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Abstract

We characterize the range of some spaces of functions by the Fourier
transform associated with the spherical mean operator R and we give a
new description of the Schwartz spaces. Next, we prove a Paley-Wiener and
a Paley-Wiener-Schawrtz theorems.
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1. Introduction

The spherical mean operator R is defined, for a function f on IRn+1,
even with respect to the first variable, by

R(f)(r, x) =
∫

Sn
f(rη, x + rξ)dσn(η, ξ), (r, x) ∈ IR× IRn,

where Sn is the unit sphere {(η, ξ) ∈ IR× IRn : η2 + ‖ξ‖2 = 1} in IRn+1 and
σn is the surface measure on Sn normalized to have total measure one.

This operator plays an important role and has many applications, for
example, in image processing of so-called synthetic aperture radar (SAR)
data (see[5, [6]), or in the linearized inverse scattering problem in acoustics
[4]. In [9] the second author with M.M. Nessibi and K. Trimèche have de-
fined a generalized Fourier transform and a generalized convolution product
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associated with R, and they have established some results in the theory of
harmonic analysis (inversion formula, Paley-Wiener and Plancherel theo-
rems, etc). Also, in [10], the second author with K. Trimèche have studied
the Weyl transforms associated with the spherical mean operator R. Vu
Kim Tuan has studied in [13] the range of the Hankel and extended Hankel
transforms on some spaces of functions.

Using the same idea as in [13] and the properties of the Fourier trans-
forms associated with the spherical mean operatorR, we characterize in this
paper the range of some subspaces of L2(IR+ × IRn, rndrdx) (the space of
square integrable functions on IR+×IRn with respect to the measure rndrdx)
by this transform. We give a new description of the spaces S∗(IR×IRn) (the
space of infinitely differentiable functions on IR× IRn, even with respect to
the first variable, rapidly decreasing together with all their derivatives) and
S∗(Γ) (the space of infinitely differentiable functions, even with respect to
the first variable, rapidly decreasing together with all their derivatives on
the set Γ = IR× IRn ∪ {(it, x); (t, x) ∈ IR× IRn, |t| ≤ ‖x‖}).

This paper is arranged as follows. In the first section, we recall some
properties of the Fourier transform associated with the spherical mean op-
erator R. In the second section, we describe the range of rapidly decreasing
functions by the Fourier transform associated with the spherical mean op-
erator. In the third section, we will give an other characterization of the
space S∗(IR× IRn) and using the result of the precedent section, we obtain
a description of the space S∗(Γ). In the last section, a Paley-Wiener and a
Paley-Wiener-Schawrtz theorems are established.

2. Fourier transform associated with the spherical mean operator

In this section, we recall some properties of the Fourier transform associ-
ated with the spherical mean operator. For more details see ([1],[4],[9],[10]).

Notation. We denote by:
- E∗(IR× IRn) the space of infinitely differentiable functions on IR× IRn,

even with respect to the first variable.
- Sn the unit sphere in IR× IRn,

Sn = {(η, ξ) ∈ IR× IRn; η2 + ‖ξ‖2 = 1},

where for ξ = (ξ1, ..., ξn), we have ‖ξ‖2 = ξ2
1 + ... + ξ2

n.

- dσn the normalized surface measure on Sn.



ON THE RANGE OF THE FOURIER TRANSFORM . . . 381

Definition 2.1. The spherical mean operator on E∗(IR × IRn) is de-
fined by

∀(r, x) ∈ [0,+∞[×IRn, Rf(r, x) =
∫

Sn
f(rη, x + rξ)dσn(η, ξ).

For (µ, λ) ∈ IC × ICn, let us put

∀(r, x) ∈ [0, +∞[×IRn, ϕµ,λ(r, x) = R(cos(µ.)e−i<λ/.>)(r, x).

We have
ϕµ,λ(r, x) = jn−1

2
(r

√
µ2 + ‖λ‖2)e−i<λ/x>,

where jn−1
2

is the normalized Bessel function defined by

j(n−1)/2(x) = 2(n−1)/2Γ((n + 1)/2)
J(n−1)/2(z)

z(n−1)/2
. (2.1)

Here J(n−1)/2 is the Bessel function of first kind and index (n−1)/2 ([8],[14]),
and if λ = (λ1, ..., λn) ∈ ICn and x = (x1, ..., xn) ∈ IRn, we put λ2 =
λ2

1 + ... + λ2
n and < λ/x >= λ1x1 + ... + λnxn.

The normalized Bessel function j(n−1)/2 satisfies the following property

∀ k ∈ IN, ∀ r ∈ IR; |j(k)
(n−1)/2(r)| ≤ 1. (2.2)

Moreover for all λ ∈ IC; the function r 7→ j(n−1)/2(λr) is the unique
solution of the differential equation

{
Lnu(r) = −λ2u(r),
u(0) = 1, u′(0) = 0 ,

(2.3)

where Ln is the Bessel operator defined on IR∗
+ by

Ln = (
d

dr
)2 +

n

r

d

dr
.

We have, also, the following recurrence relation

∀ r ∈ IR, ∀ µ ∈ IR;
∂

∂µ
(j(n−1)/2(µr)) =

−µr2

n + 1
j(n+1)/2(µr). (2.4)

In the following we shall define the Fourier transform associated with
the spherical mean operator and we give some properties.
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Notation.(see [10]) We denote by:
- dν(r, x) the measure defined on [0, +∞[×IRn by

dν(r, x) = knrndr ⊗ dx,

where
kn =

1
2(n−1)/2Γ((n + 1)/2)(2π)n/2

.

- Lp(dν), 1 ≤ p ≤ +∞, the space of measurable functions on [0, +∞[×IRn,
satisfying

‖f‖p,ν =
(∫

IRn

∫ ∞

0
|f(r, x)|pdν(r, x)

)1/p

< +∞, 1 ≤ p < +∞,

‖f‖∞,ν = ess sup
(r,x)∈[0,+∞[×IRn

|f(r, x)| < ∞, p = +∞.

-dγ(µ, λ) the measure on the set Γ defined by
∫

Γ
f(µ, λ)dγ(µ, λ) = kn{

∫

IRn

∫ ∞

0
f(µ, λ)(µ2 + ‖λ‖2)(n−1)/2µdµdλ

+
∫

IRn

∫ ‖λ‖

0
f(iµ, λ)(‖λ‖2 − µ2)(n−1)/2µdµdλ}

- Lp(dγ), 1 ≤ p ≤ +∞, the space of measurable functions on Γ, satisfying

‖f‖p,γ =
(∫

Γ
|f(µ, λ)|pdγ(µ, λ)

)1/p

< +∞, 1 ≤ p < +∞,

‖f‖∞,γ = ess sup
(µ,λ)∈Γ

|f(µ, λ)| < ∞, p = +∞.

Definition 2.2. The Fourier transform associated with the spherical
mean operator on L1(dν) is defined by

∀(µ, λ) ∈ Γ, Ff(µ, λ) =
∫

IRn

∫ ∞

0
f(r, x)ϕµ,λ(r, x)dν(r, x).

We have the following properties:

• ∀(µ, λ) ∈ Γ, (Ff)(µ, λ) = ((B ◦ F̃)(f))(µ, λ) (2.5)
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where, ∀(µ, λ) ∈ IR× IRn,

F̃f(µ, λ) =
∫

IRn

∫ ∞

0
f(r, x)j(n−1)/2(rµ)e−i<λ/x>dν(r, x), (2.6)

and
∀(µ, λ) ∈ Γ, Bf(µ, λ) = f(

√
µ2 + λ2, λ).

• For f ∈ L1(dν) the function Ff is continuous on Γ and

lim
|µ|2+‖λ‖2→+∞

Ff(µ, λ) = 0 (2.7)

• For f ∈ L1(dν) such that Ff ∈ L1(dγ), we have the inversion
formula for F : for almost everywhere (r, x) ∈ [0, +∞[×IRn,

f(r, x) =
∫

Γ
Ff(µ, λ)ϕµ,λ(r, x)dγ(µ, λ).

• For all p ∈ [1, +∞] and f ∈ Lp(dν),

Bf ∈ Lp(dγ) and ‖Bf‖p,γ = ‖f‖p,ν . (2.8)

In particular, the mapping B is an isometric isomorphism from L2(dν)
onto L2(dγ).

• The mapping F̃ is an isometric isomorphism from L2(dν) onto itself.
Consequently, the Fourier transform F is an isometric isomorphism from
L2(dν) onto L2(dγ).

Thus,

∀f ∈ L2(dν); Ff ∈ L2(dγ), and ‖Ff‖2,γ = ‖f‖2,ν . (2.9)

Notation. We denote by:
- S∗(IR× IRn) the space of infinitely differentiable functions on IR× IRn,

even with respect to the first variable, rapidly decreasing together with all
their derivatives.

- S∗(Γ) the space of infinitely differentiable functions on Γ, even with
respect to the first variable, rapidly decreasing together with all their deriva-
tives, which means

∀ k1, k2 ∈ IN, ∀ α ∈ INn,

sup{(1 + |µ|2 + ‖λ‖2)k1 |( ∂

∂µ
)k2Dα

λf(µ, λ)|; (µ, λ) ∈ Γ} < +∞,
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where

∂f

∂µ
(µ, λ) =





∂

∂r
(f(r, λ)), if µ = r ∈ IR,

1
i

∂

∂t
(f(it, λ)), if µ = it, |t| ≤ ‖λ‖.

and

Dα
λ = (

∂

∂λ1
)α1(

∂

∂λ2
)α2 ...(

∂

∂λn
)αn .

(see [9]).

Remark 1.1. From [9], the Fourier transform F is a topological iso-
morphism from S∗(IR × IRn) onto S∗(Γ). The inverse mapping is given
by

F−1f(r, x) =
∫

Γ
f(µ, λ)ϕµ,λ(r, x)dγ(µ, λ).

3. Fourier transform of rapidly decreasing functions

This section consists to characterize, by the Fourier transform associated
with the spherical mean operator, a space of functions having only some
integral conditions at infinity. This permits, in the last section, to give
an other description of the space S∗(Γ). To prove the main result of this
section, we need some lemmas.

Let f be a measurable function on IR×IRn. For every k ∈ {0, ..., n} and
(i0, ..., ik) ∈ INk+1 such that 0 ≤ i0 < ... < ik ≤ n, we put:
fi0,...,ik(x; y)

= f(y0, ..., yi0−1, xi0 , yi0+1, ..., yip−1, xip , yip+1, ..., yik−1, xik , yik+1, ..., yn)
(3.1)

with x = (x0, ..., xn) and y = (y0, ..., yn) ∈ IR× IRn.

Lemma 3.1. Let In =
n∏

j=0
[aj , bj ] where a0, ..., an, b0, ..., bn are real num-

bers such that for every j ∈ {0, ..., n}, aj < bj . Let f be an infinitely
differentiable function on In and g a measurable bounded function on In.
Then we have

∫

In

f(t)g(t)dt = f(b)gn(b)+
n∑

k=0

(−1)k+1(
∑

0≤i0<...<ik≤n

∫
k∏

j=0
[aij

,bij
]
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(
∂k+1

∂ti0 ...∂tik
f)i0,...,ik(t; b)gn

i0,...,ik
(t; b) dti0 ...dtik),

where

∀ k ∈ {0, ...n}; gk(t) =
∫

k∏
j=0

[aj ,tj ]

g(u0, ..., uk, tk+1, ..., tn)du0...duk.

P r o o f. By integration by parts, the result follows by induction on
n.

In the sequel, we denote by S(IRk) the usual Schwartz’s space and
Lp(IRk, dx), 1 ≤ p ≤ +∞, the Lebesgue space on IRk.

Lemma 3.2. Let ϕ : IRn+1× In → IC be a measurable bounded function
such that

lim
‖λ‖→+∞

∫

[α0,β0]×...×[αn,βn]
ϕ(λ, t)dt = 0, (3.2)

uniformly in αi and βi for ai ≤ αi ≤ βi ≤ bi; i ∈ {0, ..., n}. Then for every
integrable function f on In with respect to lebesgue measure, we have

lim
‖λ‖→+∞

∫

In

f(t)ϕ(λ, t)dt = 0, (3.3)

where In is defined in Lemma 3.1.

P r o o f. By using Lemma 3.1 with g(t) = ϕ(λ, t) and according to
the relation (3.2), we obtain the result for f ∈ S(IRn+1).

Since the function ϕ is bounded on IRn+1 × In, we complete the proof
by using the density of S(IRn+1) in L1(IRn+1, dx).

Remark 3.1. In [12] and [7], the result of Lemma 3.2 is proved for
n = 0.

Example 3.1. Let N be a real number such that N ≥ 1 and

IN = [0, N ]× [−N, N ]n.

Let ϕ be the function on (IR× IRn)× IN defined by

ϕ(µ, λ, r, x) = (rµ)n/2j(n−1)/2(rµ)e−i<λ,x>1[0,+∞[(µ)

where j(n−1)/2 is the normalized Bessel function defined by the relation (2.1).
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It is well known ([8], [14]) that there exist two positive constants cn and
dn such that
∀ x ∈ [0, +∞[

|xn/2j(n−1)/2(x)| ≤ cn (3.4)

and

|
∫ x

0
tn/2j(n−1)/2(t)dt| ≤ dn (3.5)

According to the inequalities (3.4), (3.5) and by using Lemma 3.2, we
deduce that for every integrable function

lim
µ2+‖λ‖2→+∞

∫

IN

f(r, x)ϕ(µ, λ, r, x)drdx = 0. (3.6)

In the following, we need the partial differential operators

∂

∂µ2
=

1
2µ

∂

∂µ
; K = 4(µ2 + ‖λ‖2)(

∂

∂µ2
)2 + 2(n + 1)

∂

∂µ2
,

L = Ln + ∆; A = K + Σn
i=1C

2
i ,

where

Ci =
∂

∂λi
− 2λi

∂

∂µ2
, 1 ≤ i ≤ n;

For all f ∈ E∗(IR× IRn), we have

• B(
∂

∂µ2
f) =

∂

∂µ2
Bf. (3.7)

• ∀ k ∈ IN, ∀ α = (α1, ..., αn) ∈ INn

B(Lk
nDα

λf) = KkCαBf, (3.8)

where Cα = Cα1
1 ...Cαn

n . and Dα
λ = (

∂

∂λ1
)α1 ...(

∂

∂λn
)αn

• ∀ k ∈ IN,

B(Lkf) = Ak(Bf), (3.9)

We can now prove the main result of this section.
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Theorem 3.1. Let f be a function in L2(dν). Then the following two
assertions are mutually equivalent:

1) For all α ∈ INn and m ∈ IN , the function
(r, x) → rmxαf(r, x)

belongs to L2(dν).
2) The Fourier transform F(f) of the function f satisfies the following

properties:

i) The function F(f) is infinitely differentiable on Γ even with respect
to the first variable.

ii) For all α ∈ INn and m ∈ IN the function KmCαF(f) belongs
to L2(dγ).

iii) For all α ∈ INn and m ∈ IN

lim
|µ|2+‖λ‖2→+∞

(1 + (µ2 + ‖λ‖2)n/4)KmCαF(f)(µ, λ) = 0. (3.10)

iv) For all α ∈ INn and m ∈ IN

lim
|µ|2+‖λ‖2→+∞

(µ2 + ‖λ‖2)(n+2)/4 ∂

∂µ2
KmCαF(f)(µ, λ) = 0. (3.11)

P r o o f. Necessity. Let f be a function in L2(dν) satisfying the
assertion 1) of Theorem 3.1. Then, it is clear that for all α ∈ INn and
m ∈ IN , the function

(r, x) → rmxαf(r, x)
belongs to L1(dν).

i) Using the relations (2.2) and (2.6), we deduce that the function F̃(f)
belongs to E∗(IR × IRn) . On the other hand, it is known ([1], [9]) that if
g ∈ E∗(IR× IRn) then, the function Bg is infinitely differentiable on Γ even
with respect to the first variable. Thus from the relation (2.5), the function
F(f) is infinitely differentiable on Γ, even with respect to the first variable.

ii) From the relations (2.3) and (2.6) we deduce that for all α ∈ INn and
m ∈ IN we have
∀(µ, λ) ∈ IR× IRn,

Lm
n DαF̃(f)(µ, λ) = F̃((−r2)m(−i)|α|xαf(r, x))(µ, λ) (3.12)

Then, by the relations (2.5) and (3.8), we obtain

∀(µ, λ) ∈ Γ; KmCαF(f)(µ, λ) = F((−r2)m(−i)|α|xαf(r, x))(µ, λ). (3.13)
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Therefore, the property ii) follows from the relation (3.13) and the fact
that the Fourier transform F is an isometric isomorphism from L2(dν) onto
L2(dγ).

iii) From the relations (2.7) and (3.13), we deduce that

∀α ∈ INn, ∀m ∈ IN ; lim
|µ|2+‖λ‖2→+∞

KmCαF(f)(µ, λ) = 0. (3.14)

On the other hand, from the relation (3.4), it follows that for N ≥ 1,
we have
∀ (µ, λ) ∈ IR+×IRn

|
∫

[0,+∞[×IRn
µn/2r2mxαf(r, x).e−i<λ/x>j(n−1)/2(rµ).rndrdx|

≤ cn

∫

IR+×IRn\IN

r2m+n/2|xαf(r, x)|drdx

+|
∫

IN

ϕ(µ, λ, r, x)r2m+n/2xαf(r, x)drdx|,

where ϕ is the function given in Example 3.1, and this implies by using the
hypothesis, Example 3.1 and the relations (2.6) and (3.12) that

lim
µ2+‖λ‖2→+∞

µn/2Lm
n DαF̃(f)(µ, λ) = 0. (3.15)

Thus from the relations (2.5) and (3.8) we obtain

lim
|µ|2+‖λ‖2→+∞

(µ2 + ‖λ‖2)n/4KmCαF(f)(µ, λ) = 0. (3.16)

Therefore, iii) follows from the relations (3.14) and (3.16).
iv) For (µ, λ) ∈ IR+×IRn, and from the relations (2.4), (2.6) and (3.12)

we obtain

µn/2 ∂

∂µ
Lm

n DαF̃(f)(µ, λ)

=
µ(n+2)/2

n + 1

∫

IR+×IRn
(−r2)m+1(−i)|α|xαf(r, x) e−i<λ/x>j(n+1)/2(rµ) dν(r, x).

By the same way as in iii), we deduce that for all α ∈ INn and m ∈ IN

lim
µ2+‖λ‖2→+∞

µ(n+2)/2 ∂

∂µ2
Lm

n DαF̃(f)(µ, λ) = 0.



ON THE RANGE OF THE FOURIER TRANSFORM . . . 389

Thus, iv) follows from the fact that
∀ (µ, λ) ∈ Γ,

B(µ(n+2)/2 ∂

∂µ2
Lm

n DαF̃(f))(µ, λ) = (µ2+‖λ‖2)(n+2)/4 ∂

∂µ2
KmCαF(f)(µ, λ).

Sufficiency. Suppose now that the function f satisfies the assertion 2)
of Theorem 3.1. Then from the property ii), we deduce that for all α ∈ INn

and m ∈ IN the function KmCαF(f) belongs to L2(dγ). And this implies,
by using the relations (2.5), (2.8) and (3.8) that the function Lm

n DαF̃(f)
belongs to L2(dν).

Therefore, for all j ∈ {1, ..., n} and m ∈ IN there exists a null set
Nj,m ⊂ IR+ × IRn−1 such that for every (µ, z) ∈ N c

j,m, the function defined
on IR by

fj,m,µ,z(t) = (
∂

∂λj
)mF̃(f)(µ, z1, ..., zj−1, t, zj , ..., zn−1)

belongs to L2(IR, dt).
And for all m ∈ IN there exists a null set Mm ⊂ IRn such that for every

λ ∈ M c
m, the function Lm

n F̃(f)(., λ) belongs to L2(IR+, tndt)(the space of
square integrable functions on IR+ with respect to the measure tndt).

We introduce now, for m ∈ IN and j ∈ {1, ..., n}, the following sequences
of functions:

• For (µ, z) ∈ IR+ × IRn−1,

gN
j,m,µ,z(y) =

1√
2π

∫ N

−N
fj,m,µ,z(t)eitydt.

• For λ ∈ IRn,

hN
m,λ(y) =

1
2(n−1)/2Γ((n + 1)/2)

∫ N

0
Lm

n F̃(f)(t, λ)j(n−1)/2(ty)tndt.

Then, for all (µ, z) ∈ N c
j,m the sequence (gN

j,m,µ,z)N converges in L2(IR, dt)
to

gj,m,µ,z = ∧−1
1 (fj,m,µ,z) (3.17)

and for all λ ∈ M c
m, the sequence (hN

m,λ)N converges in L2(IR+, tndt) to

hm,λ = FB(Lm
n F̃(f)(., λ)), (3.18)
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where ∧−1
1 is the inverse of the usual Fourier transform ∧1 on IR defined by

∧1(f)(y) = lim
N→+∞

1√
2π

∫ N

−N
f(t)e−itydt,

in L2(IR, dt), and FB is the Fourier-Bessel transform defined by

FB(f)(y) = lim
N→+∞

1
2(n−1)/2Γ((n + 1)/2)

∫ N

0
f(t)j(n−1)/2(ty)tndt,

in L2(IR+, tndt).
Now by integration by parts we obtain, for m ∈ IN∗:
• ∀(µ, z) ∈ IR+ × IRn−1,

gN
j,m,µ,z(y) =

1√
2π

[eityfj,m−1,µ,z(t)]N−N − iygN
j,m−1,µ,z(y) (3.19)

• ∀λ ∈ IRn,

hN
m,λ(y) =

1
2(n−1)/2Γ((n + 1)/2)

{[j(n−1)/2(ty)tn
∂

∂t
(Lm−1

n F̃(f))(t, λ)]N0

−[
−tn+1y2

n + 1
j(n+1)/2(ty)(Lm−1

n F̃(f))(t, λ)]N0 } − y2hN
m−1,λ(y). (3.20)

From the relations (2.5), (3.8) and the hypothesis iii), we deduce that
for all m ∈ IN∗ and j ∈ {1, ..., n}, we have
∀ (µ, z) ∈ IR+ × IRn−1

lim
N→+∞

[eityfj,m−1,µ,z(t)]N−N = 0. (3.21)

Then, from the relation (3.17),(3.19) and (3.21), we have

∀ (µ, z) ∈
k⋂

l=0

N c
j,l, gj,k,µ,z(.) = (−it)kgj,0,µ,z(.), (3.22)

in L2(IR, dt).
Using the relation (3.17) and the Plancherel formula for the Fourier

transform ∧, we obtain for all j ∈ {1, ..., n} and k ∈ IN ;

∀ (µ, z) ∈
k⋂

l=0

N c
j,l;

∫

IR
|gj,k,µ,z(t)|2dt =

∫

IR
|fj,k,µ,z(t)|2dt.
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Integrating over [0, +∞[×IRn−1, with respect to the measure µndµdz,
and using Fubini-Tonelli theorem, we obtain by virtue of the relation (3.22)
that ∫

IR+×IRn
|( ∂

∂λj
)kF̃f(µ, λ)|2µndµdλ

=
∫

IR
t2k(

∫

IR+×IRn−1
|gj,0,µ,z(t)|2µndµdz)dt. (3.23)

Let us now define the Fourier-transform F̃n,n−1, on [0,+∞[×IRn−1 by

F̃n,n−1(g)(µ, z) = kn,n−1

∫

IRn−1

∫ ∞

0
g(r, x)j(n−1)/2(rµ)e−i<z/x>rndrdx,

where
kn,n−1 =

1
2(n−1)/2Γ((n + 1)/2)(2π)(n−1)/2

.

Then, the transform F̃n,n−1 can be extended to an isometric isomor-
phism from L2([0, +∞[×IRn−1, kn,n−1r

ndrdx) (the space of square inte-
grable functions on [0, +∞[×IRn−1, with respect to the measure kn,n−1 rn

drdx) onto itself, and we have, for almost everywhere t

gj,0,µ,z(t) = F̃n,n−1(f(..., t, ...))(µ, z)
↓

jthplace

.

Consequently, for almost everywhere t,
∫

[0,+∞[×IRn−1
|gj,0,µ,z(t)|2µndµdz

=
∫

[0,+∞[×IRn−1
|f(µ, z1, ..., zj−1, t, zj , ..., zn−1)|2µndµdz. (3.24)

From the relations (3.23) and (3.24), we obtain
∫

IR+×IRn
|( ∂

∂λj
)kF̃f(µ, λ)|2dν(µ, λ) =

∫

IR+×IRn
|xk

j f(r, x)|2dν(r, x)

and by using the relations (2.5), (2.8) and (3.8), we deduce from the hy-
pothesis ii) that for all k ∈ IN and j ∈ {1, ..., n}, the integral

∫

IR+×IRn
|xk

j f(r, x)|2dν(r, x)
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is finite. So, for all α ∈ INn,

∫

IR+×IRn
|xαf(r, x)|2dν(r, x) < +∞. (3.25)

In the following, we will prove that for all k ∈ IN , the integral
∫

IR+×IRn
|rkf(r, x)|2dν(r, x)

is finite.
From the relations (2.5), (3.8) and the hypothesis iii), we deduce that

for all m ∈ IN∗ ,

lim
µ2+‖λ‖2→+∞

µn/2Lm−1
n F̃f(µ, λ) = 0. (3.26)

On the other hand, for all y ∈ IR∗
+, the relation (3.4) implies that

∀m ∈ IN∗, ∀ (µ, λ) ∈ IR+ × IRn;

|µn+1y2j(n+1)/2(µy)Lm−1
n F̃f(µ, λ)| ≤ cn

y(n−2)/2
|µn/2Lm−1

n F̃f(µ, λ)|.

Then, by the relation (3.26), we obtain for y ∈ IR∗
+,

∀m ∈ IN∗, ∀λ ∈ IRn;

lim
N→+∞

[
−tn+1y2

n + 1
j(n+1)/2(ty)(Lm−1

n F̃f)(t, λ)]t=N
t=0 = 0. (3.27)

Moreover, from the relations (2.5), (3.7), (3.8) and the hypothesis iv),
we deduce that for all m ∈ IN∗ ,

lim
µ2+‖λ‖2→+∞

µn/2 ∂

∂µ
Lm−1

n F̃f(µ, λ) = 0. (3.28)

Now, from the relation (3.4), we have for all y ∈ IR∗
+;

|µnj(n−1)/2(µy)
∂

∂µ
Lm−1

n F̃f(µ, λ)| ≤ cn

yn/2
|µn/2 ∂

∂µ
Lm−1

n F̃f(µ, λ)|.

Then, by the relation (3.28), we get for all m ∈ IN∗, y ∈ IR∗
+ and

λ ∈ IRn;

lim
N→+∞

[j(n−1)/2(ty)tn
∂

∂t
Lm−1

n F̃f(t, λ)]t=N
t=0 = 0. (3.29)



ON THE RANGE OF THE FOURIER TRANSFORM . . . 393

By the same way as the proof of the relation (3.25) and using the rela-
tions (3.20), (3.27) and (3.29), we deduce that for all k ∈ IN ,

∫

IR+×IRn
|rkf(r, x)|2dν(r, x) < +∞. (3.30)

Thus, by the relations (3.25), (3.30) and the Cauchy-Schwarz inequality,
it follows that for all k ∈ IN and α ∈ INn, the function

(r, x) → rkxαf(r, x)

belongs to L2(dν). This completes the proof of Theorem 3.1.

4. Other characterizations of the spaces S∗(IRn+1) and S∗(Γ)

In this section, we will give an other characterization of the space
S∗(IRn+1) which together with Theorem 3.1, permit to obtain a new de-
scription of the space S∗(Γ).

Lemma 4.1. Let m ∈ IN∗. For all infinitely differentiable function f on
IRm, we have

∫
m∏

j=1
[aj ,bj ]

∂

∂x1
...

∂

∂xm
f(x)dx = f(b) +

m∑

k=1

(−1)k[
∑

1≤i1<...<ik≤m

fi1,...,ik(a; b)]

(4.1)
where a1, ..., am, b1, ..., bm are real numbers such that, for all j ∈ {1, ..., m};
aj < bj .

P r o o f. The result follows by induction on m.

Proposition 4.1. Let f be a continuous function on IRm and f ∈
L2(IRm, dx). Then, the following assertions are equivalent:

1) For all α ∈ INm, the functions

x → xαf(x) and x → xα ∧m f(x)

belong to L2(IRm, dx).
2) For all α ∈ INm, the functions

x → xαf(x) and x → xα ∧m f(x)

are bounded on IRm.
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Here ∧m is the Fourier-transform on IRm defined by

∧m(f)(x) =
1

(2π)m/2

∫

IRm
f(t)e−i<x,t>dt.

P r o o f. Necessity. Let f be a continuous function on IRm such that
f ∈ L2(IRm, dx) and satisfying the assertion 1) of Proposition 4.1. Then,
f is infinitely differentiable on IRm and all its derivatives are bounded on
IRm.

For all α ∈ INm, we have

∂

∂y1
...

∂

∂ym
[(yαf(y))m+1] = [

∑

finite

cγ,δ yγ
m∏

i=1
Dδif(y)]f(y), (4.2)

where γ ∈ INm, δ = (δ1, ..., δm) ∈ INm × ... × INm and cγ,δ is a positive
constant.

Let p ∈ {0, ..., m − 1} and (i1, ..., im−p) ∈ {1, ..., m}m−p, 1 ≤ i1 < ... <
im−p ≤ m such that for α = (α1, ..., αm) ∈ INm,

∏
j=i1,...,im−p

αj 6= 0 and

αj = 0 if j 6= i1, ..., im−p.

By integrating the equality (4.2) over (
im−p∏
j=i1

[0, xj ]) × (
∏

j 6=i1,...,im−p

[1, xj ])

and according to Lemma 4.1 one can show by induction on p that

sup
x∈IRm

|( ∏
j=i1,...,im−p

x
αj

j )f(x)| < +∞,

Thus, for all α ∈ INm, the function

x → xαf(x)

is bounded on IRm and by the same argument, we prove that for all α ∈ INm

the function
x → xα ∧m f(x)

is bounded on IRm. The implication 2) → 1) is clear.

Proposition 4.2. Let f be a continuous function on IR×IRn, even with
respect to the first variable and f ∈ L2(dν). Then, the following assertions
are mutually equivalent:

1) For all α ∈ INn and k ∈ IN , the functions

(r, x) → rkxαf(r, x) and (µ, λ) → µkλαF̃(f)(µ, λ)
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are bounded on IR+ × IRn.

2) For all α ∈ INn and k ∈ IN

sup
(r,x)∈IR+×IRn

|rkxαf(r, x)| < +∞

the function f is infinitely differentiable on IRn+1 and all its partial deriva-
tives are bounded.

3) The function f belongs to the space S∗(IRn+1).

4) For all α ∈ INn and k ∈ IN the functions

(r, x) → rkxαf(r, x) and (µ, λ) → µkλαF̃(f)(µ, λ)

belong to L2(dν).
P r o o f.

1)⇒ 2) From the hypothesis 1), for all k ∈ IN and α ∈ INn; the function

(µ, λ) → µkλαF̃(f)(µ, λ)

belongs to L1(dν). Then, by the inversion formula for the transform F̃
∀ (r, x) ∈ IR× IRn

f(r, x) =
∫

[0,+∞[×IRn
F̃(f)(µ, λ) ei<x/λ>j(n−1)/2(rµ)dν(µ, λ).

And using the relation (2.2), we deduce that the function f is infinitely
differentiable on IR × IRn, even with respect the first variable and all its
derivatives are bounded.

2) ⇒ 3) For all j ∈ {0, ..., n} and for k ∈ IN and α ∈ INn one can show
that the function

y →
∫ yj

0
|uk(y0, ..., yj−1, yj+1, ..., yn)αDjf(y0, ..., yj−1, u, yj+1, ..., yn)|2du

is bounded on IRn+1 and this leads us to see that the function

(r, x) → rkxαDjf(r, x)

is bounded on IR× IRn.
Consequently, for all j ∈ {0, ..., n}, the function Djf satisfies the same

hypothesis as f . Hence, we deduce that for all k ∈ IN and α ∈ INn, the
function Dk

0Dαf is rapidly decreasing.
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3) ⇒ 4) We know that the transform F̃ is an isomorphism from S∗(IR×
IRn) onto itself. Then, the assertion 4) follows from the fact that for all
k ∈ IN and α ∈ INn, the mapping

f → rkxαf

is continuous from S(IR× IRn) onto itself.
4) ⇒ 1) Let g : IRn+1 × IRn → IC be the function defined by g(t, x) =

f(‖t‖, x). According to the relation

F̃f(µ, λ) = ∧2n+1g(s, λ)

with s ∈ IRn+1; ‖s‖ = µ, then the result follows from Proposition 4.1.

Remark 4.1. By the same way, as in the proof of Proposition 4.2, we
show that a continuous function f satisfies the assertion 2) of Proposition
4.1 if and only if the function f belongs to the space S(IRm).

In [3], it is proved that a continuous function f belongs to the space
S∗(IR) (the subspace of S(IR) consisting of even functions ), if and only if
for all k ∈ IN , the functions

x → xkf(x) and x → xkFBf(x)

are bounded on IR+.
Here FB is the Fourier-Bessel transform defined by

FB(f)(x) =
1

2(n−1)/2Γ((n + 1)/2)

∫ +∞

0
f(t)j(n−1)/2(tx)tndt,

with f ∈ L1(IR+, tndt).

Corollary 4.1. Let f be a continuous function on Γ, and f ∈ L2(dγ),
even with respect to the first variable. Then the following assertions are
mutually equivalent:

a) For all α ∈ INn and k ∈ IN

sup
(z,λ)∈Γ

|(z2 + ‖λ‖2)m/2λαf(z, λ)| < +∞ and

sup
(r,x)∈IR+×IRn

|rmxαF−1(f)(r, x)| < +∞.

b) The function f belongs to S∗(Γ).
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c) For all α ∈ INnand m ∈ IN the function

(µ, λ) → (µ2 + ‖λ‖2)m/2λαf(µ, λ)

belongs to L2(dγ).
• The function f satisfies the properties i), ii), iii) and iv) of the assertion

2) of Theorem 3.1.
P r o o f. Since the Fourier-transform is an isomorphism from S∗(IR×

IRn) onto S∗(Γ), there exists a function h ∈ S∗(IR × IRn) such that g =
F−1(f). Therefore by using the relations (2.5) and (2.8), the result follows
from Proposition 4.2 and Theorem 3.1.

5. Fourier transform of functions with bounded support

In this section, we prove some results characterizing some spaces of
functions with bounded support. From these characterizations we deduce
a Paley-Wiener and Paley-Wiener-Schwartz theorems for the Fourier trans-
form associated with the spherical mean operator.

We recall that for a measurable function f on IR × IRn, supp(f) is the
smallest closed set, outside it the function vanishes almost everywhere [15].

Using similar techniques as in [13], we prove the following theorem de-
scribing the range of square integrable functions with bounded support.

Theorem 5.1. (Paley-Wiener) Let f be a function in L2(dν).
1) If the function f has a bounded support, then f satisfies the assertion

2) of Theorem 3.1 and moreover, the sequence (‖AkF(f)‖1/2k
2,γ )k converges

to σF(f).
2) Conversely, if the function f satisfies the assertion 2) of Theorem 3.1

and the sequence (‖AkF(f)‖1/2k
2,γ )k admits a finite limit σ, then the function

f has a bounded support and σ = σF(f), where

σF(f) = max{‖y‖ : y ∈ suppf}.

Now, we will prove a second result characterizing the space of infinitely
differentiable functions with bounded support.

Notation. Let m ∈ IN∗ and δ > 0, we denote by
•Hδ(ICm) the space of entire functions g : ICm → IC, slowly increasing of

exponential type, i.e.: there exists a positive integer k such that

sup
(λ1,...,λm)∈ ICm

{(1 + |λ1|2 + ... + |λm|2)−k
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×|f(λ1, ..., λm)|e−δ(|Imλ1|+...+|Imλm|)} < ∞.

• E ′δ(IRm) the space of distributions T on IRm such that supp T⊂ {x ∈
IRm; ‖x‖ ≤ δ}.

• S′(IRm) the space of tempered distributions T on IRm.

• E(IRm) the space of infinitely differentiable functions on IRm.
• D∗(IR × IRn) the subspace of E(IRn+1) consisting of functions, even

with respect to the first variable, with bounded support.
• For all f ∈ Hδ(ICn+1) we put
- δf = sup{‖y‖, y ∈ supp ∧−1

n+1 f}.
- δf,i = sup{|t|, t ∈ Pi(supp ∧−1

n+1 f)}; i ∈ {0, ..., n},
where for m ∈ IN∗, ∧m is the usual Fourier transform on IRm defined

in Proposition 4.1 and Pi((y0, ..., yn+1)) = yi.

We design by γ̃ the measure on Γ defined by

dγ̃(µ, λ) = (1/kn)
dγ(µ, λ)

(µ2 + ‖λ‖2)n/2
.

• Lp(dγ̃), 1 ≤ p ≤ ∞, the space of measurable functions on Γ satisfying

‖f‖p,γ̃ =
(∫

Γ
|f(µ, λ)|pdγ̃

)1/p

< +∞, 1 ≤ p < +∞,

‖f‖∞,γ̃ = ess sup
(µ,λ)∈Γ

|f(µ, λ)| < ∞, p = +∞.

Remark 5.1.

• The Fourier transform ∧m is a bijection from E ′δ(IRm) ontoHδ(ICm)(Paley-
Wiener theorem) and from S′(IRm) onto itself.

• For every f ∈ S∗(IR× IRn) we have

‖EkCαBf‖p,̃γ = ‖( ∂

∂x0
)kDαf‖p,IRn+1 , (5.1)

where E = 2(µ2 + ‖λ‖2)1/2 ∂

∂µ2
and Cα is defined in the relation (3.8).

Using the Bernstein’s inequality and the theorem of Kolmogoroff (see
[11]), we obtain the following results.

Proposition 5.1. Let p ∈ [1,∞] and i ∈ {0, ..., n}. Then for all
f ∈Hδ(ICn+1)

⋂
Lp(IRn+1, dx) we have

‖ ∂

∂xi
f‖p,IRn+1 ≤ δf,i‖f‖p,IRn+1 .
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Proposition 5.2. Let p ∈ [1,∞] and f ∈ E(IRn+1) such that for all
α ∈ INn+1

Dαf ∈ Lp(IRn+1, dx).

Then for all i ∈ {0, ..., n} and r ∈ IN∗ we have

‖( ∂

∂xi
)kf‖r

p,IRn+1 ≤ (π/2)r‖f‖r−k
p,IRn+1‖( ∂

∂xi
)rf‖k

p,IRn+1

with k ∈ IN, 0 < k < r.

Remark 5.2. From Proposition 5.2 it follows that for every f ∈
E(IRn+1) satisfying for all α ∈ INn+1,

Dαf ∈ Lp(IRn+1, dx),

there always exists the limit of the sequences
(
‖( ∂

∂xi
)kf‖1/k

p,IRn+1

)
k
, i ∈ {0, ..., n}.

Theorem 5.2. Let p ∈ [1,∞] and f be a function satisfying the hy-
pothesis of Proposition 5.2.

1) If δf < ∞ then for all i ∈ {0, ..., n} the sequence
(
‖( ∂

∂xi
)kf‖1/k

p,IRn+1

)
k

converges to δf,i.

2) If there exists M > 0 such that for all α ∈ INn+1

‖Dαf‖p,IRn+1 ≤ M |α|

then δf < ∞, and for all i ∈ {0, ..., n} the sequence
(
‖( ∂

∂xi
)kf‖1/k

p,IRn+1

)
k

converges to δf,i.

P r o o f. Without loss of generality we may assume that i = 0 and
using the fact that the function f belongs to the space Lp(IRn+1, dx) it
follows that f ∈ S′(IRn+1).

1) Assume that δf < ∞. Then, from the Paley-Wiener theorem for
the Fourier transform ∧n+1 we deduce that f ∈ Hδf (ICn+1). According to
Proposition 5.1 and using the same reasoning as in [2], we obtain the result
of the assertion 1).

2) Assume that there exists M > 0 such that for all α ∈ INn+1

‖Dαf‖p,IRn+1 ≤ M |α|.

If p = ∞, then it follows that f ∈ HM (ICn+1) and from the Paley-Wiener
theorem for the Fourier transform ∧n+1 we deduce that supp ∧−1

n+1 (f) ⊂
{x ∈ IRn+1, ‖x‖ ≤ M}.



400 M. Jelassi, L.T. Rachdi

For p ∈ [1,+∞[, let ϕ ∈ S(IRn+1) such that
{

0 ≤ ϕ ≤ 1,

supp ϕ ⊂ {x ∈ IRn+1, ‖x‖ ≤ 1} .

For all m ∈ IN∗, we put

ϕm(x) = mn+1ϕ(mx) and fm(x) =
∫

IRn+1
f(x + t)ϕm(t)dt,

and we have
∀α ∈ INn+1, ‖Dαfm‖p,IRn+1 ≤ M |α|.

Therefore fm ∈ HM (ICn+1) and this implies that δfm < ∞. Hence, by
proceeding as in the proof of Theorem 1 in [2], it follows that for all i ∈
{0, ..., n}

δf,i ≤ M.

Thus, for all p ∈ [1, +∞], δf < ∞ and from 1) we deduce that for all
i ∈ {0, ..., n} the sequence

(
‖( ∂

∂xi
)kf‖1/k

p,IRn+1

)
k

converges to δf,i.

Lemma 5.1. (see[9]) The mapping W(n−1)/2 on D∗(IR×IRn) defined by

W(n−1)/2g(r, x) =
2Γ((n + 1)/2)√

πΓ(n/2)

∫ +∞

r
(t2 − r2)(n−2)/2f(t, x)tdt

is a topological isomorphism from D∗(IR × IRn) onto itself. Moreover, for
all g ∈ D∗(IR× IRn)

sup{|t|, t ∈ Pi(suppW(n−1)/2(g))} = sup{|t|, t ∈ Pi(suppg)}
i ∈ {0, ..., n}.

Corollary 5.1. Let f be a function in S∗(IR×IRn). Then the function
F̃−1f belongs to the space D∗(IR × IRn) if and only if there exist M > 0
and p ∈ [1,∞] such that for all α ∈ INn+1

‖Dαf‖p,IRn+1 ≤ M |α|+1

and moreover, for all i ∈ {0, ..., n}, the sequence
(
‖( ∂

∂xi
)kf‖1/k

p,IRn+1

)
k

con-

verges to δf,i.

P r o o f. Since the transform F̃ satisfies the relation (see [9])

F̃ =
√

π

2n/2Γ(n + 1)/2
∧n+1 oW(n−1)/2, (5.2)

Then, by virtue of Lemma 5.1, the result follows from Proposition 5.1 and
Theorem 5.2).
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Theorem 5.3. (Paley -Wiener-Schwartz) Let f be a function in S∗(Γ).
Then F−1f belongs to the space D∗(IR × IRn) if and only if there exists
M > 0 and p ∈ [1,∞] such that for all (k, α) ∈ IN × INn,

‖EkCαf‖p,̃γ ≤ Mk+|α|+1,

and moreover the sequences
(
‖Ekf‖1/k

p,γ̃

)
k

and
(
‖Ck

i f‖1/k

p,̃γ

)
k
, i ∈ {1, ..., n},

converge respectively to σf,0 and σf,i. Here,

σf,i = sup{|t|, t ∈ Pi(suppF−1f)}
with

Pi(y) = yi , y = (y0, ..., yn) ∈ IRn+1.

P r o o f. Since the mapping B is an isomorphism from S∗(IR × IRn)
onto S∗(Γ), then from the relation (2.5) we deduce that

F−1f = F̃−1(B−1f).

According to the relations (2.5), (5.2) and Lemma 5.1, we get for all
i ∈ {0, ..., n}

δB−1f,i = σf,i. (5.3)

Hence, Theorem 5.3 follows from Corollary 5.1, the relations (5.1) and
(5.3).
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