

POWERS AND LOGARITHMS

Danuta Przeworska-Rolewicz

Dedicated to Professor Ivan H. Dimovski on the occasion of his 70th birthday

Abstract

There are applied power mappings in algebras with logarithms induced by a given linear operator D in order to study particular properties of powers of logarithms. Main results of this paper will be concerned with the case when an algebra under consideration is commutative and has a unit and the operator D satisfies the Leibniz condition, i.e. $D(x y)=x D y+y D x$ for $x, y \in \operatorname{dom} D$. Note that in the Number Theory there are well-known several formulae expressed by means of some combinations of powers of logarithmic and antilogarithmic mappings or powers of logarithms and antilogarithms (cf. for instance, the survey of Schinzel S[1].

2000 Mathematics Subject Classification: 47L75, 33B99
Key Words and Phrases: algebra with unit, Leibniz condition, logarithmic mapping, antilogarithmic mapping, power function

1. Algebras with logarithms

We recall some notions and properties which will be used in the sequel.
Let X be a linear space over a field \mathbb{F} of scalars of the characteristic zero. Recall that $L(X)$ is the set of all linear operators with domains and ranges in X and $L_{0}(X)=\{A \in L(X): \operatorname{dom} A=X\}$.

If X is an algebra over \mathbb{F} with a $D \in L(X)$ such that $x, y \in \operatorname{dom} D$ implies $x y, y x \in \operatorname{dom} D$, then we shall write $D \in \mathbf{A}(X)$. The set of all commutative algebras belonging to $\mathbf{A}(X)$ will be denoted by $\mathrm{A}(X)$. If $D \in \mathbf{A}(X)$, then

$$
f_{D}(x, y)=D(x y)-c_{D}[x D y+(D x) y] \quad \text { for } \quad x, y \in \operatorname{dom} D,
$$

where c_{D} is a scalar dependent on D only. Clearly, f_{D} is a bilinear (i.e. linear in each variable) form which is symmetric when X is commutative, i.e. when $D \in \mathrm{~A}(X)$. This form is called a non-Leibniz component. Non-Leibniz components have been introduced for right invertible operators $D \in \mathrm{~A}(X)$ (cf. $\mathrm{PR}[1])$. If $D \in \mathbf{A}(X)$, then the product rule in X can be written as follows:

$$
D(x y)=c_{D}[x D y+(D x) y]+f_{D}(x, y) \quad \text { for } \quad x, y \in \operatorname{dom} D .
$$

If $D \in \mathrm{~A}(X)$ is right invertible, then the algebra X is said to be a D-algebra.

We shall consider in $\mathbf{A}(X)$ the following sets:

- the set of all multiplicative mappings (not necessarily linear) with domains and ranges in X :

$$
M(X)=\{A: \operatorname{dom} A \subset X, A(x y)=A(x) A(y) \text { for } x, y \in \operatorname{dom} A\} ;
$$

- the set $I(X)$ of all invertible elements belonging to X;
- the set $R(X)$ of all right invertible operators belonging to $L(X)$;
- the set $\mathcal{R}_{D}=\left\{R \in L_{0}(X): D R=I\right\}$ of all right inverses to a $D \in R(X)$;
\bullet the set $\mathcal{F}_{D}=\left\{F \in L_{0}(X): F^{2}=F, \quad F X=\operatorname{ker} D\right.$ and $\exists_{R \in \mathcal{R}_{\mathcal{D}}} F R=$ $0\}$ of all initial operators for a $D \in R(X)$;
- the set $\Lambda(X)$ of all left invertible operators belonging to $L(X)$;
- the set $\mathcal{I}(X)$ of all invertible operators belonging to $L(X)$.

Clearly, if ker $D \neq\{0\}$, then the operator D is right invertible, but not invertible. Here the invertibility of an operator $A \in L(X)$ means that the equation $A x=y$ has a unique solution for every $y \in X$. Elements of the kernel of a $D \in R(X)$ are said to be constants. If $D \in \mathcal{I}(X)$ then $\mathcal{F}_{D}=\{0\}$ and $\mathcal{R}_{D}=\left\{D^{-1}\right\}$. We also have dom $D=R X \oplus \operatorname{ker} D$ independently of the choice of an $\mathcal{R}_{D}($ cf. $\mathrm{PR}[1])$.

It is well-known that F is an initial operator for a $D \in R(X)$ if and only if there is an $R \in \mathcal{R}_{D}$ such that $F=I-R D$ on dom D. Moreover, if F^{\prime} is
any projection onto ker D then F^{\prime} is an initial operator for D corresponding to the right inverse $R^{\prime}=R-F^{\prime} R$ independently of the choice of an $R \in \mathcal{R}_{D}$ (cf. $\operatorname{PR}[1]$).

Suppose that $D \in \mathbf{A}(X)$. Let $\Omega_{r}, \Omega_{l}: \operatorname{dom} D \longrightarrow 2^{\operatorname{dom} D}$ be multifunctions defined as follows:

$$
\begin{equation*}
\Omega_{r} u=\{x \in \operatorname{dom} D: D u=u D x\}, \quad \Omega_{l} u=\{x \in \operatorname{dom} D: D u=(D x) u\} \tag{1.1}
\end{equation*}
$$

for $u \in \operatorname{dom} D$. The equations
$D u=u D x \quad$ for $(u, x) \in \operatorname{graph} \Omega_{r}, \quad D u=(D x) u \quad$ for $(u, x) \in \operatorname{graph} \Omega_{l}$
are said to be the right and left basic equations, respectively. Clearly,
$\Omega_{r}^{-1} x=\{u \in \operatorname{dom} D: D u=u D x\}, \quad \Omega_{l}^{-1} x=\{u \in \operatorname{dom} D: D u=(D x) u\}$
for $x \in \operatorname{dom} D$. The multifunctions Ω_{r}, Ω_{l} are well-defined and dom $\Omega_{r} \cap$ $\operatorname{dom} \Omega_{l} \supset \operatorname{ker} D$.

Suppose that $\left(u_{r}, x_{r}\right) \in \operatorname{graph} \Omega_{l},\left(u_{l}, x_{l}\right) \in \operatorname{graph} \Omega_{r}, L_{r}, L_{l}$ are selectors of Ω_{r}, Ω_{l}, respectively, and E_{r}, E_{l} are selectors of $\Omega_{r}^{-1}, \Omega_{l}^{-1}$, respectively. By definitions, $L_{r} u_{r} \in \operatorname{dom} \Omega_{r}^{-1}, E_{r} x_{r} \in \operatorname{dom} \Omega_{r}, L_{l} u_{l} \in \operatorname{dom} \Omega_{l}^{-1}$, $E_{l} x_{l} \in \operatorname{dom} \Omega_{l}$ and the following equations are satisfied:

$$
\begin{array}{ll}
D u_{r}=u_{r} D L_{r} u_{r}, & D E_{r} x_{r}=\left(E_{r} x_{r}\right) D x_{r} ; \\
D u_{l}=\left(D L_{l} u_{l}\right) u_{l}, & D E_{l} x_{l}=\left(D x_{l}\right)\left(E_{l} x_{l}\right) .
\end{array}
$$

Any invertible selector L_{r} of Ω_{r} is said to be a right logarithmic mapping and its inverse $E_{r}=L_{r}^{-1}$ is said to be a right antilogarithmic mapping. If $\left(u_{r}, x_{r}\right) \in$ graph Ω_{r} and L_{r} is an invertible selector of Ω_{r}, then the element $L_{r} u_{r}$ is said to be a right logarithm of u_{r} and $E_{r} x_{r}$ is said to be a right antilogarithm of x_{r}. By $G\left[\Omega_{r}\right]$ we denote the set of all pairs (L_{r}, E_{r}), where L_{r} is an invertible selector of Ω_{r} and $E_{r}=L_{r}^{-1}$. Respectively, any invertible selector L_{l} of Ω_{l} is said to be a left logarithmic mapping and its inverse $E_{l}=L_{l}^{-1}$ is said to be a left antilogarithmic mapping. If $\left(u_{l}, x_{l}\right) \in$ graph Ω_{l} and L_{l} is an invertible selector of Ω_{l}, then the element $L_{l} u$ is said to be a left logarithm of u_{l} and $E_{l} x_{l}$ is said to be a left antilogarithm of x_{l}. By $G\left[\Omega_{l}\right]$ we denote the set of all pairs (L_{l}, E_{l}), where L_{l} is an invertible selector of Ω_{l} and $E_{l}=L_{l}^{-1}$.

If $D \in \mathrm{~A}(X)$ then $\Omega_{r}=\Omega_{l}$ and we write $\Omega_{r}=\Omega$ and $L_{r}=L_{l}=L$, $E_{r}=E_{l}=E,(L, E) \in G[\Omega]$. Selectors L, E of Ω are said to be logarithmic and antilogarithmic mappings, respectively. For any $(u, x) \in G[\Omega]$ elements $L u, E x$ are said to be logarithm of u and antilogarithm of x, respectively. The multifunction Ω has been examined in $\operatorname{PR}[2]$.

Clearly, by definition, for all $\left(L_{r}, E_{r}\right) \in G\left[\Omega_{r}\right],\left(u_{r}, x_{r}\right) \in$ graph Ω_{r}, $\left(L_{l}, E_{l}\right) \in G\left[\Omega_{l}\right],\left(u_{l}, x_{l}\right) \in \operatorname{graph} \Omega_{l}$ we have

$$
\begin{gather*}
E_{r} L_{r} u_{r}=u_{r}, L_{r} E_{r} x_{r}=x_{r} ; \quad E_{l} L_{l} u_{l}=u_{l}, L_{l} E_{l} x_{l}=x_{l} ; \tag{1.4}\\
D E_{r} x_{r}=\left(E_{r} x_{r}\right) D x_{r}, \quad D u_{r}=u_{r} D L_{r} u_{r} ; \tag{1.5}\\
D E_{l} x_{l}=\left(D x_{l}\right)\left(E_{l} x_{l}\right), \quad D u_{l}=\left(D L_{l} u_{l}\right) u_{l} .
\end{gather*}
$$

A right (left) logarithm of zero is not defined. If $\left(L_{r}, E_{r}\right) \in G\left[\Omega_{r}\right],\left(L_{l}, E_{l}\right) \in$ $G\left[\Omega_{l}\right]$, then $L_{r}(\operatorname{ker} D \backslash\{0\}) \subset \operatorname{ker} D, E_{r}(\operatorname{ker} D) \subset \operatorname{ker} D, L_{l}(\operatorname{ker} D \backslash\{0\}) \subset$ ker $D, E_{l}(\operatorname{ker} D) \subset \operatorname{ker} D$. In particular, $E_{r}(0), E_{l}(0) \in \operatorname{ker} D$.

If $D \in R(X)$, then logarithms and antilogarithms are uniquely determined up to a constant.

If $D \in \mathbf{A}(X)$ and if D satisfies the Leibniz condition: $D(x y)=x D y+$ ($D x$) y for $x, y \in \operatorname{dom} D$, then X is said to be a Leibniz algebra.

Let $D \in \mathrm{~A}(X)$. A logarithmic mapping L is said to be of the exponential type if $L(u v)=L u+L v$ for $u, v \in \operatorname{dom} \Omega$. If L is of the exponential type, then $E(x+y)=(E x)(E y)$ for $x, y \in \operatorname{dom} \Omega$. We have proved that a logarithmic mapping L is of the exponential type if and only if X is a commutative Leibniz algebra (cf. PR[2]). In commutative Leibniz algebras with a right invertible operator $D u \in \operatorname{dom} \Omega$ if and only if $u \in I(X)$ (cf. $\operatorname{PR}[2])$. The Leibniz condition is also a necessary and sufficient condition for the Trigonometric Identity to be satisfied.

By $\mathbf{L g}(D)\left(\mathbf{L g}_{r}(D), \mathbf{L g}_{l}(D)\right)$ we denote the class of these algebras with unit $e \in \operatorname{dom} \Omega$ for which $D \in R(X)$ and there exist invertible selectors of $\Omega\left(\Omega_{r}, \Omega_{l}\right.$, respectively), i.e. there exist $(L, E) \in G[\Omega]\left(\left(L_{r}, E_{r}\right) \in G\left[\Omega_{r}\right]\right.$, $\left(L_{l}, E_{l}\right) \in G\left[\Omega_{l}\right]$, respectively).

By $\mathbf{L g}_{\#}(D)$ we denote the class of these commutative algebras with a left invertible D for which there exist invertible selectors of Ω, i.e. there exists $(L, E) \in G[\Omega]$. Clearly, if D is left invertible then ker $D=\{0\}$. Thus the multifunction Ω is single-valued and we may write: $\Omega=L$. On the other hand, if ker $D=\{0\}$, then either X is not a Leibniz algebra or X has no unit (cf. PR[2]).

Suppose that either $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and $D \in \mathbf{A}(X)$ with unit e is a complete linear metric space. Write $x^{0}=e$ and

$$
\begin{equation*}
\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \text { for } x \in X \tag{1.6}
\end{equation*}
$$

whenever this series is convergent. The function e^{x} is said to be an exponential function. Observe that here we write e for the number

$$
\sum_{n=0}^{\infty} \frac{1}{n!}
$$

in order to distinguish between this number and the unit e of the algebra X.

If $X \in \mathbf{L g}(D)$ with unit $e \in \operatorname{dom} \Omega^{-1}$ is a complete linear metric space then we write

$$
\begin{equation*}
\mathcal{E}_{D}(X)=\left\{x \in \operatorname{dom} \Omega^{-1}: \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \text { is convergent }\right\} \tag{1.7}
\end{equation*}
$$

By definition, $\mathrm{e}^{x+y}=\mathrm{e}^{x} \mathrm{e}^{y}=\mathrm{e}^{y} \mathrm{e}^{x}$ and $\mathrm{e}^{0}=e$. The same definition can be used for $X \in \mathbf{L g}_{\#}(D)$.
X is said to be a complete m-pseudoconvex algebra, if it is an algebra and a complete locally pseudoconvex space with the topology induced by a sequence $\left\{\|\cdot\|_{n}\right\}$ of submultiplicative p_{n}-homogeneous F-norms, i.e. such pseudonorms that

$$
\|x y\|_{n} \leq\|x\|_{n}\|y\|_{n} \quad \text { for } \quad \text { all } x, y \in X, n \in \mathbb{N}
$$

2. Powers

We begin with the following
Definition 2.1. Let $X \in \mathbf{L g}_{\mathbf{r}}(D) \cap \mathbf{L g}_{\mathbf{1}}(D)$. Write for $\lambda \in \mathbb{F}$:

$$
\begin{align*}
E_{r, \lambda} u=E_{r}\left(\lambda L_{r} u\right) & \text { if }\left(L_{r}, E_{r}\right) \in G\left[\Omega_{r}\right], u \in \operatorname{dom} \Omega_{\mathrm{r}} \tag{2.1}\\
E_{l, \lambda} u=E_{l}\left(\lambda L_{l} u\right) & \text { if }\left(L_{l}, E_{l}\right) \in G\left[\Omega_{l}\right], u \in \operatorname{dom} \Omega_{1}
\end{align*}
$$

If $X \in \mathbf{L g}(D)$, then we write

$$
E_{\lambda} u=E(\lambda L u) \quad \text { if }(L, E) \in G[\Omega], u \in \operatorname{dom} \Omega
$$

The mappings $E_{r, \lambda}, E_{l, \lambda}$ and E_{λ} are said to be of the power type with exponent λ or, if it does not lead to any misunderstanding, shortly, power mappings.

Note 2.1. Without any additional assumptions, just by definitions, left and right logarithms and antilogarithms of elements $q e$, where e is the unit of X and $q \in \mathbb{Q}$, are well-defined (provided that $c_{D} \neq 0$). In a standard way we obtain extensions of left and right logarithms and antilogarithms to \mathbb{R} and \mathbb{C} in Leibniz algebras (cf. for details $\operatorname{PR}[2]$, also $\operatorname{PR}[3]$).

We recall without proofs (which can be found either in $\operatorname{PR}[2]$ or in $\operatorname{PR}[3]$) the following properties of powers. For the sake of brevity, we shall consider only the commutative case. We get

Proposition 2.1. Suppose that $X \in \operatorname{Lg}(D),(L, E) \in G[\Omega]$ and the mappings E_{λ} are defined by Formulae (2.1'). Then for all $\lambda, \mu \in \mathbb{F}$ we have $E_{\lambda}(\operatorname{dom} \Omega) \subset \operatorname{dom} \Omega, L E_{\lambda}=\lambda L$ and $E_{\lambda} E_{\mu}=E_{\lambda \mu}$, i.e. these mappings are multiplicative functions of the parameter λ.

Theorem 2.1. Suppose that $X \in \mathbf{L g}(\mathbf{D})$ is a Leibniz algebra and $\left.(L, E) \in G_{[} \Omega\right]$. Then for all $\lambda \in \mathbb{F}$ and $u \in I(X) \cap \operatorname{dom} D E_{\lambda} u^{-1}=\left(E_{\lambda} u\right)^{-1}$. If $D \in R(X)$ then $E_{\lambda} \in M(X)$.

Proposition 2.2. Suppose that $X \in \mathbf{L g}(D)$ is a Leibniz algebra and $(L, E) \in G[\Omega]$. Then for all $\lambda, \mu \in \mathbb{F}$ and $u \in \operatorname{dom} \Omega$

$$
\left(E_{\lambda} u\right)\left(E_{\mu} u\right)=E_{\lambda+\mu} u ; \quad E_{\lambda} u, E_{-\lambda} u \in I(X) \quad \text { and } \quad\left(E_{\lambda} u\right)^{-1}=E_{-\lambda} u .
$$

Proposition 2.2 does not hold in the noncommutative case (cf. PR[2]).
Proposition 2.3. Suppose that $X \in \mathbf{L g}(D)$ and $(L, E) \in G_{R, 1}[\Omega]$ for an $R \in \mathcal{R}_{D}{ }^{1}$. If $\lambda \in \mathbb{F}$ and $u, v \in \operatorname{dom} \Omega, E_{\lambda} u, E_{\lambda} v \in I(X)$, then there is a $z \in \operatorname{ker} D$ such that

$$
\begin{gathered}
\left(E_{\lambda} u\right)\left(E_{\lambda} v\right)=E\left\{c_{D} \lambda L v\right. \\
+R\left[c_{D} \lambda\left(E_{\lambda} v\right)^{-1} u^{-1}(D u)\left(E_{\lambda} v\right)+\left(E_{\lambda} v\right)^{-1}\left(E_{\lambda} u\right) f_{D}\left(E_{\lambda} u, E_{\lambda} v\right)\right]+z
\end{gathered}
$$

Corollary 2.1. Suppose that all assumptions of Proposition 2.3 are satisfied and $c_{D}=0$. Then the mappings E_{λ} are not defined for $\lambda \neq 1$. If $\lambda=1$ then $E_{1}=\left.I\right|_{\text {dom } \Omega}$.

[^0]Corollary 2.1 implies that for multiplicative D the mappings E_{λ} are not defined (cf. Note 2.1).

Clearly, we can extend Definition 2.1 to left invertible operators. We get

Proposition 2.4. Suppose that $X \in \mathbf{L g}_{\#}(D),(L, E) \in G[L]$ and the mapping E_{λ} is defined by $\left(2.1^{\prime}\right)$. Let $\lambda \in \mathbb{F}$. Then $E_{\lambda}(\operatorname{dom} L) \subset \operatorname{dom} L$ and $L E_{\lambda}=\lambda L$ (cf. Proposition 2.1).

Proposition 2.5. Suppose that $X \in \mathbf{L g}_{\#}(D)$ and $(L, E) \in G[L]$. Let $\lambda \in \mathbb{F}$. Then $E_{\lambda} \in M(X)$ and $D E_{\lambda} u=\lambda\left(E_{\lambda-1} u\right) D u$ for $u \in \operatorname{dom} L$ (cf. Proposition 2.2).

In general, we have the following
Proposition 2.6. Suppose that $X \in \mathbf{L g}_{\#}(D)$ and $(L, E) \in G[L]$. If $\lambda \in \mathbb{F}$ and $u, v \in \operatorname{dom} L, E_{\lambda} u, E_{\lambda} v \in I(X)$, then
$\left(E_{\lambda} u\right)\left(E_{\lambda} v\right)=E\left\{c_{D} \lambda(L u+L v)+S\left[\left(E_{\lambda} u\right)^{-1}\left(E_{\lambda} v\right)^{-1} f_{D}\left(E_{\lambda} u, E_{\lambda} v\right)\right]\right\}\left(S \in \mathcal{L}_{D}\right)$.
(cf. Proposition 2.3).
Corollary 2.2. Suppose that all assumptions of Proposition 2.6 are satisfied and $c_{D}=0$. Then the mapping E_{λ} is not defined for $\lambda \neq 1$. If $\lambda=1$, then $E_{1}=\left.I\right|_{\text {dom } \Omega}$ (cf. Corollary 2.1).

Definition 2.2. Suppose that either $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}, X$ is a complete m-pseudoconvex Leibniz algebra with unit e, either $X \in \mathbf{L g}(D)$ or $X \in$ $\mathbf{L g}_{\#}(D), e \in \operatorname{dom} \Omega^{-1}$ and $(L, E) \in G[\Omega]$ (Recall that for $D \in \Lambda(X)$ we have $\Omega=L)$. Write

$$
\begin{equation*}
\mathcal{E}_{D}^{\prime}(X)=\left\{u \in \operatorname{dom} L: \lambda L u \in \mathcal{E}_{D}(X) \quad \text { for }(L, E) \in G[\Omega], \lambda \in \mathbb{F}\right\} \tag{2.3}
\end{equation*}
$$

(cf. Formula (1.6)) and

$$
\begin{equation*}
u^{\lambda}=\mathrm{e}^{\lambda L u} \quad \text { for } u \in \mathcal{E}_{D}^{\prime}(X), \lambda \in \mathbb{F} \tag{2.4}
\end{equation*}
$$

The function u^{λ} is said to be a power function.
Proposition 2.7. Suppose that either $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}, X \in \operatorname{Lg}(D)$ is a Leibniz complete m-pseudoconvex algebra with unit $e \in \operatorname{dom} \Omega^{-1}$, $(L, E) \in G[\Omega]$ and D is closed. Then for $\lambda \in \mathbb{F}$:
(i) if $u \in \mathcal{E}_{D}^{\prime}(X), \lambda \in \mathbb{F}$, then $\mathrm{e}^{\lambda L u} \in \operatorname{dom} \Omega$, $\mathrm{e}^{\lambda L u}=E_{\lambda} u=u^{\lambda}$ and $L u^{\lambda}=\lambda L u$;
(ii) if $u \in I(X) \cap \mathcal{E}_{D}^{\prime}(X)$ then

$$
\begin{equation*}
D u^{\lambda}=\lambda u^{\lambda-1} D u \tag{2.5}
\end{equation*}
$$

(iii) in particular, if $\lambda=n \in \mathbb{N}$ then

$$
u^{\lambda}=u^{n}=\underbrace{u \cdot \ldots \cdot u}_{n-\text { times }} .
$$

If we restrict ourselves to commutative algebras with right invertible operators, then Definition 2.2 can be generalized in the following manner.

Definition 2.3. Suppose that $X \in \mathbf{L g}(D)$ and $(L, E) \in G[\Omega]$. Write

$$
\Upsilon(\Omega)=\left\{(x, y): x \in \operatorname{dom} \Omega, y L x \in \operatorname{dom} \Omega^{-1}\right\}
$$

and

$$
x^{y}=E(y L x) \quad \text { whenever } \quad(x, y) \in \Upsilon(\Omega)
$$

By definition, $L x^{y}=y L x$. Indeed, $L x^{y}=L E(y L x)=y L x$. Let $u=x^{y}$ for $(x, y) \in \Upsilon$ and let $y \in I(X)$. Then

$$
x=E L x=E\left(y^{-1} L x^{y}\right)=E\left(y^{-1} L u\right)=u^{y^{-1}}
$$

Clearly, x^{y} is a generalization of power functions introduced by Definition 2.2 for scalar exponents, so that we call x^{y} also a power function.

Observe that by definition, $x^{e}=x$ and $x^{-e}=x^{-1}$, since $x^{e}=E(e L x)=$ $E L x=x$ and $x^{-e}=E(-e L x)=E(-L x)=x^{-1}$. Moreover, if $u=x^{y}$ for $(x, y) \in \Upsilon(\Omega)$ and $y \in I(X)$, then

$$
x=E L x=E\left(y^{-1} L x^{y}\right)=E\left(y^{-1} L u\right)=u^{y^{-1}}
$$

Definition 2.3 will be very useful in order to establish the relationship between the number e and the unit e of an algebra under consideration.

Theorem 2.2. Suppose that $X \in \mathbf{L g}(D)$ is a Leibniz algebra with unit e and $(L, E) \in G[\Omega]$. Then the power function x^{y} has the following properties:
(i) if $(x, a),(x, b) \in \Upsilon(\Omega)$, then $a+b \in \Upsilon(\Omega)$ and $x^{a} x^{b}=x^{a+b}$;
(ii) if $(x, a),(y, a) \in \Upsilon(\Omega)$, then $(x y, a) \in \Upsilon(\Omega)$ and $x^{a} y^{a}=(x y)^{a}$;
(iii) if $(x, y) \in \Upsilon(\Omega)$ then $x^{y} \in \operatorname{dom} D$ and $D x^{y}=x^{y}\left[(D y) L x+y x^{-1} D x\right]$, in particular, if $x \in \operatorname{ker} D$ then $D x^{y}=x^{y}(D y) L x$, if $y \in \operatorname{ker} D$ then $D x^{y}=$ $y x^{y-e} D x$;
(iv) if $(x, y) \in \Upsilon(\Omega)$ and $x, y \in \operatorname{ker} D$, then $x^{y} \in \operatorname{ker} D$, in other words: a constant to a constant power is again a constant;
(v) if $(x, y) \in \Upsilon(\Omega)$ and $a=E y$, then $x^{L a}=a^{L x}$;
(vi) if $(x, y) \in \Upsilon(\Omega)$ and $a=L x$, then $(E a)^{y}=y^{E a}$;
(vii) $e^{\lambda e}=e$ whenever $\lambda \in \mathbb{F}$;
(viii) if $x \in \operatorname{dom} \Omega$, then $x^{0}=e$ (cf. (1.7));
(ix) if $(x, u),\left(x^{u}, v\right) \in \Upsilon(\Omega)$, then $(x, u v) \in \Upsilon(\Omega)$ and $\left(x^{u}\right)^{v}=x^{u v}$;
(x) if $(x, y) \in \Upsilon(\Omega)$, then $(x,-y) \in \Upsilon(\Omega), x^{y} \in I(X)$ and $\left(x^{y}\right)^{-1}=x^{-y}$;
(xi) if the $\operatorname{logarithm} L$ is natural (i.e. if $L\left(p_{n} e\right)=e \ln p_{n}$, where p_{n} is the n-th prime $(n \in \mathbb{N})$), then $(\mathrm{e} e)^{x}=E x$ whenever $x \in \operatorname{dom} \Omega^{-1}$;
(xii) if X is an m-pseudoconvex D-algebra and $\lambda e \in \mathcal{E}_{D}(X)$ for all $\lambda \in \mathbb{F}$ $(\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C})$, then $\mathrm{e}^{\lambda e}=\mathrm{e}^{\lambda} e$, in particular, $\mathrm{e}^{e}=\mathrm{e} e$.

Clearly, when $X=C[0, T]$ and $D=\frac{\mathrm{d}}{\mathrm{d} t}$, the introduced power mappings coincide with the classical power functions.

Definition 2.4. Suppose that all assumptions of Definition 2.3 are satisfied. Write

$$
\begin{equation*}
\left.I_{n}(Y)=\left\{x \in Y: \exists_{y \in I(Y)} y^{n}=x\right\} \quad \text { for } n \in \mathbb{N}, Y \subset X\right\} \tag{2.6}
\end{equation*}
$$

Elements $y \in Y$ will be denoted by $y=x^{1 / n}$ and called nth roots of x.
By definition, if $y=x^{1 / n}$, then

$$
x=\mathrm{e}^{L} x, \quad y=\mathrm{e}^{1 / n} L x=\mathrm{e}^{L x^{1 / n}} \quad \text { whenever } \quad x \in \mathcal{E}_{D}(X) .
$$

3. Powers of logarithmic mappings

In the sequel we shall admit for the sake of brevity the following condition:
[$\mathbf{L}] \quad X \in \mathbf{L g}(D)$ is a Leibniz D-algebra with unit e,
(i.e. a commutative Leibniz algebra with unit and with $D \in R(X)$).

Condition [L] implies

$$
\begin{equation*}
(L u)^{m}=E\left(m L^{2} u\right) \quad \text { for }(L, E) \in G[\Omega],(u, x) \in \operatorname{graph} \Omega\left(m \in \mathbb{N}_{0}\right) . \tag{3.1}
\end{equation*}
$$

Indeed, $(L u)^{m}=E L(L u)^{m}=E[m L(L u)]=E\left(m L^{2} u\right)$.
Definition 3.1. Suppose that Condition [L] holds, $(L, E) \in G[\Omega]$, $(u, x) \in \operatorname{graph} \Omega, x=L u, u=L x$. Let $n \in \mathbb{N}$ be arbitrarily fixed. Write:

$$
\begin{equation*}
\Lambda_{n} u=\prod_{j=0}^{n} L^{j} u \quad \text { for } \quad L^{j} u \in \operatorname{dom} \Omega \quad(j=1, \ldots, n) . \tag{3.2}
\end{equation*}
$$

Proposition 3.1. Suppose that all assumptions of Definition 3.1 are satisfied. Then:

$$
\begin{equation*}
D L^{n} u=\left(L^{n} u\right) D L^{n+1} u \quad\left(n \in \mathbb{N}_{0}\right) . \tag{3.3}
\end{equation*}
$$

Proof. By definition, $D u=u D L u=u D x$. The same definition implies that for $w=L u$ we have $D L u=D w=w D L w=(L u) D L^{2} u$. Hence $D u=u D L u=u(L u) D L^{2} u$. Suppose Formula (3.3) is true for an arbitrarily fixed ($n \in \mathbb{N}$). Then, by the same reasons, $D L^{n+1} u=\left(L^{n+1} u\right) D L^{n+2} u$, i.e. (3.2) holds for $n+1$.

Proposition 3.2. Suppose that all assumptions of Definition 3.1 are satisfied. Then:

$$
\begin{equation*}
D u=\left(\prod_{j=0}^{n-1} L^{j} u\right) D L^{n} u \quad\left(n \in \mathbb{N}_{0}\right) . \tag{3.4}
\end{equation*}
$$

Proof. By induction.
Definition 3.1 and Formula (3.3) immediately imply
Corollary 3.1. Suppose that all assumptions of Definition 3.1 are satisfied. Then:

$$
\begin{equation*}
D u=\left(\Lambda_{n-1} u\right) D L^{n} u \quad(n \in \mathbb{N}) . \tag{3.5}
\end{equation*}
$$

Definition 3.2. Suppose that all assumptions of Definition 3.1 are satisfied. Let $k_{j} \in \mathbb{N}$ and $a_{j} \in \operatorname{dom} \Omega$ for $j=0, \ldots, n(n \in \mathbb{N})$. Write:

$$
\begin{equation*}
\Lambda_{n}^{k_{0}, \ldots, k_{n}}\left(a_{0}, \ldots, a_{n}\right) u=\prod_{j=0}^{n} a_{j}\left(L^{j} u\right)^{k_{j}} \tag{3.5}
\end{equation*}
$$

and for $a_{0}=\ldots=a_{n}=e$

$$
\begin{equation*}
\Lambda_{n}^{k_{0}, \ldots, k_{n}} u=\prod_{j=0}^{n}\left(L^{j} u\right)^{k_{j}} . \tag{3.6}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\Lambda_{n}^{k_{0}, \ldots, k_{n}} u=\Lambda_{n} u \quad \text { for } k_{0}=k_{1}=\ldots=k_{n+1}=1 \tag{3.7}
\end{equation*}
$$

where $\Lambda_{n} u$ is defined by Formula (3.2).
Theorem 3.1. Suppose that all assumptions of Definition 3.2 are satisfied. Then:

$$
\begin{equation*}
\left[\Lambda_{n}^{k_{0}, \ldots, k_{n}}\left(a_{0}, \ldots, a_{n}\right) u\right]^{m}=E\left(\sum_{j=01}^{n-1} L a_{j}\right) E\left(\sum_{j=0}^{n} k_{j} L^{j+1} u\right) \quad\left(m \in \mathbb{N}_{0}\right) . \tag{3.8}
\end{equation*}
$$

Proof. By our assumption, X is a Leibniz algebra. Thus the logarithmic mapping L under consideration is of exponential type, i.e. $L(u v)=$ $L u+L v$ for $u, v \in \operatorname{dom} D$. Let $n \in \mathbb{N}$ be fixed and let $m=1$. We have

$$
\begin{aligned}
& L \Lambda_{n}^{k_{1}, \ldots, k_{n}}\left(a_{1}, \ldots, a_{n}\right) u=L \prod_{j=0}^{n} a_{j}\left(L^{j} u\right)^{k_{j}} \\
= & \sum_{j=0}^{n} L\left[a_{j}\left(L^{j} u\right)^{k_{j}}\right]=\sum_{j=0}^{n} L a_{j}+\sum_{j=0}^{n} k_{j} L^{j+1},
\end{aligned}
$$

which implies the required Formula (3.8) for $E=L^{-1}$. Since X is a Leibniz algebra, L is of the exponential type. Thus $E=L^{-1}$ has the properties: $E(x+y)=(E x)(E y)$ and $E(m x)=(E x)^{m}$ for $x, y \in \operatorname{dom} \Omega^{-1}, m \in \mathbb{N}_{0}$. Hence Theorem 3.1 and Formula 3.1 together imply the required formula (3.8).

In particular, we have

$$
\begin{equation*}
\left(\Lambda_{n} u\right)^{m}=E\left(m \sum_{j=1}^{n+1} L^{j} u\right) \quad\left(m, n \in \mathbb{N}_{0}\right) . \tag{3.9}
\end{equation*}
$$

It should be mentioned that the already obtained results have some connections with the Number Theory, then also with applications in the cryptography (cf. Schinzel S[1]). There are also some other connections.

4. Functional equations for logarithms, antilogarithms and powers

Recall the classical results.
Example 4.1. (cf. Kuczma $\mathrm{K}[1])$. Suppose that $X=\mathbb{R}, \mathbb{F}=\mathbb{R}$. Let $f \in C^{\infty}(\mathbb{R})$. Then all solutions of the functional equations

- $f(x+y)=f(x)+f(y)$ are $x=c t,(c \in \mathbb{R})$,
- $f(x y)=f(x)+f(y)$ are $x=c \log _{a} t,(a \in \mathbb{R} \backslash 0, c \in \mathbb{R})$,
- $f(x+y)=f(x) f(y)$ are $x=c e^{a t},(a, c \in \mathbb{R})$,
- $f(x y)=f(x) f(y)$ are $x=c t^{a},(a, c \in \mathbb{R})$.

Theorem 4.1. Suppose that Condition [L] holds, $(L, E) \in G[\Omega],(u, x)$, $(v, y) \in \operatorname{graph} \Omega$, i.e. $x=L u, u=L x, y=L v, v=$ Ey. Let $f \in \mathcal{I}(X):$ $\operatorname{dom} \Omega \rightarrow \operatorname{dom} \Omega$.
(i) If $f=L$, then L of the exponential type: $L(u v)=L u+L v$.
(ii) If $f=E$, then $E(x+y)=(E x)(E y)$.
(iii) If f is multiplicative: $f(x y)=f(x)(f(y)$, then solutions of this functional equation are power elements $x^{a}=E(a L x)$, where $(x, a) \in \Upsilon(\Omega)$ (cf. Definition 2.3.
(iv) If f is multiplicative, then

$$
\begin{equation*}
L^{\prime}(u v)=L^{\prime} u+L^{\prime} v, \quad \text { where } L^{\prime}=L f, \tag{4.12}
\end{equation*}
$$

i.e. L ' is of the exponential type.
(v) If f is additive, then

$$
\begin{equation*}
L^{\prime \prime}(u v)=L^{\prime \prime} u+L^{\prime \prime} v, \quad \text { where } L^{\prime \prime}=f L, \tag{4.13}
\end{equation*}
$$

i.e. L " is of the exponential type.
(vi) If f is additive, then

$$
\begin{equation*}
L^{\prime \prime \prime}(u v)=L^{\prime \prime \prime} u+L^{\prime \prime \prime} v, \quad \text { where } L^{\prime \prime \prime}=f L f, \tag{4.14}
\end{equation*}
$$

i.e. $L^{\prime \prime \prime}$ is also additive.

Proof. (i) and (ii) are consequences of the Leibniz condition (cf. PR[2]).
(iii) follows from Theorem 2.2(ii).
(iv) Since f is multiplicative, by (i) we have $L^{\prime}(u v)=L f(u v)$ $=L[f(u) f(v)]=L f(u)+L f(v)=L^{\prime}(u)+L^{\prime}(v)$.
(v) Since f is additive, by (i) we find $L^{\prime \prime}(u v)=f L(u v)=f(L u+L v)$ $=f L u+f L v=L^{\prime \prime} u+L^{\prime \prime} v$.
(vi) Since f is additive, again by (i) (as in the proof of (iv)), $L^{\prime \prime \prime}(u v)=$ $f L f(u v)=f(L f u+L f v)=L^{\prime \prime \prime} u+L^{\prime \prime \prime} v$.

It is easy to verify the following
Corollary 4.1. Suppose that all assumptions of Theorem 4.1 are satisfied. Let $h=f^{-1}$.
(i) If $f=L$, then $h=E$.
(ii) If $f=E$, then $h=L$.
(iii) If f is multiplicative, then h is also multiplicative.
(iv) If f is multiplicative, then $h E=(L f)^{-1}, h E(x+y)=(h E x)(h E y)$ and the last equation has solutions of the form $h^{-1} E x=f E x$.
(v) If f is additive, then $E h=(f L)^{-1}, E h(x+y)=(E h x)(E h y)$ and the last equation has solutions of the form $E h^{-1} x=E f x$.
(vi) If f is additive, then $h E h$ is also additive.

Similar results can be obtained in Leibniz algebras with left invertible operators.

Example 4.2. (cf. DP[1]) Let X be a complex Banach space. Denote by $B(X)$ the set of all bounded operators mapping X into itself. A strongly continuous family of operators $\{W(t)\}_{t \geq 0} \subseteq B(X)$ is a C-regularized semigroup if $W(0)=C$ and $W(t) W(s)=W(t+s) C$ for all $s, t \geq 0$. This family is nondegenerate, if $W(t) x=0$ implies $x=0$. A C-regularized semigroup is nondegenerate if and only if C is injective. An operator A generates a nondegenerate C-regularized semigroup $\{W(t)\}_{t \geq 0}$ if

$$
B x=C^{-1}\left[\left.\frac{\mathrm{~d}}{\mathrm{~d} t} W(t) x\right|_{t=0}\right]
$$

with the maximal domain.
If there is a nondegenerate C-regularized semigroup $\{W(t)\}_{t \geq 0}$ such that $A=C^{-1} W(1)$, then its generator is, by definition, $\log A x \equiv B x$.

References

R. Delaubenfels and J. Pastor:

DP[1] Fractional powers and logarithms via regularized semigroups. In: Semigroups of Operators: Theory and Applications (Ed. C. Kubrusly). Proc. 2nd Intern. Conference, Rio de Janeiro, Brazil, September 1014, 2001. Optimization Software Inc. Publications, New York (2002), 68-72.

M. Kuczma:

K[1] An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Equation. PWN-Polish Scientific Publishers and the Silesian University, Warszawa-Kraków-Katowice (1985).

D. Przeworska-Rolewicz:

PR[1] Algebraic Analysis. PWN-Polish Scientific Publishers and D. Reidel, Warszawa-Dordrecht (1988).
PR[2] Logarithms and Antilogarithms. An Algebraic Analysis Approach. With Appendix by Z. Binderman. Kluwer Academic Publishers, Dordrecht (1998).
PR[3] Power mappings in algebras with logarithms, Functiones and Approximationes 26 (1998), 239-248.
A. Schinzel:
$\mathrm{S}[1]$ A survey of achievements of number theory in 20th century (in Polish), Wiadomości Matematyczne (Ann. Soc. Math. Pol., Serie II) 38 (2002), 179-188.

Institute of Mathematics
Received: April 9, 2004
Polish Academy of Sciences
Śniadeckich 8, 00-956 Warszawa 10
P.O.Box 21, POLAND
e-mail: rolewicz@impan.gov.pl

[^0]: ${ }^{1}$ Let F be an initial operator for a $D \in R(X)$ corresponding to an $R \in \mathcal{R}_{D}$. We denote by $G_{R, 1}[\Omega]$ the set of these selectors of Ω for which $F L u=0$ for all $u \in \operatorname{dom} D$ (cf. $\left.\operatorname{PR}[2]\right)$

