

(vi) If f is additive, then hEh is also additive.

Similar results can be obtained in Leibniz algebras with left invertible
operators.

Example 4.2. (cf. DP[1]) Let X be a complex Banach space. Denote
by B(X) the set of all bounded operators mapping X into itself. A strongly
continuous family of operators {W (¢)}+>0 C B(X) is a C-regularized semi-
group if W(0) = C and W (t)W(s) = W(t+s)C for all s,t > 0. This family
is nondegenerate, if W(t)x = 0 implies x = 0. A C-regularized semigroup
is nondegenerate if and only if C is injective. An operator A generates a
nondegenerate C-regularized semigroup {W (t)}+>¢ if

Bx = 0_1[ W(t)x‘t:()]

dt
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with the maximal domain.

If there is a nondegenerate C-regularized semigroup {W () }+>0 such that
A= C~'W(1), then its generator is, by definition, log Ax = Buz.
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