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Abstract

There are applied power mappings in algebras with logarithms induced
by a given linear operator D in order to study particular properties of powers
of logarithms. Main results of this paper will be concerned with the case
when an algebra under consideration is commutative and has a unit and
the operator D satisfies the Leibniz condition, i.e. D(xy) = xDy + yDx for
x, y ∈ dom D. Note that in the Number Theory there are well-known several
formulae expressed by means of some combinations of powers of logarithmic
and antilogarithmic mappings or powers of logarithms and antilogarithms
(cf. for instance, the survey of Schinzel S[1].
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1. Algebras with logarithms

We recall some notions and properties which will be used in the sequel.

Let X be a linear space over a field F of scalars of the characteristic
zero. Recall that L(X) is the set of all linear operators with domains and
ranges in X and L0(X) = {A ∈ L(X) : dom A = X}.
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If X is an algebra over F with a D ∈ L(X) such that x, y ∈ dom D
implies xy, yx ∈ dom D, then we shall write D ∈ A(X). The set of
all commutative algebras belonging to A(X) will be denoted by A(X). If
D ∈ A(X), then

fD(x, y) = D(xy)− cD[xDy + (Dx)y] for x, y ∈ dom D,

where cD is a scalar dependent on D only. Clearly, fD is a bilinear (i.e.
linear in each variable) form which is symmetric when X is commutative, i.e.
when D ∈ A(X). This form is called a non-Leibniz component. Non-Leibniz
components have been introduced for right invertible operators D ∈ A(X)
(cf. PR[1]). If D ∈ A(X), then the product rule in X can be written as
follows:

D(xy) = cD[xDy + (Dx)y] + fD(x, y) for x, y ∈ dom D.

If D ∈ A(X) is right invertible, then the algebra X is said to be a
D-algebra.

We shall consider in A(X) the following sets:
• the set of all multiplicative mappings (not necessarily linear) with

domains and ranges in X:

M(X) = {A : dom A ⊂ X, A(xy) = A(x)A(y) for x, y ∈ dom A};
• the set I(X) of all invertible elements belonging to X;
• the set R(X) of all right invertible operators belonging to L(X);
• the set RD = {R ∈ L0(X) : DR = I} of all right inverses to a

D ∈ R(X);
• the set FD = {F ∈ L0(X) : F 2 = F, FX = kerD and ∃R∈RD FR =

0} of all initial operators for a D ∈ R(X);
• the set Λ(X) of all left invertible operators belonging to L(X);
• the set I(X) of all invertible operators belonging to L(X).
Clearly, if kerD 6= {0}, then the operator D is right invertible, but not

invertible. Here the invertibility of an operator A ∈ L(X) means that the
equation Ax = y has a unique solution for every y ∈ X. Elements of the
kernel of a D ∈ R(X) are said to be constants. If D ∈ I(X) then FD = {0}
and RD = {D−1}. We also have dom D = RX ⊕ kerD independently of
the choice of an RD (cf. PR[1]).

It is well-known that F is an initial operator for a D ∈ R(X) if and only
if there is an R ∈ RD such that F = I −RD on dom D. Moreover, if F ′ is
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any projection onto kerD then F ′ is an initial operator for D corresponding
to the right inverse R′ = R−F ′R independently of the choice of an R ∈ RD

(cf. PR[1]).

Suppose that D ∈ A(X). Let Ωr, Ωl : dom D −→ 2dom D be multifunc-
tions defined as follows:

Ωru = {x ∈ dom D : Du = uDx}, Ωlu = {x ∈ dom D : Du = (Dx)u}
(1.1)

for u ∈ dom D. The equations

Du = uDx for (u, x) ∈ graph Ωr , Du = (Dx)u for (u, x) ∈ graph Ωl

(1.2)
are said to be the right and left basic equations, respectively. Clearly,

Ω−1
r x = {u ∈ dom D : Du = uDx}, Ω−1

l x = {u ∈ dom D : Du = (Dx)u}
(1.3)

for x ∈ dom D. The multifunctions Ωr, Ωl are well-defined and dom Ωr ∩
dom Ωl ⊃ kerD.

Suppose that (ur, xr) ∈ graph Ωl, (ul, xl) ∈ graph Ωr, Lr, Ll are selec-
tors of Ωr, Ωl, respectively, and Er, El are selectors of Ω−1

r , Ω−1
l , respec-

tively. By definitions, Lrur ∈ dom Ω−1
r , Erxr ∈ dom Ωr, Llul ∈ dom Ω−1

l ,
Elxl ∈ dom Ωl and the following equations are satisfied:

Dur = urDLrur, DErxr = (Erxr)Dxr;

Dul = (DLlul)ul, DElxl = (Dxl)(Elxl).

Any invertible selector Lr of Ωr is said to be a right logarithmic mapping
and its inverse Er = L−1

r is said to be a right antilogarithmic mapping. If
(ur, xr) ∈ graph Ωr and Lr is an invertible selector of Ωr, then the element
Lrur is said to be a right logarithm of ur and Erxr is said to be a right
antilogarithm of xr. By G[Ωr] we denote the set of all pairs (Lr, Er), where
Lr is an invertible selector of Ωr and Er = L−1

r . Respectively, any invertible
selector Ll of Ωl is said to be a left logarithmic mapping and its inverse
El = L−1

l is said to be a left antilogarithmic mapping. If (ul, xl) ∈ graph Ωl

and Ll is an invertible selector of Ωl, then the element Llu is said to be a left
logarithm of ul and Elxl is said to be a left antilogarithm of xl. By G[Ωl]
we denote the set of all pairs (Ll, El), where Ll is an invertible selector of
Ωl and El = L−1

l .
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If D ∈ A(X) then Ωr = Ωl and we write Ωr = Ω and Lr = Ll = L,
Er = El = E, (L,E) ∈ G[Ω]. Selectors L, E of Ω are said to be logarithmic
and antilogarithmic mappings, respectively. For any (u, x) ∈ G[Ω] elements
Lu,Ex are said to be logarithm of u and antilogarithm of x, respectively.
The multifunction Ω has been examined in PR[2].

Clearly, by definition, for all (Lr, Er) ∈ G[Ωr], (ur, xr) ∈ graph Ωr,
(Ll, El) ∈ G[Ωl], (ul, xl) ∈ graph Ωl we have

ErLrur = ur, LrErxr = xr; ElLlul = ul, LlElxl = xl; (1.4)

DErxr = (Erxr)Dxr, Dur = urDLrur; (1.5)

DElxl = (Dxl)(Elxl), Dul = (DLlul)ul.

A right (left) logarithm of zero is not defined. If (Lr, Er) ∈ G[Ωr], (Ll, El) ∈
G[Ωl], then Lr(kerD \ {0}) ⊂ kerD, Er(kerD) ⊂ kerD, Ll(kerD \ {0}) ⊂
kerD, El(kerD) ⊂ kerD. In particular, Er(0), El(0) ∈ kerD.

If D ∈ R(X), then logarithms and antilogarithms are uniquely deter-
mined up to a constant.

If D ∈ A(X) and if D satisfies the Leibniz condition: D(xy) = xDy +
(Dx)y for x, y ∈ dom D, then X is said to be a Leibniz algebra.

Let D ∈ A(X). A logarithmic mapping L is said to be of the exponential
type if L(uv) = Lu + Lv for u, v ∈ dom Ω. If L is of the exponential type,
then E(x + y) = (Ex)(Ey) for x, y ∈ dom Ω. We have proved that a
logarithmic mapping L is of the exponential type if and only if X is a
commutative Leibniz algebra (cf. PR[2]). In commutative Leibniz algebras
with a right invertible operator D u ∈ dom Ω if and only if u ∈ I(X) (cf.
PR[2]). The Leibniz condition is also a necessary and sufficient condition
for the Trigonometric Identity to be satisfied.

By Lg(D) (Lgr(D), Lgl(D)) we denote the class of these algebras with
unit e ∈ dom Ω for which D ∈ R(X) and there exist invertible selectors of
Ω (Ωr, Ωl, respectively), i.e. there exist (L, E) ∈ G[Ω] ((Lr, Er) ∈ G[Ωr],
(Ll, El) ∈ G[Ωl], respectively).

By Lg#(D) we denote the class of these commutative algebras with a
left invertible D for which there exist invertible selectors of Ω, i.e. there
exists (L, E) ∈ G[Ω]. Clearly, if D is left invertible then kerD = {0}. Thus
the multifunction Ω is single-valued and we may write: Ω = L. On the
other hand, if kerD = {0}, then either X is not a Leibniz algebra or X has
no unit (cf. PR[2]).
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Suppose that either F = R or F = C and D ∈ A(X) with unit e is a
complete linear metric space. Write x0 = e and

ex =
∞∑

n=0

xn

n!
for x ∈ X (1.6)

whenever this series is convergent. The function ex is said to be an expo-
nential function. Observe that here we write e for the number

∞∑

n=0

1
n!

in order to distinguish between this number and the unit e of the algebra
X.

If X ∈ Lg(D) with unit e ∈ dom Ω−1 is a complete linear metric space
then we write

ED(X) = {x ∈ dom Ω−1 :
∞∑

n=0

xn

n!
is convergent}. (1.7)

By definition, ex+y = exey = eyex and e0 = e. The same definition can be
used for X ∈ Lg#(D).

X is said to be a complete m-pseudoconvex algebra, if it is an algebra
and a complete locally pseudoconvex space with the topology induced by a
sequence {‖ · ‖n} of submultiplicative pn-homogeneous F -norms, i.e. such
pseudonorms that

‖xy‖n ≤ ‖x‖n‖y‖n for all x, y ∈ X, n ∈ N.

2. Powers

We begin with the following

Definition 2.1. Let X ∈ Lgr(D) ∩ Lgl(D). Write for λ ∈ F:

Er,λu = Er(λLru) if (Lr, Er) ∈ G[Ωr], u ∈ dom Ωr, (2.1)

El,λu = El(λLlu) if (Ll, El) ∈ G[Ωl], u ∈ dom Ωl.

If X ∈ Lg(D), then we write

Eλu = E(λLu) if (L, E) ∈ G[Ω], u ∈ dom Ω. (2.1′)
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The mappings Er,λ, El,λ and Eλ are said to be of the power type with
exponent λ or, if it does not lead to any misunderstanding, shortly, power
mappings.

Note 2.1. Without any additional assumptions, just by definitions, left
and right logarithms and antilogarithms of elements qe, where e is the unit
of X and q ∈ Q, are well-defined (provided that cD 6= 0). In a standard way
we obtain extensions of left and right logarithms and antilogarithms to R
and C in Leibniz algebras (cf. for details PR[2], also PR[3]).

We recall without proofs (which can be found either in PR[2] or in
PR[3]) the following properties of powers. For the sake of brevity, we shall
consider only the commutative case. We get

Proposition 2.1. Suppose that X ∈ Lg(D), (L,E) ∈ G[Ω] and the
mappings Eλ are defined by Formulae (2.1′). Then for all λ, µ ∈ F we have
Eλ(dom Ω) ⊂ dom Ω, LEλ = λL and EλEµ = Eλµ, i.e. these mappings are
multiplicative functions of the parameter λ.

Theorem 2.1. Suppose that X ∈ Lg(D) is a Leibniz algebra and
(L,E) ∈ G[Ω]. Then for all λ ∈ F and u ∈ I(X)∩dom D Eλu−1 = (Eλu)−1.
If D ∈ R(X) then Eλ ∈ M(X).

Proposition 2.2. Suppose that X ∈ Lg(D) is a Leibniz algebra and
(L,E) ∈ G[Ω]. Then for all λ, µ ∈ F and u ∈ dom Ω

(Eλu)(Eµu) = Eλ+µu; Eλu, E−λu ∈ I(X) and (Eλu)−1 = E−λu.

Proposition 2.2 does not hold in the noncommutative case (cf. PR[2]).

Proposition 2.3. Suppose that X ∈ Lg(D) and (L,E) ∈ GR,1[Ω] for
an R ∈ RD

1. If λ ∈ F and u, v ∈ dom Ω, Eλu, Eλv ∈ I(X), then there is a
z ∈ kerD such that

(Eλu)(Eλv) = E{cDλLv

+R[cDλ(Eλv)−1u−1(Du)(Eλv) + (Eλv)−1(Eλu)fD(Eλu, Eλv)] + z.

Corollary 2.1. Suppose that all assumptions of Proposition 2.3 are
satisfied and cD = 0. Then the mappings Eλ are not defined for λ 6= 1. If
λ = 1 then E1 = I|dom Ω.

1Let F be an initial operator for a D ∈ R(X) corresponding to an R ∈ RD. We denote
by GR,1[Ω] the set of these selectors of Ω for which FLu = 0 for all u ∈ dom D (cf. PR[2])
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Corollary 2.1 implies that for multiplicative D the mappings Eλ are not
defined (cf. Note 2.1).

Clearly, we can extend Definition 2.1 to left invertible operators. We
get

Proposition 2.4. Suppose that X ∈ Lg#(D), (L,E) ∈ G[L] and the
mapping Eλ is defined by (2.1′). Let λ ∈ F. Then Eλ(dom L) ⊂ dom L and
LEλ = λL (cf. Proposition 2.1).

Proposition 2.5. Suppose that X ∈ Lg#(D) and (L,E) ∈ G[L]. Let
λ ∈ F. Then Eλ ∈ M(X) and DEλu = λ(Eλ−1u)Du for u ∈ dom L (cf.
Proposition 2.2).

In general, we have the following

Proposition 2.6. Suppose that X ∈ Lg#(D) and (L,E) ∈ G[L]. If
λ ∈ F and u, v ∈ dom L, Eλu,Eλv ∈ I(X), then

(Eλu)(Eλv)=E{cDλ(Lu+Lv)+S[(Eλu)−1(Eλv)−1fD(Eλu,Eλv)]} (S ∈ LD).

(cf. Proposition 2.3).

Corollary 2.2. Suppose that all assumptions of Proposition 2.6 are
satisfied and cD = 0. Then the mapping Eλ is not defined for λ 6= 1. If
λ = 1, then E1 = I|dom Ω (cf. Corollary 2.1).

Definition 2.2. Suppose that either F = R or F = C, X is a complete
m-pseudoconvex Leibniz algebra with unit e, either X ∈ Lg(D) or X ∈
Lg#(D), e ∈ dom Ω−1 and (L,E) ∈ G[Ω] (Recall that for D ∈ Λ(X) we
have Ω = L). Write

E ′D(X) = {u ∈ dom L : λLu ∈ ED(X) for (L,E) ∈ G[Ω], λ ∈ F} (2.3)

(cf. Formula (1.6)) and

uλ = eλLu for u ∈ E ′D(X), λ ∈ F. (2.4)

The function uλ is said to be a power function.

Proposition 2.7. Suppose that either F = R or F = C, X ∈ Lg(D)
is a Leibniz complete m-pseudoconvex algebra with unit e ∈ dom Ω−1,
(L, E) ∈ G[Ω] and D is closed. Then for λ ∈ F :
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(i) if u ∈ E ′D(X), λ ∈ F, then eλLu ∈ dom Ω, eλLu = Eλu = uλ and
Luλ = λLu;

(ii) if u ∈ I(X) ∩ E ′D(X) then

Duλ = λuλ−1Du; (2.5)

(iii) in particular, if λ = n ∈ N then

uλ = un = u · ... · u︸ ︷︷ ︸
n−times

.

If we restrict ourselves to commutative algebras with right invertible
operators, then Definition 2.2 can be generalized in the following manner.

Definition 2.3. Suppose that X ∈ Lg(D) and (L,E) ∈ G[Ω]. Write

Υ(Ω) = {(x, y) : x ∈ dom Ω, yLx ∈ dom Ω−1}

and
xy = E(yLx) whenever (x, y) ∈ Υ(Ω).

By definition, Lxy = yLx. Indeed, Lxy = LE(yLx) = yLx. Let u = xy for
(x, y) ∈ Υ and let y ∈ I(X). Then

x = ELx = E(y−1Lxy) = E(y−1Lu) = uy−1
.

Clearly, xy is a generalization of power functions introduced by Definition
2.2 for scalar exponents, so that we call xy also a power function.

Observe that by definition, xe = x and x−e = x−1, since xe = E(eLx) =
ELx = x and x−e = E(−eLx) = E(−Lx) = x−1. Moreover, if u = xy for
(x, y) ∈ Υ(Ω) and y ∈ I(X), then

x = ELx = E(y−1Lxy) = E(y−1Lu) = uy−1
.

Definition 2.3 will be very useful in order to establish the relationship
between the number e and the unit e of an algebra under consideration.

Theorem 2.2. Suppose that X ∈ Lg(D) is a Leibniz algebra with
unit e and (L,E) ∈ G[Ω]. Then the power function xy has the following
properties:

(i) if (x, a),(x, b) ∈ Υ(Ω), then a + b ∈ Υ(Ω) and xaxb = xa+b;
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(ii) if (x, a),(y, a) ∈ Υ(Ω), then (xy, a) ∈ Υ(Ω) and xaya = (xy)a;

(iii) if (x, y) ∈ Υ(Ω) then xy ∈ dom D and Dxy = xy[(Dy)Lx+yx−1Dx],
in particular, if x ∈ kerD then Dxy = xy(Dy)Lx, if y ∈ kerD then Dxy =
yxy−eDx;

(iv) if (x, y) ∈ Υ(Ω) and x, y ∈ kerD, then xy ∈ kerD, in other words:
a constant to a constant power is again a constant;

(v) if (x, y) ∈ Υ(Ω) and a = Ey, then xLa = aLx;

(vi) if (x, y) ∈ Υ(Ω) and a = Lx, then (Ea)y = yEa;

(vii) eλe = e whenever λ ∈ F;
(viii) if x ∈ dom Ω, then x0 = e (cf. (1.7));

(ix) if (x, u),(xu, v) ∈ Υ(Ω), then (x, uv) ∈ Υ(Ω) and (xu)v = xuv;

(x) if (x, y) ∈ Υ(Ω), then (x,−y) ∈ Υ(Ω), xy ∈ I(X) and (xy)−1 = x−y;

(xi) if the logarithm L is natural (i.e. if L(pne) = e ln pn, where pn is
the n-th prime (n ∈ N)), then (ee)x = Ex whenever x ∈ dom Ω−1;

(xii) if X is an m-pseudoconvex D-algebra and λe ∈ ED(X) for all λ ∈ F
(F = R or F = C), then eλe = eλe, in particular, ee = ee.

Clearly, when X = C[0, T ] and D = d
dt , the introduced power mappings

coincide with the classical power functions.

Definition 2.4. Suppose that all assumptions of Definition 2.3 are
satisfied. Write

In(Y ) = {x ∈ Y : ∃y∈I(Y ) yn = x} for n ∈ N, Y ⊂ X}. (2.6)

Elements y ∈ Y will be denoted by y = x1/n and called nth roots of x.

By definition, if y = x1/n, then

x = eLx, y = e1/nLx = eLx1/n
whenever x ∈ ED(X).

3. Powers of logarithmic mappings

In the sequel we shall admit for the sake of brevity the following condi-
tion:

[L] X ∈ Lg(D) is a Leibniz D-algebra with unit e,

(i.e. a commutative Leibniz algebra with unit and with D ∈ R(X)).



292 D. Przeworska-Rolewicz

Condition [L] implies

(Lu)m = E(mL2u) for (L,E) ∈ G[Ω], (u, x) ∈ graph Ω (m ∈ N0). (3.1)

Indeed, (Lu)m = EL(Lu)m = E[mL(Lu)] = E(mL2u).

Definition 3.1. Suppose that Condition [L] holds, (L,E) ∈ G[Ω],
(u, x) ∈ graph Ω, x = Lu, u = Lx. Let n ∈ N be arbitrarily fixed. Write:

Λnu =
n∏

j=0

Lju for Lju ∈ dom Ω (j = 1, ..., n). (3.2)

Proposition 3.1. Suppose that all assumptions of Definition 3.1 are
satisfied. Then:

DLnu = (Lnu)DLn+1u (n ∈ N0) . (3.3)

P r o o f. By definition, Du = uDLu = uDx. The same definition
implies that for w = Lu we have DLu = Dw = wDLw = (Lu)DL2u. Hence
Du = uDLu = u(Lu)DL2u. Suppose Formula (3.3) is true for an arbitrarily
fixed (n ∈ N). Then, by the same reasons, DLn+1u = (Ln+1u)DLn+2u, i.e.
(3.2) holds for n + 1.

Proposition 3.2. Suppose that all assumptions of Definition 3.1 are
satisfied. Then:

Du =
( n−1∏

j=0

Lju
)
DLnu (n ∈ N0) . (3.4)

P r o o f. By induction.

Definition 3.1 and Formula (3.3) immediately imply

Corollary 3.1. Suppose that all assumptions of Definition 3.1 are
satisfied. Then:

Du = (Λn−1u)DLnu (n ∈ N) . (3.5)
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Definition 3.2. Suppose that all assumptions of Definition 3.1 are
satisfied. Let kj ∈ N and aj ∈ dom Ω for j = 0, ..., n (n ∈ N). Write:

Λk0,...,kn
n (a0, ..., an)u =

n∏

j=0

aj(Lju)kj (3.5)

and for a0 = ... = an = e

Λk0,...,kn
n u =

n∏

j=0

(Lju)kj . (3.6)

Clearly,

Λk0,...,kn
n u = Λnu for k0 = k1 = ... = kn+1 = 1, (3.7)

where Λnu is defined by Formula (3.2).

Theorem 3.1. Suppose that all assumptions of Definition 3.2 are sat-
isfied. Then:

[Λk0,...,kn
n (a0, ..., an)u]m = E(

n−1∑

j=01

Laj)E(
n∑

j=0

kjL
j+1u) (m ∈ N0) . (3.8)

P r o o f. By our assumption, X is a Leibniz algebra. Thus the loga-
rithmic mapping L under consideration is of exponential type, i.e. L(uv) =
Lu + Lv for u, v ∈ dom D. Let n ∈ N be fixed and let m = 1. We have

LΛk1,...,kn
n (a1, ..., an)u = L

n∏

j=0

aj(Lju)kj

=
n∑

j=0

L[aj(Lju)kj ] =
n∑

j=0

Laj +
n∑

j=0

kjL
j+1,

which implies the required Formula (3.8) for E = L−1. Since X is a Leibniz
algebra, L is of the exponential type. Thus E = L−1 has the properties:
E(x + y) = (Ex)(Ey) and E(mx) = (Ex)m for x, y ∈ dom Ω−1, m ∈ N0.
Hence Theorem 3.1 and Formula 3.1 together imply the required formula
(3.8).
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In particular, we have

(Λnu)m = E(m
n+1∑

j=1

Lju) (m,n ∈ N0) . (3.9)

It should be mentioned that the already obtained results have some
connections with the Number Theory, then also with applications in the
cryptography (cf. Schinzel S[1]). There are also some other connections.

4. Functional equations for logarithms, antilogarithms and
powers

Recall the classical results.
Example 4.1. (cf. Kuczma K[1]). Suppose that X = R, F = R. Let

f ∈ C∞(R). Then all solutions of the functional equations
• f(x + y) = f(x) + f(y) are x = ct, (c ∈ R),
• f(xy) = f(x) + f(y) are x = c loga t, (a ∈ R \ 0, c ∈ R),
• f(x + y) = f(x)f(y) are x = ceat, (a, c ∈ R),
• f(xy) = f(x)f(y) are x = cta, (a, c ∈ R).

Theorem 4.1. Suppose that Condition [L] holds, (L,E) ∈ G[Ω], (u, x),
(v, y) ∈ graph Ω, i.e. x = Lu, u = Lx, y = Lv, v = Ey. Let f ∈ I(X) :
dom Ω → dom Ω.

(i) If f = L, then L of the exponential type: L(uv) = Lu + Lv.
(ii) If f = E, then E(x + y) = (Ex)(Ey).
(iii) If f is multiplicative: f(xy) = f(x)(f(y), then solutions of this

functional equation are power elements xa = E(aLx), where (x, a) ∈ Υ(Ω)
(cf. Definition 2.3.

(iv) If f is multiplicative, then

L′(uv) = L′u + L′v, where L′ = Lf, (4.12)

i.e. L’ is of the exponential type.
(v) If f is additive, then

L′′(uv) = L′′u + L′′v, where L′′ = fL, (4.13)

i.e. L” is of the exponential type.
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(vi) If f is additive, then

L′′′(uv) = L′′′u + L′′′v, where L′′′ = fLf, (4.14)

i.e. L′′′ is also additive.

P r o o f. (i) and (ii) are consequences of the Leibniz condition (cf.
PR[2]).

(iii) follows from Theorem 2.2(ii).
(iv) Since f is multiplicative, by (i) we have L′(uv) = Lf(uv)

= L[f(u)f(v)] = Lf(u) + Lf(v) = L′(u) + L′(v).
(v) Since f is additive, by (i) we find L′′(uv) = fL(uv) = f(Lu + Lv)

= fLu + fLv = L′′u + L′′v.
(vi) Since f is additive, again by (i) (as in the proof of (iv)), L′′′(uv) =

fLf(uv) = f(Lfu + Lfv) = L′′′u + L′′′v.
It is easy to verify the following

Corollary 4.1. Suppose that all assumptions of Theorem 4.1 are sat-
isfied. Let h = f−1.

(i) If f = L, then h = E.
(ii) If f = E, then h = L.
(iii) If f is multiplicative, then h is also multiplicative.
(iv) If f is multiplicative, then hE = (Lf)−1, hE(x + y) = (hEx)(hEy)

and the last equation has solutions of the form h−1Ex = fEx.
(v) If f is additive, then Eh = (fL)−1, Eh(x + y) = (Ehx)(Ehy) and

the last equation has solutions of the form Eh−1x = Efx.
(vi) If f is additive, then hEh is also additive.

Similar results can be obtained in Leibniz algebras with left invertible
operators.

Example 4.2. (cf. DP[1]) Let X be a complex Banach space. Denote
by B(X) the set of all bounded operators mapping X into itself. A strongly
continuous family of operators {W (t)}t≥0 ⊆ B(X) is a C-regularized semi-
group if W (0) = C and W (t)W (s) = W (t+ s)C for all s, t ≥ 0. This family
is nondegenerate, if W (t)x = 0 implies x = 0. A C-regularized semigroup
is nondegenerate if and only if C is injective. An operator A generates a
nondegenerate C-regularized semigroup {W (t)}t≥0 if

Bx = C−1
[ d
dt

W (t)x
∣∣
t=0

]
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with the maximal domain.

If there is a nondegenerate C-regularized semigroup {W (t)}t≥0 such that
A = C−1W (1), then its generator is, by definition, log Ax ≡ Bx.
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