

POWERS AND LOGARITHMS

Danuta Przeworska-Rolewicz

Dedicated to Professor Ivan H. Dimovski on the occasion of his 70th birthday

Abstract

There are applied power mappings in algebras with logarithms induced by a given linear operator D in order to study particular properties of powers of logarithms. Main results of this paper will be concerned with the case when an algebra under consideration is commutative and has a unit and the operator D satisfies the Leibniz condition, i.e. D(xy) = xDy + yDx for $x, y \in \text{dom } D$. Note that in the Number Theory there are well-known several formulae expressed by means of some combinations of powers of logarithmic and antilogarithmic mappings or powers of logarithms and antilogarithms (cf. for instance, the survey of Schinzel S[1].

2000 Mathematics Subject Classification: 47L75, 33B99

Key Words and Phrases: algebra with unit, Leibniz condition, logarithmic mapping, antilogarithmic mapping, power function

1. Algebras with logarithms

We recall some notions and properties which will be used in the sequel.

Let X be a linear space over a field \mathbb{F} of scalars of the characteristic zero. Recall that L(X) is the set of all linear operators with domains and ranges in X and $L_0(X) = \{A \in L(X) : \text{dom } A = X\}$.

If X is an algebra over \mathbb{F} with a $D \in L(X)$ such that $x, y \in \text{dom } D$ implies $xy, yx \in \text{dom } D$, then we shall write $D \in \mathbf{A}(X)$. The set of all *commutative* algebras belonging to $\mathbf{A}(X)$ will be denoted by $\mathbf{A}(X)$. If $D \in \mathbf{A}(X)$, then

$$f_D(x,y) = D(xy) - c_D[xDy + (Dx)y]$$
 for $x, y \in \text{dom } D$,

where c_D is a scalar dependent on D only. Clearly, f_D is a bilinear (i.e. linear in each variable) form which is symmetric when X is commutative, i.e. when $D \in A(X)$. This form is called a non-Leibniz component. Non-Leibniz components have been introduced for right invertible operators $D \in A(X)$ (cf. PR[1]). If $D \in A(X)$, then the product rule in X can be written as follows:

$$D(xy) = c_D[xDy + (Dx)y] + f_D(x,y)$$
 for $x, y \in \text{dom } D$.

If $D \in A(X)$ is right invertible, then the algebra X is said to be a D-algebra.

We shall consider in $\mathbf{A}(X)$ the following sets:

 \bullet the set of all *multiplicative* mappings (not necessarily linear) with domains and ranges in X:

$$M(X) = \{A : \text{dom } A \subset X, \ A(xy) = A(x)A(y) \text{ for } x, y \in \text{dom } A\};$$

- the set I(X) of all invertible elements belonging to X;
- the set R(X) of all right invertible operators belonging to L(X);
- the set $\mathcal{R}_D = \{R \in L_0(X) : DR = I\}$ of all right inverses to a $D \in R(X)$;
- the set $\mathcal{F}_D = \{ F \in L_0(X) : F^2 = F, FX = \ker D \text{ and } \exists_{R \in \mathcal{R}_D} FR = 0 \}$ of all initial operators for a $D \in R(X)$;
 - the set $\Lambda(X)$ of all left invertible operators belonging to L(X);
 - the set $\mathcal{I}(X)$ of all invertible operators belonging to L(X).

Clearly, if $\ker D \neq \{0\}$, then the operator D is right invertible, but not invertible. Here the invertibility of an operator $A \in L(X)$ means that the equation Ax = y has a unique solution for every $y \in X$. Elements of the kernel of a $D \in R(X)$ are said to be constants. If $D \in \mathcal{I}(X)$ then $\mathcal{F}_D = \{0\}$ and $\mathcal{R}_D = \{D^{-1}\}$. We also have dom $D = RX \oplus \ker D$ independently of the choice of an \mathcal{R}_D (cf. PR[1]).

It is well-known that F is an initial operator for a $D \in R(X)$ if and only if there is an $R \in \mathcal{R}_D$ such that F = I - RD on dom D. Moreover, if F' is

any projection onto ker D then F' is an initial operator for D corresponding to the right inverse R' = R - F'R independently of the choice of an $R \in \mathcal{R}_D$ (cf. PR[1]).

Suppose that $D \in \mathbf{A}(X)$. Let $\Omega_r, \Omega_l : \text{dom } D \longrightarrow 2^{\text{dom } D}$ be multifunctions defined as follows:

$$\Omega_r u = \{ x \in \text{dom } D : Du = uDx \}, \quad \Omega_l u = \{ x \in \text{dom } D : Du = (Dx)u \}$$
(1.1)

for $u \in \text{dom } D$. The equations

$$Du = uDx$$
 for $(u, x) \in \operatorname{graph} \Omega_r$, $Du = (Dx)u$ for $(u, x) \in \operatorname{graph} \Omega_l$ (1.2)

are said to be the right and left basic equations, respectively. Clearly,

$$\Omega_r^{-1}x = \{u \in \text{dom } D : Du = uDx\}, \quad \Omega_l^{-1}x = \{u \in \text{dom } D : Du = (Dx)u\}$$
(1.3)

for $x \in \text{dom } D$. The multifunctions Ω_r, Ω_l are well-defined and dom $\Omega_r \cap \text{dom } \Omega_l \supset \ker D$.

Suppose that $(u_r, x_r) \in \text{graph } \Omega_l$, $(u_l, x_l) \in \text{graph } \Omega_r$, L_r , L_l are selectors of Ω_r , Ω_l , respectively, and E_r , E_l are selectors of Ω_r^{-1} , Ω_l^{-1} , respectively. By definitions, $L_r u_r \in \text{dom } \Omega_r^{-1}$, $E_r x_r \in \text{dom } \Omega_r$, $L_l u_l \in \text{dom } \Omega_l^{-1}$, $E_l x_l \in \text{dom } \Omega_l$ and the following equations are satisfied:

$$Du_r = u_r DL_r u_r, \quad DE_r x_r = (E_r x_r) Dx_r;$$

$$Du_{l} = (DL_{l}u_{l})u_{l}, \quad DE_{l}x_{l} = (Dx_{l})(E_{l}x_{l}).$$

Any invertible selector L_r of Ω_r is said to be a right logarithmic mapping and its inverse $E_r = L_r^{-1}$ is said to be a right antilogarithmic mapping. If $(u_r, x_r) \in \operatorname{graph} \Omega_r$ and L_r is an invertible selector of Ω_r , then the element $L_r u_r$ is said to be a right logarithm of u_r and $E_r x_r$ is said to be a right antilogarithm of x_r . By $G[\Omega_r]$ we denote the set of all pairs (L_r, E_r) , where L_r is an invertible selector of Ω_r and $E_r = L_r^{-1}$. Respectively, any invertible selector L_l of Ω_l is said to be a left logarithmic mapping and its inverse $E_l = L_l^{-1}$ is said to be a left antilogarithmic mapping. If $(u_l, x_l) \in \operatorname{graph} \Omega_l$ and L_l is an invertible selector of Ω_l , then the element $L_l u$ is said to be a left logarithm of u_l and $E_l x_l$ is said to be a left antilogarithm of x_l . By $G[\Omega_l]$ we denote the set of all pairs (L_l, E_l) , where L_l is an invertible selector of Ω_l and $L_l = L_l^{-1}$.

If $D \in A(X)$ then $\Omega_r = \Omega_l$ and we write $\Omega_r = \Omega$ and $L_r = L_l = L$, $E_r = E_l = E$, $(L, E) \in G[\Omega]$. Selectors L, E of Ω are said to be logarithmic and antilogarithmic mappings, respectively. For any $(u, x) \in G[\Omega]$ elements Lu, Ex are said to be logarithm of u and antilogarithm of x, respectively. The multifunction Ω has been examined in PR[2].

Clearly, by definition, for all $(L_r, E_r) \in G[\Omega_r]$, $(u_r, x_r) \in \text{graph } \Omega_r$, $(L_l, E_l) \in G[\Omega_l]$, $(u_l, x_l) \in \text{graph } \Omega_l$ we have

$$E_r L_r u_r = u_r, \ L_r E_r x_r = x_r; \quad E_l L_l u_l = u_l, \ L_l E_l x_l = x_l;$$
 (1.4)

$$DE_r x_r = (E_r x_r) Dx_r, \quad Du_r = u_r DL_r u_r; \tag{1.5}$$

$$DE_lx_l = (Dx_l)(E_lx_l), \quad Du_l = (DL_lu_l)u_l.$$

A right (left) logarithm of zero is not defined. If $(L_r, E_r) \in G[\Omega_r]$, $(L_l, E_l) \in G[\Omega_l]$, then $L_r(\ker D \setminus \{0\}) \subset \ker D$, $E_r(\ker D) \subset \ker D$, $L_l(\ker D \setminus \{0\}) \subset \ker D$, $E_l(\ker D) \subset \ker D$. In particular, $E_r(0)$, $E_l(0) \in \ker D$.

If $D \in R(X)$, then logarithms and antilogarithms are uniquely determined up to a constant.

If $D \in \mathbf{A}(X)$ and if D satisfies the Leibniz condition: D(xy) = xDy + (Dx)y for $x, y \in \text{dom } D$, then X is said to be a Leibniz algebra.

Let $D \in A(X)$. A logarithmic mapping L is said to be of the exponential type if L(uv) = Lu + Lv for $u, v \in \text{dom } \Omega$. If L is of the exponential type, then E(x + y) = (Ex)(Ey) for $x, y \in \text{dom } \Omega$. We have proved that a logarithmic mapping L is of the exponential type **if and only if** X is a commutative Leibniz algebra (cf. PR[2]). In commutative Leibniz algebras with a right invertible operator D $u \in \text{dom } \Omega$ **if and only if** $u \in I(X)$ (cf. PR[2]). The Leibniz condition is also a necessary and sufficient condition for the Trigonometric Identity to be satisfied.

By $\mathbf{Lg}(D)$ ($\mathbf{Lg}_r(D)$, $\mathbf{Lg}_l(D)$) we denote the class of these algebras with unit $e \in \text{dom } \Omega$ for which $D \in R(X)$ and there exist invertible selectors of Ω (Ω_r , Ω_l , respectively), i.e. there exist (L, E) $\in G[\Omega]$ ((L_r, E_r) $\in G[\Omega_r]$, (L_l, E_l) $\in G[\Omega_l]$, respectively).

By $\mathbf{Lg}_{\#}(D)$ we denote the class of these commutative algebras with a left invertible D for which there exist invertible selectors of Ω , i.e. there exists $(L, E) \in G[\Omega]$. Clearly, if D is left invertible then $\ker D = \{0\}$. Thus the multifunction Ω is single-valued and we may write: $\Omega = L$. On the other hand, if $\ker D = \{0\}$, then either X is not a Leibniz algebra or X has no unit (cf. $\operatorname{PR}[2]$).

Suppose that either $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and $D \in \mathbf{A}(X)$ with unit e is a complete linear metric space. Write $x^0 = e$ and

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad \text{for } x \in X$$
 (1.6)

whenever this series is convergent. The function e^x is said to be an exponential function. Observe that here we write e for the number

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

in order to distinguish between this number and the unit e of the algebra X.

If $X \in \mathbf{Lg}(D)$ with unit $e \in \text{dom } \Omega^{-1}$ is a complete linear metric space then we write

$$\mathcal{E}_D(X) = \{ x \in \text{dom } \Omega^{-1} : \sum_{n=0}^{\infty} \frac{x^n}{n!} \text{ is convergent} \}.$$
 (1.7)

By definition, $e^{x+y} = e^x e^y = e^y e^x$ and $e^0 = e$. The same definition can be used for $X \in \mathbf{Lg}_{\#}(D)$.

X is said to be a complete m-pseudoconvex algebra, if it is an algebra and a complete locally pseudoconvex space with the topology induced by a sequence $\{\|\cdot\|_n\}$ of submultiplicative p_n -homogeneous F-norms, i.e. such pseudonorms that

$$||xy||_n \le ||x||_n ||y||_n$$
 for all $x, y \in X$, $n \in \mathbb{N}$.

2. Powers

We begin with the following

DEFINITION 2.1. Let $X \in \mathbf{Lg_r}(D) \cap \mathbf{Lg_l}(D)$. Write for $\lambda \in \mathbb{F}$:

$$E_{r,\lambda}u = E_r(\lambda L_r u)$$
 if $(L_r, E_r) \in G[\Omega_r], \ u \in \text{dom } \Omega_r,$ (2.1)

$$E_{l,\lambda}u = E_l(\lambda L_l u)$$
 if $(L_l, E_l) \in G[\Omega_l], u \in \text{dom } \Omega_l$.

If $X \in \mathbf{Lg}(D)$, then we write

$$E_{\lambda}u = E(\lambda Lu)$$
 if $(L, E) \in G[\Omega], u \in \text{dom } \Omega.$ (2.1')

The mappings $E_{r,\lambda}$, $E_{l,\lambda}$ and E_{λ} are said to be of the power type with exponent λ or, if it does not lead to any misunderstanding, shortly, power mappings.

Note 2.1. Without any additional assumptions, just by definitions, left and right logarithms and antilogarithms of elements qe, where e is the unit of X and $q \in \mathbb{Q}$, are well-defined (provided that $c_D \neq 0$). In a standard way we obtain extensions of left and right logarithms and antilogarithms to \mathbb{R} and \mathbb{C} in Leibniz algebras (cf. for details PR[2], also PR[3]).

We recall without proofs (which can be found either in PR[2] or in PR[3]) the following properties of powers. For the sake of brevity, we shall consider only the commutative case. We get

PROPOSITION 2.1. Suppose that $X \in \mathbf{Lg}(D)$, $(L, E) \in G[\Omega]$ and the mappings E_{λ} are defined by Formulae (2.1'). Then for all λ , $\mu \in \mathbb{F}$ we have $E_{\lambda}(\text{dom }\Omega) \subset \text{dom }\Omega$, $LE_{\lambda} = \lambda L$ and $E_{\lambda}E_{\mu} = E_{\lambda\mu}$, i.e. these mappings are multiplicative functions of the parameter λ .

THEOREM 2.1. Suppose that $X \in \mathbf{Lg}(\mathbf{D})$ is a Leibniz algebra and $(L, E) \in G_{[}\Omega]$. Then for all $\lambda \in \mathbb{F}$ and $u \in I(X) \cap \text{dom } D$ $E_{\lambda}u^{-1} = (E_{\lambda}u)^{-1}$. If $D \in R(X)$ then $E_{\lambda} \in M(X)$.

PROPOSITION 2.2. Suppose that $X \in \mathbf{Lg}(D)$ is a Leibniz algebra and $(L, E) \in G[\Omega]$. Then for all $\lambda, \mu \in \mathbb{F}$ and $u \in \text{dom } \Omega$

$$(E_{\lambda}u)(E_{\mu}u) = E_{\lambda+\mu}u; \quad E_{\lambda}u, \ E_{-\lambda}u \in I(X) \quad \text{and} \quad (E_{\lambda}u)^{-1} = E_{-\lambda}u.$$

Proposition 2.2 does not hold in the noncommutative case (cf. PR[2]).

PROPOSITION 2.3. Suppose that $X \in \mathbf{Lg}(D)$ and $(L, E) \in G_{R,1}[\Omega]$ for an $R \in \mathcal{R}_D^{-1}$. If $\lambda \in \mathbb{F}$ and $u, v \in \text{dom } \Omega$, $E_{\lambda}u$, $E_{\lambda}v \in I(X)$, then there is a $z \in \text{ker } D$ such that

$$(E_{\lambda}u)(E_{\lambda}v) = E\{c_D\lambda Lv + R[c_D\lambda(E_{\lambda}v)^{-1}u^{-1}(Du)(E_{\lambda}v) + (E_{\lambda}v)^{-1}(E_{\lambda}u)f_D(E_{\lambda}u, E_{\lambda}v)] + z.$$

COROLLARY 2.1. Suppose that all assumptions of Proposition 2.3 are satisfied and $c_D = 0$. Then the mappings E_{λ} are not defined for $\lambda \neq 1$. If $\lambda = 1$ then $E_1 = I|_{\text{dom }\Omega}$.

¹Let F be an initial operator for a $D \in R(X)$ corresponding to an $R \in \mathcal{R}_D$. We denote by $G_{R,1}[\Omega]$ the set of these selectors of Ω for which FLu = 0 for all $u \in \text{dom } D$ (cf. PR[2])

Corollary 2.1 implies that for multiplicative D the mappings E_{λ} are not defined (cf. Note 2.1).

Clearly, we can extend Definition 2.1 to left invertible operators. We get

PROPOSITION 2.4. Suppose that $X \in \mathbf{Lg}_{\#}(D)$, $(L, E) \in G[L]$ and the mapping E_{λ} is defined by (2.1'). Let $\lambda \in \mathbb{F}$. Then $E_{\lambda}(\text{dom }L) \subset \text{dom }L$ and $LE_{\lambda} = \lambda L$ (cf. Proposition 2.1).

PROPOSITION 2.5. Suppose that $X \in \mathbf{Lg}_{\#}(D)$ and $(L, E) \in G[L]$. Let $\lambda \in \mathbb{F}$. Then $E_{\lambda} \in M(X)$ and $DE_{\lambda}u = \lambda(E_{\lambda-1}u)Du$ for $u \in \text{dom } L$ (cf. Proposition 2.2).

In general, we have the following

PROPOSITION 2.6. Suppose that $X \in \mathbf{Lg}_{\#}(D)$ and $(L, E) \in G[L]$. If $\lambda \in \mathbb{F}$ and $u, v \in \text{dom } L$, $E_{\lambda}u$, $E_{\lambda}v \in I(X)$, then

$$(E_{\lambda}u)(E_{\lambda}v)=E\{c_{D}\lambda(Lu+Lv)+S[(E_{\lambda}u)^{-1}(E_{\lambda}v)^{-1}f_{D}(E_{\lambda}u,E_{\lambda}v)]\}\ (S\in\mathcal{L}_{D}).$$
(cf. Proposition 2.3).

COROLLARY 2.2. Suppose that all assumptions of Proposition 2.6 are satisfied and $c_D=0$. Then the mapping E_{λ} is not defined for $\lambda \neq 1$. If $\lambda=1$, then $E_1=I|_{\text{dom }\Omega}$ (cf. Corollary 2.1).

DEFINITION 2.2. Suppose that either $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, X is a complete m-pseudoconvex Leibniz algebra with unit e, either $X \in \mathbf{Lg}(D)$ or $X \in \mathbf{Lg}_{\#}(D)$, $e \in \text{dom } \Omega^{-1}$ and $(L, E) \in G[\Omega]$ (Recall that for $D \in \Lambda(X)$ we have $\Omega = L$). Write

$$\mathcal{E}'_D(X) = \{ u \in \text{dom } L : \lambda L u \in \mathcal{E}_D(X) \text{ for } (L, E) \in G[\Omega], \ \lambda \in \mathbb{F} \}$$
 (2.3)

(cf. Formula (1.6)) and

$$u^{\lambda} = e^{\lambda L u} \quad \text{for } u \in \mathcal{E}'_D(X), \ \lambda \in \mathbb{F}.$$
 (2.4)

The function u^{λ} is said to be a power function.

PROPOSITION 2.7. Suppose that either $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, $X \in \mathbf{Lg}(D)$ is a Leibniz complete m-pseudoconvex algebra with unit $e \in \mathrm{dom} \ \Omega^{-1}$, $(L, E) \in G[\Omega]$ and D is closed. Then for $\lambda \in \mathbb{F}$:

(i) if $u \in \mathcal{E}'_D(X)$, $\lambda \in \mathbb{F}$, then $e^{\lambda L u} \in \text{dom } \Omega$, $e^{\lambda L u} = E_{\lambda} u = u^{\lambda}$ and $Lu^{\lambda} = \lambda Lu$;

(ii) if $u \in I(X) \cap \mathcal{E}'_D(X)$ then

$$Du^{\lambda} = \lambda u^{\lambda - 1} Du; \tag{2.5}$$

(iii) in particular, if $\lambda = n \in \mathbb{N}$ then

$$u^{\lambda} = u^n = \underbrace{u \cdot \dots \cdot u}_{n-times}.$$

If we restrict ourselves to commutative algebras with right invertible operators, then Definition 2.2 can be generalized in the following manner.

DEFINITION 2.3. Suppose that $X \in \mathbf{Lg}(D)$ and $(L, E) \in G[\Omega]$. Write

$$\Upsilon(\Omega) = \{(x,y) : x \in \text{dom } \Omega, \ yLx \in \text{dom } \Omega^{-1}\}\$$

and

$$x^y = E(yLx)$$
 whenever $(x, y) \in \Upsilon(\Omega)$.

By definition, $Lx^y = yLx$. Indeed, $Lx^y = LE(yLx) = yLx$. Let $u = x^y$ for $(x,y) \in \Upsilon$ and let $y \in I(X)$. Then

$$x = ELx = E(y^{-1}Lx^y) = E(y^{-1}Lu) = u^{y^{-1}}.$$

Clearly, x^y is a generalization of power functions introduced by Definition 2.2 for scalar exponents, so that we call x^y also a power function.

Observe that by definition, $x^e = x$ and $x^{-e} = x^{-1}$, since $x^e = E(eLx) = ELx = x$ and $x^{-e} = E(-eLx) = E(-Lx) = x^{-1}$. Moreover, if $u = x^y$ for $(x, y) \in \Upsilon(\Omega)$ and $y \in I(X)$, then

$$x = ELx = E(y^{-1}Lx^y) = E(y^{-1}Lu) = u^{y^{-1}}.$$

Definition 2.3 will be very useful in order to establish the relationship between the number e and the unit e of an algebra under consideration.

THEOREM 2.2. Suppose that $X \in \mathbf{Lg}(D)$ is a Leibniz algebra with unit e and $(L, E) \in G[\Omega]$. Then the power function x^y has the following properties:

(i) if
$$(x, a), (x, b) \in \Upsilon(\Omega)$$
, then $a + b \in \Upsilon(\Omega)$ and $x^a x^b = x^{a+b}$;

- (ii) if $(x, a), (y, a) \in \Upsilon(\Omega)$, then $(xy, a) \in \Upsilon(\Omega)$ and $x^a y^a = (xy)^a$;
- (iii) if $(x,y) \in \Upsilon(\Omega)$ then $x^y \in \text{dom } D$ and $Dx^y = x^y[(Dy)Lx + yx^{-1}Dx]$, in particular, if $x \in \ker D$ then $Dx^y = x^y(Dy)Lx$, if $y \in \ker D$ then $Dx^y = yx^{y-e}Dx$;
- (iv) if $(x, y) \in \Upsilon(\Omega)$ and $x, y \in \ker D$, then $x^y \in \ker D$, in other words: a constant to a constant power is again a constant;
 - (v) if $(x, y) \in \Upsilon(\Omega)$ and a = Ey, then $x^{La} = a^{Lx}$;
 - (vi) if $(x, y) \in \Upsilon(\Omega)$ and a = Lx, then $(Ea)^y = y^{Ea}$;
 - (vii) $e^{\lambda e} = e$ whenever $\lambda \in \mathbb{F}$;
 - (viii) if $x \in \text{dom } \Omega$, then $x^0 = e$ (cf. (1.7));
 - (ix) if $(x, u), (x^u, v) \in \Upsilon(\Omega)$, then $(x, uv) \in \Upsilon(\Omega)$ and $(x^u)^v = x^{uv}$;
 - $(x) \ if \ (x,y) \in \Upsilon(\Omega), \ then \ (x,-y) \in \Upsilon(\Omega), \ x^y \in I(X) \ and \ (x^y)^{-1} = x^{-y};$
- (xi) if the logarithm L is natural (i.e. if $L(p_n e) = e \ln p_n$, where p_n is the n-th prime $(n \in \mathbb{N})$, then $(ee)^x = Ex$ whenever $x \in \text{dom } \Omega^{-1}$;
- (xii) if X is an m-pseudoconvex D-algebra and $\lambda e \in \mathcal{E}_D(X)$ for all $\lambda \in \mathbb{F}$ $(\mathbb{F} = \mathbb{R} \text{ or } \mathbb{F} = \mathbb{C})$, then $e^{\lambda e} = e^{\lambda}e$, in particular, $e^e = ee$.

Clearly, when X = C[0, T] and $D = \frac{d}{dt}$, the introduced power mappings coincide with the classical power functions.

Definition 2.4. Suppose that all assumptions of Definition 2.3 are satisfied. Write

$$I_n(Y) = \{ x \in Y : \exists_{y \in I(Y)} \ y^n = x \} \text{ for } n \in \mathbb{N}, \ Y \subset X \}.$$
 (2.6)

Elements $y \in Y$ will be denoted by $y = x^{1/n}$ and called *nth roots* of x.

By definition, if $y = x^{1/n}$, then

$$x = e^{L}x$$
, $y = e^{1/n}Lx = e^{Lx^{1/n}}$ whenever $x \in \mathcal{E}_D(X)$.

3. Powers of logarithmic mappings

In the sequel we shall admit for the sake of brevity the following condition:

[L] $X \in \mathbf{Lg}(D)$ is a Leibniz D-algebra with unit e, (i.e. a commutative Leibniz algebra with unit and with $D \in R(X)$).

Condition [L] implies

$$(Lu)^m = E(mL^2u)$$
 for $(L, E) \in G[\Omega], (u, x) \in \text{graph } \Omega \ (m \in \mathbb{N}_0).$ (3.1)

Indeed,
$$(Lu)^m = EL(Lu)^m = E[mL(Lu)] = E(mL^2u)$$
.

DEFINITION 3.1. Suppose that Condition [L] holds, $(L, E) \in G[\Omega]$, $(u, x) \in \operatorname{graph} \Omega$, x = Lu, u = Lx. Let $n \in \mathbb{N}$ be arbitrarily fixed. Write:

$$\Lambda_n u = \prod_{j=0}^n L^j u \quad \text{for} \quad L^j u \in \text{dom } \Omega \quad (j=1,...,n).$$
 (3.2)

Proposition 3.1. Suppose that all assumptions of Definition 3.1 are satisfied. Then:

$$DL^{n}u = (L^{n}u)DL^{n+1}u \qquad (n \in \mathbb{N}_{0}). \tag{3.3}$$

P r o o f. By definition, Du = uDLu = uDx. The same definition implies that for w = Lu we have $DLu = Dw = wDLw = (Lu)DL^2u$. Hence $Du = uDLu = u(Lu)DL^2u$. Suppose Formula (3.3) is true for an arbitrarily fixed $(n \in \mathbb{N})$. Then, by the same reasons, $DL^{n+1}u = (L^{n+1}u)DL^{n+2}u$, i.e. (3.2) holds for n+1.

PROPOSITION 3.2. Suppose that all assumptions of Definition 3.1 are satisfied. Then:

$$Du = \left(\prod_{j=0}^{n-1} L^j u\right) DL^n u \qquad (n \in \mathbb{N}_0). \tag{3.4}$$

Proof. By induction.

Definition 3.1 and Formula (3.3) immediately imply

COROLLARY 3.1. Suppose that all assumptions of Definition 3.1 are satisfied. Then:

$$Du = (\Lambda_{n-1}u)DL^n u \qquad (n \in \mathbb{N}). \tag{3.5}$$

DEFINITION 3.2. Suppose that all assumptions of Definition 3.1 are satisfied. Let $k_j \in \mathbb{N}$ and $a_j \in \text{dom } \Omega$ for $j = 0, ..., n \ (n \in \mathbb{N})$. Write:

$$\Lambda_n^{k_0,...,k_n}(a_0,...,a_n)u = \prod_{j=0}^n a_j (L^j u)^{k_j}$$
(3.5)

and for $a_0 = ... = a_n = e$

$$\Lambda_n^{k_0, \dots, k_n} u = \prod_{j=0}^n (L^j u)^{k_j}.$$
 (3.6)

Clearly,

$$\Lambda_n^{k_0, \dots, k_n} u = \Lambda_n u \quad \text{for } k_0 = k_1 = \dots = k_{n+1} = 1,$$
 (3.7)

where $\Lambda_n u$ is defined by Formula (3.2).

Theorem 3.1. Suppose that all assumptions of Definition 3.2 are satisfied. Then:

$$\left[\Lambda_n^{k_0,\dots,k_n}(a_0,\dots,a_n)u\right]^m = E(\sum_{j=0}^{n-1} La_j)E(\sum_{j=0}^n k_j L^{j+1}u) \quad (m \in \mathbb{N}_0). \quad (3.8)$$

P r o o f. By our assumption, X is a Leibniz algebra. Thus the logarithmic mapping L under consideration is of exponential type, i.e. L(uv) = Lu + Lv for $u, v \in \text{dom } D$. Let $n \in \mathbb{N}$ be fixed and let m = 1. We have

$$L\Lambda_n^{k_1,...,k_n}(a_1,...,a_n)u = L\prod_{j=0}^n a_j(L^j u)^{k_j}$$

$$= \sum_{j=0}^{n} L[a_j(L^j u)^{k_j}] = \sum_{j=0}^{n} La_j + \sum_{j=0}^{n} k_j L^{j+1},$$

which implies the required Formula (3.8) for $E = L^{-1}$. Since X is a Leibniz algebra, L is of the exponential type. Thus $E = L^{-1}$ has the properties: E(x+y) = (Ex)(Ey) and $E(mx) = (Ex)^m$ for $x, y \in \text{dom } \Omega^{-1}$, $m \in \mathbb{N}_0$. Hence Theorem 3.1 and Formula 3.1 together imply the required formula (3.8).

In particular, we have

$$(\Lambda_n u)^m = E(m \sum_{j=1}^{n+1} L^j u) \qquad (m, n \in \mathbb{N}_0).$$
 (3.9)

It should be mentioned that the already obtained results have some connections with the Number Theory, then also with applications in the cryptography (cf. Schinzel S[1]). There are also some other connections.

4. Functional equations for logarithms, antilogarithms and powers

Recall the classical results.

Example 4.1. (cf. Kuczma K[1]). Suppose that $X = \mathbb{R}$, $\mathbb{F} = \mathbb{R}$. Let $f \in C^{\infty}(\mathbb{R})$. Then all solutions of the functional equations

- f(x+y) = f(x) + f(y) are x = ct, $(c \in \mathbb{R})$,
- f(xy) = f(x) + f(y) are $x = c \log_a t$, $(a \in \mathbb{R} \setminus 0, c \in \mathbb{R})$,
- f(x+y) = f(x)f(y) are $x = ce^{at}$, $(a, c \in \mathbb{R})$,
- f(xy) = f(x)f(y) are $x = ct^a$, $(a, c \in \mathbb{R})$.

THEOREM 4.1. Suppose that Condition [L] holds, $(L, E) \in G[\Omega]$, (u, x), $(v, y) \in \text{graph } \Omega$, i.e. x = Lu, u = Lx, y = Lv, v = Ey. Let $f \in \mathcal{I}(X)$: dom $\Omega \to \text{dom } \Omega$.

- (i) If f = L, then L of the exponential type: L(uv) = Lu + Lv.
- (ii) If f = E, then E(x + y) = (Ex)(Ey).
- (iii) If f is multiplicative: f(xy) = f(x)(f(y)), then solutions of this functional equation are power elements $x^a = E(aLx)$, where $(x, a) \in \Upsilon(\Omega)$ (cf. Definition 2.3.
 - (iv) If f is multiplicative, then

$$L'(uv) = L'u + L'v$$
, where $L' = Lf$, (4.12)

i.e. L' is of the exponential type.

(v) If f is additive, then

$$L''(uv) = L''u + L''v$$
, where $L'' = fL$, (4.13)

i.e. L" is of the exponential type.

(vi) If f is additive, then

$$L'''(uv) = L'''u + L'''v$$
, where $L''' = fLf$, (4.14)

i.e. L''' is also additive.

 ${\bf P}$ r o o f. (i) and (ii) are consequences of the Leibniz condition (cf. ${\bf PR}[2]).$

- (iii) follows from Theorem 2.2(ii).
- (iv) Since f is multiplicative, by (i) we have L'(uv) = Lf(uv)= L[f(u)f(v)] = Lf(u) + Lf(v) = L'(u) + L'(v).
- (v) Since f is additive, by (i) we find L''(uv) = fL(uv) = f(Lu + Lv) = fLu + fLv = L''u + L''v.
- (vi) Since f is additive, again by (i) (as in the proof of (iv)), L'''(uv) = fLf(uv) = f(Lfu + Lfv) = L'''u + L'''v.

It is easy to verify the following

COROLLARY 4.1. Suppose that all assumptions of Theorem 4.1 are satisfied. Let $h = f^{-1}$.

- (i) If f = L, then h = E.
- (ii) If f = E, then h = L.
- (iii) If f is multiplicative, then h is also multiplicative.
- (iv) If f is multiplicative, then $hE = (Lf)^{-1}$, hE(x+y) = (hEx)(hEy) and the last equation has solutions of the form $h^{-1}Ex = fEx$.
- (v) If f is additive, then $Eh = (fL)^{-1}$, Eh(x+y) = (Ehx)(Ehy) and the last equation has solutions of the form $Eh^{-1}x = Efx$.
 - (vi) If f is additive, then hEh is also additive.

Similar results can be obtained in Leibniz algebras with left invertible operators.

Example 4.2. (cf. DP[1]) Let X be a complex Banach space. Denote by B(X) the set of all bounded operators mapping X into itself. A strongly continuous family of operators $\{W(t)\}_{t\geq 0}\subseteq B(X)$ is a C-regularized semigroup if W(0)=C and W(t)W(s)=W(t+s)C for all $s,t\geq 0$. This family is nondegenerate, if W(t)x=0 implies x=0. A C-regularized semigroup is nondegenerate if and only if C is injective. An operator A generates a nondegenerate C-regularized semigroup $\{W(t)\}_{t\geq 0}$ if

$$Bx = C^{-1} \left[\frac{\mathrm{d}}{\mathrm{d}t} W(t) x \big|_{t=0} \right]$$

with the maximal domain.

If there is a nondegenerate C-regularized semigroup $\{W(t)\}_{t\geq 0}$ such that $A=C^{-1}W(1)$, then its generator is, by definition, $\log Ax\equiv Bx$.

References

R. Delaubenfels and J. Pastor:

DP[1] Fractional powers and logarithms via regularized semigroups. In: Semigroups of Operators: Theory and Applications (Ed. C. Kubrusly). Proc. 2nd Intern. Conference, Rio de Janeiro, Brazil, September 10-14, 2001. Optimization Software Inc. Publications, New York (2002), 68-72.

M. Kuczma:

K[1] An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Equation. PWN-Polish Scientific Publishers and the Silesian University, Warszawa-Kraków-Katowice (1985).

D. Przeworska-Rolewicz:

- PR[1] Algebraic Analysis. PWN-Polish Scientific Publishers and D. Reidel, Warszawa-Dordrecht (1988).
- PR[2] Logarithms and Antilogarithms. An Algebraic Analysis Approach. With Appendix by Z. Binderman. Kluwer Academic Publishers, Dordrecht (1998).
- PR[3] Power mappings in algebras with logarithms, Functiones and Approximationes 26 (1998), 239-248.

A. Schinzel:

S[1] A survey of achievements of number theory in 20th century (in Polish), Wiadomości Matematyczne (Ann. Soc. Math. Pol., Serie II) 38 (2002), 179-188.

Received: April 9, 2004

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8, 00-956 Warszawa 10
P.O.Box 21, POLAND

e-mail: rolewicz@impan.gov.pl