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Abstract

In this paper the multi-dimensional analog of the Gillis-Weiss random
walk model is studied. The convergence of this random walk to a fractional
diffusion process governed by a symmetric operator defined as a hypersingu-
lar integral or the inverse of the Riesz potential in the sense of distributions
is proved.
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1. Introduction

In this paper we will study multidimensional random walk models ap-
proximating the Cauchy problem for fractional diffusion equations with
symmetric spatial operator of fractional order. We will follow the method
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profitably used by Gorenflo and Mainardi for the study of scaling limits
of discrete random walks, which was implemented in the one-dimensional
case in the series of their works (see [6], [7] and references therein). They
constructed a number of discrete random walk models approximating frac-
tional diffusion processes with symmetric and non-symmetric Lévy-Feller
fractional differential operators in the governing equation. The scaling weak
limits of these models represent stable Lévy processes for the full range of
scaling order α ∈ (0, 2].

Our treatment can be considered as a multi-dimensional generalization
of the one-dimensional Gillis-Weiss model introduced first in [4] and studied
in the recent paper [6]. The main purpose of this paper is to construct a
multidimensional random walk models by choosing suitable transition prob-
abilities, which approximate stable Lévy motions. Note that the extension
of results from the one-dimensional case to the multi-dimensional case is
not trivial and requires to use methods distinct from those, which were
used in the one-dimensional case. In particular, the method used in [6], [7]
involves summing of a formal Laurent series of a complex variable z and is
no longer feasible in the multi-dimensional case. Instead we essentially use
the symbolic calculus and properties of cubature formulas.

In the recent book [14] by M. Meerschaert and Scheffler the wide range
of problems in multi-dimensional stochastic processes is highlighted, with
emphasis on operator stable probability distributions, and there are also
given comments on the historical development and indications of their dif-
ferent applications. Note that the necessary and sufficient conditions for
a random vector to belong to the domain of attraction of nondegenerate
nonnormal stable laws were found in [17] (see also [14]). Multi-dimensional
random walk is often used in modeling various processes in different areas
[12], [14]. See, for instance, [1] for applications to economics and [11] to
finance, [2] for modeling of river flows and [19] for modeling of copepod
behaviour of animals in zoology.

Our paper is organized as follows. In Section 2 we give auxiliary mate-
rials and introduce terminology that will be used in the paper. In Section
3 we mainly recall some properties of pseudo-differential operators consid-
ered in our previous paper [8] referring to it for details and lay out some
elementary properties of symbols. These properties will be essentially used
later in the study of the diffusion limits of random walks. In Section 4 we
formulate the problem we are going to study in terms of random walk. In
Section 5 we formulate the main result obtained in this paper.
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2. Preliminaries

Let RN and ZN be the N -dimensional Euclidean space with coordinates
x = (x1, ..., xN ) and the N -dimensional integer-valued lattice with nodes
j = (j1, ..., jN ), respectively. Denote by xj = (hj1, ..., hjN ), j ∈ ZN , the
nodes of the uniform lattice ZN

h defined as (hZ)N with a positive number
h, the mesh width.

Suppose that a particle is located at the origin x0 = 0 = (0, ..., 0) at the
initial time t = 0 and at time instances t1 = τ, t2 = 2τ, ..., tn = nτ, ... jumps
moving through nodes of the lattice ZN

h . Let pj be a probability of jumping
from a point xk ∈ ZN

h to a point xj+k ∈ ZN
h , where j and k are in ZN .

By this we automatically assume that the particle jumps are isotropic for
all directions. The numbers pj , j ∈ ZN , are called transition probabilities.
They satisfy the following conditions of non-negativity and normalization:

(a) pj ≥ 0, j ∈ ZN ; (b)
∑

j∈ZN pj = 1.

We denote by pj the value of a discrete function p : ZN → R1 at a point
j ∈ ZN (transition probabilities are also form a discrete function). For given
two discrete functions, p and q we define a convolution p ∗ q by the rule

(p ∗ q)j =
∑

k∈ZN

pkqj−k, j ∈ ZN .

Also for a given discrete function p we define its Fourier transform
(Fourier series) p̂(ξ) = F [p](ξ), ξ ∈ RN , by the formula

p̂(ξ) =
∑

k∈ZN

pke
−ikξ,

and we call p̂(−ξ) the characteristic function for p.
We will consider the solution u(t, x) of a fractional diffusion equation (see

section 4) as a probability density (with respect to x), namely for given time
t > 0 as the probability of sojourn of a diffusing particle at x ∈ RN . For the
discrete random walk introduced above we use the notation yj(tn) for the
(discrete) probability of sojourn (in the instant tn) of the wandering particle
at the point xj . Heuristically we consider yj(tn) as an approximation of
hNu(tn, xj) ≈

∫
Cj

u(tn, x)dx, the total probability of sojourn inside a cubical
cell Cj with the center xj and side length h.

Lemma 1. For the probabilities yj(tn) the following statements hold
true:
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(i) yj(tn+1) =
∑

k∈ZN pkyj−k(tn), j ∈ ZN ;
(ii) yj(tn) = (p ∗ ... ∗ p︸ ︷︷ ︸

n times

)j .

In our further considerations we will need some properties of cubature
formulas. Let f be a continuous function integrable over RN . Then the
following rectangular cubature formula

∫

RN

f(x)dx = hN
∑

j∈ZN

f(xj) + o(1) (1)

is valid [20].

3. Pseudo-differential operators and symbols

For our fractional diffusion processes we make essential use of the theory
of pseudo-differential operators. For general orientation we recommend [5]
and [9], furthemore the modern presentation in [10] by N. Jacob who pays
special attention to Markov processes.

In this section we consider some properties of pseudo-differential oper-
ators A(D), D = (D1, .., DN ), Dj = ∂

i∂xj
, j = 1, ..N, with a symbol A(ξ) not

depending on x defined in RN . For a test function ϕ(x) taken from the
classical space S(RN ), the Fourier transform

ϕ̂(ξ) = F [ϕ](ξ) =
∫

RN

ϕ(x)e−ixξdx

is well defined and belongs again to S(RN ). Let S′(RN ) be the space of
tempered distributions, i.e. the dual space to S(RN ). The Fourier trans-
form for distributions f ∈ S′(RN ) is usually defined by the extension for-
mula (f̂(ξ), ϕ(ξ)) = (f(x), ϕ̂(x)), with the duality pair (., .) of S′(RN ) and
S(RN ).

Assume G to be an open domain in RN . Let a function f be continuous
and bounded on RN and have a Fourier transform (taken in the sense of
distributions) f̂(ξ) with compact support in G. The set of all such functions
endowed with the convergence in the following sense is denoted by ΨG(RN ):
a sequence of functions fm ∈ ΨG(RN ) is said to converge to an element f0 ∈
ΨG(RN ) iff: (i) there exists a compact set K ⊂ G such that supp f̂m ⊂ K
for all m = 1, 2, ...; (ii) ‖fm − f0‖ = sup |fm − f0| → 0 for m → ∞. In the
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case G = RN we write simply Ψ(RN ) omitting RN in the index of ΨG(RN ).
Note that according to the Paley-Wiener theorem functions in ΨG(RN ) are
entire functions of finite exponential type (see [15], [5]).

Let Hs(RN ), s ∈ (−∞,+∞) be the Sobolev space of elements f ∈
S′(RN ) for which (1 + |ξ|2)s/2|f̂(ξ)| ∈ L2(RN ). It is known [9] that if f ∈
Lp(RN ) with p > 2, then its Fourier transform f̂ belongs to H−s(RN ), s >

N(1
2 − 1

p). Letting p → ∞ we get f̂ ∈ H−s(RN ), s > N
2 for f ∈ L∞(RN ).

Taking into account this fact and the Paley-Wiener theorem we have that
the Fourier transform of f ∈ ΨG(RN ) belongs to the space

⋂

s> N
2

H−s
comp(G),

where H−s
comp(G) is a negative order Sobolev space of functionals with com-

pact support on G. Hence f̂ is a distribution, which is well defined on
continuous functions.

Denote by Ψ
′
−G(RN ) the space of all linear bounded functionals de-

fined on the space ΨG(RN ) endowed with the weak (dual with respect
to ΨG(RN )) topology. Namely, we say that a sequence of functionals
gm ∈ Ψ

′
−G(RN ) converges to an element g0 ∈ Ψ

′
−G(RN ) in the weak sense

if for all f ∈ ΨG(RN ) the sequence of numbers < gm, f > converges to
< g0, f > as m →∞. By < g, f > we mean the value of g ∈ Ψ

′
−G(RN ) on

an element f ∈ ΨG(RN ).
Let A(ξ) be a continuous function defined in G ⊂ RN . A pseudo-

differential operator A(D) with the symbol A(ξ) is defined by the formula

A(D)ϕ(x) =
1

(2π)N
(ϕ̂, A(ξ)e−ixξ) (2)

which is well defined on ΨG(RN ). If ϕ̂ is an integrable function with
supp ϕ̂ ⊂ G, then (2) becomes the usual form of pseudo-differential operator

A(D)ϕ(x) =
1

(2π)N

∫
A(ξ)ϕ̂(ξ)e−ixξdξ,

with the integral taken over G. Note that in general this may not have sense
even for infinitely differentiable functions with finite support (see [8]).

We define the operator A(−D) acting in the space Ψ
′
−G(RN ) by the

extension formula

< A(−D)f, ϕ > = < f,A(D)ϕ >, f ∈ Ψ
′
−G(RN ), ϕ ∈ ΨG(RN ). (3)
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We recall (see [8]) that the pseudo-differential operators A(D) and A(−D)
with a continuous symbol A(ξ) act as

A(D) : ΨG(RN ) → ΨG(RN ), A(−D) : Ψ
′
−G(RN ) → Ψ

′
−G(RN )

and are continuous.

Lemma 2. Let A(ξ) be a function continuous on RN . Then for ξ ∈ RN

A(D){e−ixξ} = A(ξ)e−ixξ.

P r o o f. For any fixed ξ ∈ RN the function e−ixξ is in Ψ(RN ). We
have

A(D){e−ixξ} =
1

(2π)N

∫

RN

A(η)e−ixηdµξ(η),

where dµξ(η) = Fη[e−ixξ]dη = (2π)Nδ(η − ξ)dη. Hence A(D){e−ixξ} =
A(ξ)e−ixξ.

Corollary 1.
i) A(ξ) = (A(D)e−ixξ)eixξ;
ii) A(ξ) = (A(D)e−ixξ)|x=0;
iii) A(ξ) =< A(−D)δ(x), e−ixξ >, where δ is the Dirac distribution.

Remark 1. Since the function e−ixξ does not belong to S(RN ) and
D(RN ), the representations for the symbol obtained in Lemma 2 and Corol-
lary 1 are not applicable in these spaces.

In our further random walk constructions G = RN , so that symbols of
pseudo-differential operators are continuous functions in the whole space.
The symbol of the Laplace operator A(D) = ∆ as easily seen is −|ξ|2. The
relations in corollary for symbols can be easily verified for this symbol.

The pseudo-differential operator A(D) = Dα
0 with the symbol −|ξ|α can

be represented with the help of a hypersingular integral (see, e.g. [18])

Dα
0 f(x) = − 1

d(α, l)

∫

RN

∆l
yf(x)
|y|N+α

dy, (4)

where 0 < α < l, l is a positive integer, ∆l
y is the finite difference of the

order l in the y direction, either centered or non-centered, and d(α, l) is a
constant defined in dependence on what type of difference, centered or non-
centered, is taken (see for details [18]). Note that in this paper we consider
only the centered case of the finite difference ∆l

y in the definition of Dα
0 .
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Let l be a given positive integer. Denote by τy a shift operator with
spatial vector-step y

(τyf)(x) = f(x− y), x, y ∈ RN .

Using this operator we determine the symmetric difference operator of order
l

(∆l
yf)(x) = (τ− y

2
− τ y

2
)lf(x) =

l∑

k=0

(−1)k

(
l
k

)
f(x + (

l

2
− k)y).

Let a constant d(α, l) be defined as (see [18])

d(α, l) =
π1+N/2Al(α)

2αΓ(1 + α
2 )Γ(N+α

2 ) sin(απ/2)
, (5)

with Al(α) determined by the formula

Al(α) = 2
[l/2]∑

k=0

(−1)k−1

(
l
k

)
(
l

2
− k)α. (6)

Moreover d(α, l) 6= 0 for all α > 0 and for even l, but d(α, l) is identically
zero for odd orders l. We accept that the hypersingular operator Dα

0 in (4)
is defined with the so introduced ∆l

y and d(α, l).
In the construction of random walk models leading to the diffusion equa-

tions governed by pseudo-differential operators in space the sign of the nor-
malizing constant d(α, l) is important. Let l = 2. Then after slightly rear-
ranging we have

Dα
0 f(x) = b(α)

∫

RN

f(x− y)− 2f(x) + f(x + y)
|y|N+α

dy, (7)

where

b(α) =
αΓ(α

2 )Γ(N+α
2 ) sin απ

2

22−απ1+N/2
. (8)

It is seen from (8) that the value α = 2 is singular.
We note also that Dα

0 can be considered as a fractional power of the
Laplace operator, namely Dα

0 = −(−∆)α/2. From Lemma 2 it follows that

Dα
0 eixξ|x=0 = b(α)

∫

RN

∆2
ye

ixξ

|y|N+α
dy|x=0 = −|ξ|α, 0 < α < 2.
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Taking into account the cubature formula (1) for the integral in the right
hand side of (4) we have (with fj = f(hj) and |k| as Euclidean norm of
k = (k1, ..., kN ) ∈ ZN )

∫

RN

∆2
yf(xj)
|y|N+α

dy = hα
∑

k∈ZN

∆2
kfj

|k|N+α
+ o(1).

4. Fractional differential equations and random walk

Consider the fractional order diffusion equation

∂

∂t
u(t, x) = Dα

0 u(t, x), t > 0, x ∈ RN , (9)

where Dα
0 , 0 < α < 2, is the pseudo-differential operator, defined in the pre-

vious section, which has the symbol−|ξ|α. In accordance with limα→2 |ξ|α =
|ξ|2 we will accept D2

0 = ∆, where ∆ is the Laplace operator. In the gen-
eral case we have formally Dα

0 = −(−∆)α/2. A weak solution, namely a
distribution Gα(t, x), which satisfies (9) and the condition

Gα(0, x) = δ(x), x ∈ RN , (10)

with the Dirac function δ(x), in the sense of distributions, is called a fun-
damental solution of the Cauchy problem (9), (10).

It is clear that in the case α = 2 we have the classical heat conduction
equation

∂

∂t
u(t, x) = ∆u(t, x), t > 0, x ∈ RN ,

whose fundamental solution is the Gauss probability density evolving in
time

G2(t, x) =
1

(4πt)n/2
e
−|x|2

4t .

In the case α = 1 the corresponding fundamental solution is given by the
Cauchy-Poisson probability density (see [16])

G1(t, x) =
Γ(n+1

2 )
π(n+1)/2

1
(|x|2 + t2)(n+1)/2

.
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It is well known that for the Fourier transforms of the functions Gq(t, x), q =
1, 2, the relations [16]

Ĝ2(t, ξ) = e−t|ξ|2 and Ĝ1(t, ξ) = e−t|ξ|

hold.
For other values of α, 0 < α < 2, applying the Fourier transform and

its inverse the fundamental solution to the Cauchy problem (9), (10) can be
represented in the form

Gα(t, x) =
1

(2π)N

∫

RN

e−t|ξ|αeixξdξ. (11)

The question we want to explore is the existence of a random walk
which approximates the diffusion process governed by the equation (9). In
the random walk terminology this means that the fundamental solution,
considered as a probability density, is the diffusion limit of some discrete
random walk.

Bearing this in mind let us describe the discrete random walk model
approximating the fractional diffusion process governed by the equation (9)
in terms of probability theory. Let X be an N-dimensional random vector
[14] which takes values in ZN . Let the random vectors X1,X2, ... also be N-
dimensional independent identically distributed random vectors, all having
their probability distribution common with X. We introduce a spatial grid
{xj = jh, j ∈ ZN}, with h > 0 and temporal grid {tn = nτ, n = 0, 1, 2, ...}
with a step τ > 0. Consider the sequence of random vectors

Sn = hX1 + hX2 + ... + hXn, n = 1, 2, ...

taking S0 = 0 for convenience. We interpret X1,X2, ..., as the jumps of a
particle sitting in x = x0 = 0 at the starting time t = t0 = 0 and making a
jump Xn from Sn−1 to Sn at the time instance t = tn. Then the position
S(t) of the particle at time t is

∑

1≤k≤t/τ

Xk.

Recall that the probability of sojourn of the particle in xj at the time tn
was denoted by yj(tn). Taking into account the recursion Sn+1 = Sn +hXn

we have
yj(tn+1) =

∑

k∈ZN

pkyj−k(tn), j ∈ ZN , n = 0, 1, ...
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The convergence of the sequence Sn when n → ∞ means convergence
of the discrete probability law (yj(tn))j∈ZN properly rescaled as explained
in the next Section, to the probability law with a density u(t, x) in the
sense of distributions (in law). This is equivalent to the locally uniform
convergence of the corresponding characteristic functions (see for details
[14]). This will be used in the next section to prove the convergence of
the constructed random walks to the fundamental solution of the governing
diffusion equation (limit process).

5. Main result

Consider the Cauchy problem

∂

∂t
u(t, x) = Dα

0 u(t, x), t > 0, x ∈ RN , (12)

with the initial condition

u(0, x) = δ(x), x ∈ RN , (13)

where 0 < α < 2, Dα
0 is the pseudo-differential operator defined above with

the symbol −|ξ|α; D2
0 = ∆.

Assume that the hypersingular integral in the right hand side of (12) is
defined by the centered finite difference of second order (l = 2), i.e by the
formula (7). Using the cubature formula for discrete approximation of the
right hand side of (12), namely

Dα
0 u(t, xj) ≈ b(α)

∑

k∈ZN

uj+k(t)− 2uj(t) + uj−k(t)
|k|N+αhα

,

where b(α) is norming constant defined in (8), and replacing ∂u
∂t by the first

order difference ratio
∂u

∂t
≈ uj(tn+1)− uj(tn)

τ

with the time step τ = tn+1 − tn we have the relation

yj(tn+1) =
∑

k∈ZN

pkyj−k(tn)

which shows that the transition probabilities have the form
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pk =





1− µb(α)
∑

m∈ZN\{0} |m|−N−α, if k = 0;

µb(α)|k|−N−α, if k 6= 0,

where the scaling parameter is µ = 2τ
hα .

We will require that the transition probabilities satisfy the properties:
(i)

∑
k∈ZN pk = 1; (ii) pk ≥ 0, k ∈ ZN .

Now we formulate the main result of this paper. In the formulation we
will use the notations introduced in the previous section.

Theorem . Let the transition probabilities pk = P (X = xk), k ∈ ZN ,
of the random vector X be given as follows:

a) if 0 < α < 2, then

pk =





1− µb(α)
∑

m∈ZN\{0}
1

|m|N+α , if k = 0;

µb(α)|k|−(N+α), if k 6= 0,

with µ satisfying the condition

0 < µ ≤ 1
b(α)

∑
m∈ZN\{0} |m|−N−α

.

and the space and time steps h and τ being connected by the scaling relation
τ = τ(h) = µhα/2;

b) if α = 2, then

pk =





1
2N , if |k| = 1;

0, if |k| = 0,

with τ = h2

2N .
Then the sequence of random vectors Sn = hX1+...+hXn, converges as

n →∞ in the sense of distributions to the random vector whose probability
density is the fundamental solution of the Cauchy problem (12), (13), i.e.
G(t, x) defined in (11).
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P r o o f. We have to show that the sequence of random vectors Sn

tends to the random vector with pdf

G(t, x) =
1

(2π)N

∫

RN

e−t|ξ|αeixξdξ.

It is obvious that the Fourier transform of G(t, x) with respect to the variable
x is the function Ĝ(t, ξ) = e−t|ξ|α . Let p̂(−ξ) be the characteristic function
corresponding to the discrete function pk, k ∈ ZN , that is

p̂(−ξ) =
∑

k∈ZN

pke
ikξ.

As a consequence of Lemma 1 and the well known fact that convolution goes
over in multiplication by the Fourier transform, the characteristic function
of yj(tn) can be represented in the form

ŷj(tn,−ξ) = p̂n(−ξ).

Taking this into account it suffices to show that

p̂n(−hξ) → e−t|ξ|α , n →∞. (14)

The latter is equivalent to

lim
h→0

ln p̂(−hξ)
τ(h)

= −|ξ|α.

where τ(h) = t
n = µhα/2. But for us it is more convenient to use the

process (14). From the continuity of es it is readily seen that if a sequence
sn converges to s for n →∞, then

lim(1 +
sn

n
)n = es. (15)

We have

p̂n(−hξ) = (1− µb(α)
2

∑

k∈ZN\{0}

2
|k|N+α

(1− eikξh))n =

(1 +
tb(α)

∑
k∈ZN\{0}

∆2eikξh

|kh|N+α hN

n
)n.
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It follows from (1) and Lemma 2 (ii) that

b(α)
∑

k∈ZN

∆2eikξh

|kh|N+α
hN

tends to (Dα
0 eixξ)|x=0

= −|ξ|α as h → 0 (or, the same, n → ∞ ) for all
α ∈ (0, 2). Hence in accordance with (15) we have

û(tn,−ξ) = p̂n(−hξ) → e−t|ξ|α , n →∞.

The case α = 2 with the transition probabilities given in b) of Theorem
can be treated as an exercise.

Remark 2. The constructed random walk relates to the class of stable
laws characteristic function of which in one-dimensional case is exp(ψ(ξ))
with

ψ(ξ) = iaξ − b|ξ|α{1− iβ
ξ

|ξ|ω(ξ, α)},

where a, b, α, β are constants, a is real, b > 0, 0 < α ≤ 2, −1 < β < 1 and

ω(ξ, α) =





tan(π
2 α), if α 6= 1;

2
π log|ξ|, if α = 1.

The symmetric case corresponds to a = 0, β = 0. As is shown in [3] the
governing equation of stable law is

∂u

∂t
= −a

∂u

∂x
+ Dq

∂αu

∂(−x)α
+ Dp

∂αu

∂(x)α
,

where D is some constant depending on α, p ≥ 0, q ≥ 0 and p + q = 1. The
multidimensional analog of this equation as proposed in [13] is

∂u(t, x)
∂t

= −a∇u(t, x) + D∇α
Mu(t, x), x ∈ RN , t > 0,

where ∇α is the pseudo-differential operator with the symbol
∫

|θ|=1
(−iξ, θ)αM(dθ)
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with M(dθ), a probability measure on the unit sphere. If a = 0 and M(dθ) =
const · dθ, then we get the symmetric case considered above. The method
demonstrated above for the symmetric case can be easily applied in the
general case as well.

References

[1] R. A d l e r, R. F e l d m a n, M. T a q q u, A Practical Guide to
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Basel-Berlin (2001), 120-145.

[7] R. G o r e n f l o, F. M a i n a r d i, Approximation of Lévy-Feller
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