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0. Introduction

This paper consists of two almost independent parts. There is a research
paper (Section 4 and 5) with an outlook to some applications (Section 6), in
which we determine in terms of function spaces the Lp-domain of the gen-
erator of certain classes of Lp-sub-Markovian semigroups. More precisely,
let ϕ : R→ R be a continuous negative definite function satisfying

sup
ξ∈R

|ξϕ′(ξ)|
(1 + ϕ2(ξ))1/2

≤ c.

We determine the domain of the Lp-extension of the pseudo-differential
operator with symbol (ϕ(ξ) + iη)α, (ξ, η) ∈ R2, 0 < α < 1. By the general
theory it is clear that this extension is the generator of an Lp-sub-Markovian
semigroup (T (p)

t )t≥0 which is in fact a semigroup of contraction operators
on Lp(R2) and the symbol of Tt is given by (ξ, η) 7→ e−t(ϕ(ξ)+iη)α

. To derive
our result we depend on an application of the Lizorkin Fourier multiplier
theorem and we have to use ψ-Bessel potential spaces as introduced in [5].

Of course we have good reasons to handle this problem and to relate
it to fractional derivatives and fractional powers of operators. But these
reasons are not easy to explain to someone not knowing the relations of
pseudo-differential operators having a symbol q(x, ξ) with the property that
ξ 7→ e−tq(x,ξ) is a continuous positive definite function, i.e. in the standard
notation, ξ 7→ q(x, ξ) must be a continuous negative definite function, and
Markov processes. Therefore we have decided to give instead of an extended
introduction a short survey setting the scene (Sections 1–3). In this survey
the reader will also encounter several other applications of fractional deriva-
tives to the theory of Markov processes. In fact we will indicate some new
results which are obtained as corollaries of already published work.

Besides providing background material we hope that our survey will
stimulate experts working in fractional calculus to take up some of the
problems mentioned.

The authors would like to thank Professor S. Samko for his kindness to
invite us for writing a contribution to this special volume and accepting our
unconventional paper.

1. Setting the scene

It is maybe worth to start with a remark on H. Weyl’s paper [29] pub-
lished in 1917, i.e. long before the notion of a closed operator in a Banach
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space or the construction of fractional powers of closed operators had been
known, and of course long before pseudo-differential operators had been in-
troduced. Weyl discussed two definitions of fractional derivatives. First he
had considered functions f : [0,∞) → R, f(0) = 0, and defined for α > 0
the fractional derivative of f by Dαf = ϕ if f = Iαϕ, where Iαϕ is the
Riemann-Liouville fractional integral

Iαϕ(x) =
1

Γ(α)

∫ x

0
(x− y)α−1ϕ(y) dy. (1.1)

He then turned to periodic functions (with period 1) having mean value
zero and defined the fractional derivative now by modifying the Fourier
coefficients:

(Dα
πf)(x) ∼

∑

k∈Z
e

πiα
2 (2πk)αcke

2πikx (1.2)

where ck is the kth Fourier coefficient of f . Finally he gave conditions on f
in order that Dαf and Dα

πf , respectively, do exist.
Nowadays we consider the definition (1.2) more in the context of taking

fractional power of the pseudo-differential operator

(Dπf)(x) ∼
∑

k∈Z
i(2πk)cke

2πikx.

More generally, if q(x,D) is a pseudo-differential operator with symbol
q(x, ξ) (either defined on Rn × Rn or on Tn × Zn) we want to identify the
operator with symbol q(x, ξ)α, α ∈ R, with some operator obtained from
q(x, D) by using some functional calculus. Of course, when working with a
suitable domain we can also apply this point of view to Dαf . For example
we know, compare S. Samko et al. [22],

Dα
−f(x) =

1
Γ(1− α)

d

dx

∫ ∞

x

f(t)
(x− t)α

dt

= (2π)−1/2

∫

R
eixξ(−iξ)αf̂(ξ) dξ.

(1.3)

But
D1f(x) =

df

dx
(x) = (2π)−1/2

∫

R
eixξ(−iξ)f̂(ξ) dξ.

Thus the study of pseudo-differential operators having a symbol which is
the fractional power of the symbol of a given pseudo-differential operator
has its natural home in fractional calculus.
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Next let us point out that generators of Markov processes are essentially
pseudo-differential operators. We need a few definitions. Let ψ : Rn → C
be a continuous function such that ψ(0) ≥ 0 and for all t > 0 the func-
tion ξ 7→ e−tψ(ξ) is positive definite. Unfortunately such functions are called
continuous negative definite functions. Since ξ 7→ e−tψ(ξ) is positive def-
inite, by Bochner’s theorem it is the Fourier transform of a (sub-)probability
measure µt. In fact we have a family (µt)t≥0 of measures and the convo-
lution theorem implies that (µt)t≥0 must be a convolution semigroup of
sub-probabilities, in particular we have µt ∗ µs = µt+s. Now we may use
the Kolmogorov theory to find that for each x ∈ Rn there is a canonical
stochastic process (Xt)t≥0 starting at x and with state space Rn such that

Ex
(
eiξ(Xt−x)

)
= e−tψ(ξ) (1.4)

holds. The process (Xt)t≥0 is a Lévy process, it has stationary and inde-
pendent increments. Probabilitists know ψ under the name characteristic
exponent. The famous Lévy-Khinchin formula states that a continuous
function ψ : Rn → C is a characteristic exponent if and only if it holds

ψ(ξ) = c0 + id · ξ +
n∑

k,l=1

qklξkξl +
∫

Rn\{0}

(
1− e−iy·ξ− iy · ξ

1 + |y|2
)
ν(dy), (1.5)

where c0 ≥ 0, d ∈ Rn, qkl = qlk ∈ R such that
∑n

k,l=1 qklξkξl ≥ 0, and the
Lévy measure ν integrates y 7→ 1 ∧ |y|2.

Do not underestimate (1.5), this formula determines the structure of
objects we have to handle as we will see soon: they will be symbols of the
pseudo-differential operators we are interested in.

Using the processes (Xt)t≥0 associated with ψ and the starting points x
by (1.4) we may introduce on S(Rn) the operators

(Ttu)(x) = Ex(u(Xt)) =
∫

R
u(x− y)µt(dy). (1.6)

For 1 < p < ∞ this family of operators extends to a strongly continuous
contraction semigroup (T (p)

t )t≥0 on Lp(Rn) with the additional property
that 0 ≤ u ≤ 1 a.e. always implies that 0 ≤ Ttu ≤ 1 a.e. Such a semigroup
is called an Lp-sub-Markovian semigroup. Using the Fourier transform,
on S(Rn) we find

Ttu(x) = (2π)−n/2

∫

Rn

eixξe−tψ(ξ)û(ξ) dξ, (1.7)
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and for the Lp-generator A(p) it follows that S(Rn) ⊂ D(A(p)), and for
u ∈ S(Rn) we have

A(p)u(x) = −ψ(D)u(x) = −(2π)−n/2

∫

Rn

eixξψ(ξ)û(ξ) dξ. (1.8)

Thus, A(p) is the extension of a pseudo-differential operator with symbol
−ψ, ψ being a continuous negative definite function. Since ψ is a continuous
negative definite function too, and since we will later on not depend on (1.4),
we will now work with ψ instead ψ. The trouble is caused by the fact that
in probability and analysis different signs in defining the Fourier transform
are used.

To proceed further we need some knowledge on continuous negative
definite functions. First, note that in general a continuous negative definite
function need not be differentiable nor is it decomposable into a series of
homogeneous functions with decreasing degrees of homogeneity α. – Bad
news, because this tells us that in general the standard theory of pseudo-
differential operators does not apply. Some concrete examples are given in
Section 4, more in [11]. But here are some simple and important examples:

ξ 7→ |ξ|2, ξ 7→ |ξ|2α, 0 < α < 1, ξ 7→ −iξ · b, b ∈ Rn fixed.

The first refers to the Laplacian, the second refers to −(−4)α and the third
is just a drift operator

∑n
j=1 bj

∂
∂xj

. Of course these are examples related to a
classical pseudo-differential calculus. S. Bochner’s theory of subordination
gives a possibility to construct new continuous negative definite function
out of a given one, say ψ. We call f ∈ C∞(0,∞) a Bernstein function
if f ≥ 0 and (−1)kf (k) ≤ 0, k ∈ N. A fact is that f ◦ ψ is always a
continuous negative definite function if ψ is. Now, for 0 < α ≤ 1 the
function s 7→ sα is a Bernstein function and it follows that ξ 7→ |ξ|2α as well
as the symbol of the fractional derivative in (1.3), i.e. (−iξ)α, are obtained
by subordination. There is a nice functional or operational calculus related
to Bernstein functions and generators of semigroups, we refer to F. Hirsch
[6] and R. Schilling [23] and the references given there.

Note that there is also a probabilistic counterpart to subordination, in
fact this is the core of the theory, but we do not need this here.

The problem, given a continuous negative definite function ψ, define
−ψ(D) by (1.7) on S(Rn) and try to extend this operator to become a
generator of an Lp-sub-Markovian semigroup is already solved. But let
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G ⊂ Rn be a set with smooth boundary ∂G 6= ∅ and consider −ψ(D) as an
operator with domain C∞

0 (G) ⊂ S(Rn). Here is a non-trivial
Problem: Determine the extensions of (−ψ(D), C∞

0 (G)) which gener-
ate a sub-Markovian semigroup on Lp(G).

In the case ψ(ξ) = |ξ|2, i.e. −ψ(D) = 4, we know that we need now
boundary conditions, and different boundary conditions will lead (in gen-
eral) to different extensions. But not all conditions on the boundary which
will lead to an extension generating a strongly continuous contraction semi-
group will give a sub-Markovian semigroup. The answer to this sub-problem
is known: we do have to impose Wentzell boundary conditions. These con-
ditions include Dirichlet and Neumann conditions as well as conditions de-
scribed by an integro-differential operator on the boundary or operators
modelling transitions from the boundary to the interior or vice versa. K.
Taira in [25] or [26] gave a readable discussion of these conditions and in
[10] we borrowed from him.

A final remark: Of course, there is no need to restrict our consider-
ations to translation invariant operators. A result due to Ph. Courrège [3]
states roughly that whenever (A,C∞

0 (G)) extends to a generator of a semi-
group we can associate a Markov process with, then A has the structure

Au = −q(x,D)u(x) = −(2π)−n/2

∫

Rn

eix·ξq(x, ξ)û(ξ) dξ, (1.9)

where q : Rn × Rn → C has the property that ξ 7→ q(x, ξ) is a continuous
negative definite function.

Now we have stated our problem; in the next section we discuss surprises
when trying to solve it.

2. Surprises

The Lévy-Khinchin formula allows us to decompose an operator q(x,D)
with symbol such that ξ 7→ q(x, ξ) is a continuous negative definite func-
tion into a sum of a second order differential operator with non-negative
characteristic form and a non-local operator,

q(x,D) = L(x,D) + S(x,D).

We are interested in the case where L(x,D) does not appear. There is a
lot of work done and highly appreciated where L(x,D) is a second order
(degenerate) elliptic differential operator, or where q(x,D) is a classical
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pseudo-differential operator satisfying the transmission condition. We refer
to K. Taira [25]-[27] and the references given there. But our goal is to try
to understand the case where the classical theory does not work and this
is already interesting for Dirichlet and Neumann conditions. — In fact,
knowing the Poisson and Green operator would lead to results for more
general Wentzell boundary conditions.

The simplest problem of our interest could be:
Extend −ψα(D), σ(ψα(D))(ξ) = |ξ|2α, 0 < α < 1, from C∞

0 (G) under
Dirichlet or Neumann conditions to a generator of an Lp-sub-Markovian
semigroup. Here G ⊂ Rn is open, ∂G 6= ∅ and smooth, and σ(q(x,D))
denotes the symbol of a given pseudo-differential operator.

The first surprise is that we have two choices to approach the problem
leading to different results! We may consider the operator

(
(−4)αu

)
(x) = (2π)−n/2

∫

Rn

eixξ|ξ|2αû(ξ) dξ. (2.1)

Even for u ∈ C∞
0 (G) ⊂ S(Rn), there is no need to restrict x in (2.1) to G.

In fact, this would be artificial. Thus we should work with ((−4)α, S(Rn))
or ((−4)α,H2α(Rn)) (p = 2) and try to solve

(−4)αu(x) = 0 on G

u
∣∣∣
∂G

= f on ∂G
(2.2)

for a suitable function f . It is well-known that this problem is not a reason-
able one, see M. Riesz [21], N. Landkof [19], J. Bliedtner, W. Hansen [2], or
in a more general case W. Hoh et al. [7]. A reasonable problem would be

(−4)αu(x) = 0 in G

u
∣∣∣
Gc

= f in Gc
(2.3)

for a suitable function f . For a large class of pseudo-differential operators
the problem

q(x,D)u = 0 in G

u
∣∣∣
Gc

= f
(2.4)

can be solved using balayage theory or Hilbert space methods or probabilis-
tic methods. But this is not anymore a Wentzell boundary value problem.
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We have to work in Rn not only in G ! In fact, the probabilistic solution
gives the best insight: −(−4)α generates a jump process and this process
may jump from G into Gc, i.e. we need “all of Rn” to understand the
corresponding process. Another way to understand this result is to realize
that the associated harmonic measure is supported in Gc. Thus balayage
theory does not give a clue how to handle our problem — it is a misleading
approach, referring to a different type of problem.

Now, there is a second approach. Clearly we can prove that the Dirich-
let problem and the Neumann problem for −4 in G is solvable (∂G suffi-
ciently smooth) and (−4(p)

D , D(−4(p)
D )) as well as (−4(p)

N , D(−4(p)
N )) are

generators of Lp-sub-Markovian semigroups. In [15] R. Schilling and coau-
thor studied the problem to subordinate these operators in case p = 2, i.e.
the Hilbert space case under homogeneous boundary conditions for sim-
plicity. In fact they studied more general second order elliptic operators
and in [4] W. Farkas and coauthor extended these results to non-smooth
boundaries. Only the Bernstein function s 7→ sα, 0 < α < 1, had been
considered. Clearly, for the L2-closures we get D(−4(2)

D ) = H2(G)∩H1
0 (G)

and D(−4(2)
N ) = H2(G). Further we find in his case that D(−(−4(2)

D )α)
and D(−(−4(2)

N )α) can be determined by complex interpolation and we get
for the Dirichlet problem

D((−4(2)
D )α) = H2α(G), 0 < α <

1
4
, (2.5)

and for the Neumann problem

D((−4(2)
N )α) = H2α(G), 0 < α <

3
4
, (2.6)

if ∂G is smooth, for the non-smooth case see [4]. (The other cases for α are
the nice cases and not listed here, see however [15]). The surprise is that
for certain values of α after subordination we cannot recover the boundary
behaviour. Clearly in H1

0 (G) are functions with trace zero, but elements
in Hα(G), α < 1

4 , do not have a trace! Analogous is the situation with
the Neumann problem. Thus solving our original problem by considering
subordinated Dirichlet or Neumann Laplacians (just as example) may lead
to a situation where we loose all boundary behaviour!

This result has a probabilistic counterpart: the associated subordinate
process does not “see” ∂G since it has capacity zero!

Thus, two approaches, different solutions and in the more interesting
case we may loose control on the boundary behaviour! We may even enlarge
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the confusion: The results (2.5) and (2.6) are obtained by applying a result
of R. Seeley [24]. Compare also H. Triebel [28], in case p = 2. But Seeley’s
result does hold also for 1 < p < ∞. Thus in the more general case we will
end up with some αD/N (p) where for α < αD/N (p) boundary data for the
Dirichlet/Neumann problem will “disappear” after subordination. Clearly,
for p → ∞ we may end up with the Feller case, i.e. a semigroup on Cb(G)
and elements in Cb(G), ∂G smooth, do have a boundary behaviour!

3. Searching for examples to get some insights

Obviously, to get some insides we may and we shall simplify the geom-
etry of G. The most reasonable choice is to work in a half-space Rn

+ :=
{(x1, . . . , xn+1); (x1, . . . , xn) ∈ Rn and xn+1 > 0} with boundary Γ =
{(x1, . . . , xn, 0); (x1, . . . , xn) ∈ Rn} and to consider operators which de-
compose into a normal and tangential part with respect to the boundary

Au = A(n)u + A(n+1)u, (3.1)

where A(n) acts only on the coordinates x1, . . . , xn and A(n+1) acts on the
coordinate x(n+1). If A(n+1) satisfies the transmission condition we should
be able to reduce the problem to a problem which has a chance to be handled
in a classical setting (Boutet de Monvel approach). This is exactly the frame
of K. Taira’s work, but this is the case we want to exclude. In order to study
the boundary behaviour we may ignore A(n)u for some time and consider
only A(n+1). When longing for a Feller smigroup or an Lp-sub-Markovian
semigroup A(n+1) should satisfy the positive maximum principle

supu(y) = u(y0) ≥ 0 implies (A(n+1)u)(y0) ≤ 0. (3.2)

Clearly, if A(n+1) = −( − d2

dx2
n+1

)α, 0 < α < 1, we run into the trouble

mentioned in the last section. In [14] A. Krägeloh et.al. studied the case
where A(n+1) is a fractional derivative of some order 0 < α < 1 defined
on the half axis. Thus the problem was to find when the Dirichlet or the
Neumann problem (or some other problems) for

( − d
dx

)α on the half axis
is solvable and the operator −(− d

dx

)α with a “nice” domain incorporating
the boundary condition satisfies the positive maximum problem.

Of course on C∞
0 (R+) we may represent

( − d
dx

)α using the Fourier
transform, see (1.3). But we should not expect to work with extensions
having such a representation for all elements in its domain. The main result
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in [14], see also A. Krägeloh [18], was that not all extensions give operators
satisfying the positive maximum principle. In particular it was proved that
the Caputo form yields “good” operators in our context: Denote by

Dα
Cf(x) =

1
Γ(1− α)

∫ x

0
(x− y)−αf ′(y) dy, x > 0, (3.3)

the Caputo form of the fractional derivative of order α ∈ (0, 1), and set

D1
D := {f ∈ Ċ∞(R+

0 ) ∩ C1(R+
0 ); f ′ ∈ Ċ∞(R+

0 )} (3.4)

as well as

D1
N := {f ∈ C∞(R+

0 ) ∩ C1(R+
0 ); f ′ ∈ C∞(R+

0 )} (3.5)

where Ċ∞(R+
0 ) = {f ∈ C∞(R+

0 ); f(0) = 0}. Then, (−Dα
C , D1

D) and
(−Dα

C , D1
N ) extend to generators of Feller semigroups. It is interesting to

note that a similar result for the Robin or 3rd boundary condition does not
hold. In [18] A. Krägeloh then handled the case where A(n) = −p(x,Dx)
and p(x,Dx) was a pseudo-differetial operator as handle in [9] (or related
papers, see [12], Section 2.6).

We want to switch to an Lp-theory, take p(x,Dx) to be independent
of x (for simplicity in the begining) and compare −Dα

C − p(Dx) with the
operator being subordinate to the operator with symbol iξn+1 + ψ(ξ′),
ξ′ = (ξ1, . . . , ξn) and p1/α(ξ′) = ψ(ξ′) (just as an example), subjected to
some boundary conditions. Our first task should be to determine the Lp-
domain of A±, σ(A±)(ξ1, . . . , ξn+1) = ±iξn+1 + ψ(ξ′) when acting on func-
tions defined on Rn+1 or Rn+1

+ .

4. Preliminary remarks and results for determining D(A(p))

Let ϕ : R → R be a continuous negative definite function which is one
time continuously differentiable and satisfies the following condition

∣∣∣
( d

dξ

)j
ϕ(ξ)

∣∣∣ ≤ cj(1 + |ξ|2)m−|j|
2 , j = 0, 1, (4.1)

and
1 + ϕ(ξ) ≥ c2(1 + |ξ|2)m/2 (4.2)
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for all ξ ∈ R. Clearly we must have 0 ≤ m ≤ 2. From (4.1) and (4.2) it
follows that

|ϕ′(ξ)||ξ|
(1 + ϕ2(ξ))1/2

≤ 2|ϕ′(ξ)||ξ|
1 + ϕ(ξ)

≤ 2c0(1 + |ξ|2)m−1
2 (1 + |ξ|2)1/2

c2(1 + |ξ|2)m/2
=

2c0

c2
,

i.e.

sup
ξ∈R

|ϕ′(ξ)||ξ|
(1 + ϕ2(ξ))1/2

≤ const. (4.3)

Examples of such functions are:

ξ 7→ (1 + |ξ|2)β for 0 < β ≤ 1, (4.4)

ξ 7→ 1 + δ ln
(
cosh2

(aξ

2
)− sin2

( b

2
))− 2δ ln

(
cos

b

2
)
, (4.5)

for δ > 0, a > 0 and −π < b < π, and

ξ 7→ 1+δ
(√

(α2 − β2 + ξ2)2 + (βξ)2 cos
(1
2
arctan

−βξ

α2 − β2 + ξ2

)−
√

α2 − β2
)
,

(4.6)
where δ > 0 and 0 < |β| < α.

It is interesting to note that the class of continuous negative definite
functions ϕ : R → R, satisfying (4.3) is invariant under subordination,
i.e. composition with a Bernstein function. Indeed, let ϕ : R → R be
a continuous negative definite function such that ϕ(0) > 0 and let f :
(0,∞) → R be a Bernstein function. Since for every Bernstein function it
holds

f ′(s)
f(s)

≤ 1
s
, s > 0, (4.7)

compare [11], Lemma 3.9.34, a straightforward calculation yields

∣∣∣ξ d

dξ
f(ϕ(ξ))

∣∣∣ = |ξϕ′(ξ)f ′(ϕ(ξ))| ≤ |ξϕ′(ξ)|f(ϕ(ξ))
ϕ(ξ)

,

implying ∣∣∣ξ d
dξf(ϕ(ξ))

∣∣∣
(1 + f2(ϕ(ξ)))1/2

≤ |ξϕ′(ξ)|
|ϕ(ξ)| . (4.8)
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Since ξ 7→ f(ϕ(ξ)) is again a continuous negative definite function and since
for ϕ(0) > 0 we may replace (4.2) by

ϕ(ξ) ≥ c′2(1 + |ξ|2)m/2, (4.9)

we are now in position to provide a large class of non-trivial examples of
continuous negative definite functions satisfying condition (4.3).

Next let ϕ : R→ R be a continuous negative definite function. Then by
(ξ, η) 7→ ϕ(ξ) + iη a continuous negative definite function on R2 is defined.
Further, since for 0 < α < 1 the function s 7→ sα, s ≥ 0, is a Bernstein
function, it follows that

ψα(ξ, η) := (1 + ϕ(ξ) + iη)α (4.10)

is a (complex-valued) continuous negative definite function on R2. We may
decompose ψα according to

ψα(ξ, η) = ((1 + ϕ(ξ))2 + η2)α/2eiα arg(1+ϕ(ξ)+iη)

= ((1 + ϕ(ξ))2 + η2)α/2
(

cos
(
α arctan

η

1 + ϕ(ξ)
)

+ i sin
(
α arctan

η

1 + ϕ(ξ)
))

.

(4.11)

Further we find

|Imψα(ξ, η)|
|Re ψα(ξ, η)| =

∣∣ sin
(
α arctan η

1+ϕ(ξ)

)∣∣
∣∣ cos

(
α arctan η

1+ϕ(ξ)

)|
=

∣∣ tan
(
α arctan

η

1 + ϕ(ξ)
)∣∣.

Since −∞ < η
1 + ϕ(ξ)

< ∞ for (ξ, η) ∈ R2, we get first

−π

2
≤ arctan

η

1 + ϕ(ξ)
≤ π

2
,

and therefore we derive

−απ

2
≤ α arctan

η

1 + ϕ(ξ)
≤ απ

2
,

which implies for 0 < α < 1 that
∣∣ tan(α arctan

η

1 + ϕ(ξ)
)
∣∣ ≤ tan

απ

2



FRACTIONAL DERIVATIVES AND FRACTIONAL POWERS . . . 103

or
|Imψα(ξ, η)| ≤ tan(

απ

2
)Re ψα(ξ, η). (4.12)

Hence the continuous negative definite function ψα satisfies the sector con-
dition, compare Chr. Berg and G. Forst [1], [11] or [16]. Consequently, we
may associate a non-symmetric Dirichlet form (Eψα , D(Eψα)) with ψα. The
domain of D(Eψα) is of course HReψα,1

2 (R2) defined by

HRe ψα,1
2 (R2) := {u ∈ L2(R2) ‖u‖

HRe ψα,1
2

< ∞} (4.13)

where

‖u‖2
HRe ψα,1

2

=
∫

R

∫

R
(1 + (Re ψα(ξ, η)))|û(ξ, η)|2 dξdη. (4.14)

Since

Re ψα(ξ, η) = ((1 + ϕ(ξ))2 + η2)α/2 cos(α arctan
η

1 + ϕ(ξ)
)

and
0 < cos

απ

2
≤ cos(α arctan

η

1 + ϕ(ξ)
) ≤ 1

we may take instead of (4.14) the equivalent norm

( ∫

R

∫

R

(
1 + (ϕ2(ξ) + η2)α/2

)|û(ξ, η)|2 dξdη
)1/2

(4.15)

and we denote this norm once again by ‖u‖
HRe ψα,1

2
. More generally we

introduce for s > 0 the norm

‖u‖2
HRe ψα,s

2

=
∫

R

∫

R

(
1 + (ϕ2(ξ) + η2)α/2

)s|û(ξ, η)|2 dξdη (4.16)

which gives the Hilbert space

HRe ψα,s
2 (R2) = {u ∈ L2(R2); ‖u‖

HRe ψα,s
2

< ∞}.

By standard arguments using the Plancherel theorem we arrive at the fol-
lowing
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Proposition 4.1. The pseudo-differential operator −ψα(D) defined
on S(R2) by

−ψα(D)u(x, y) = −(2π)−1

∫

R

∫

R
ei(xξ+yη)ψα(ξ, η)û(ξ, η) dξdη (4.17)

extends to the generator (A(2), D(A(2))) of the non-symmetric Dirichlet form

(Eψα ,HRe ψα,1
2 (R2)), where

Eψα(u, v) =
∫

R

∫

R
ψα(ξ, η)û(ξ, η)v̂(ξ, η) dξ dη. (4.18)

The domain of A(2) is given by

D(A(2)) = HRe ψα,2
2 (R2) (4.19)

and for u ∈ D(A(2)), v ∈ D(Eψα) we have

Eψα(u, v) = (−A(2)u, v)L2 .

(For a proof of this proposition compare Chr. Berg and G. Forst [1]),
or [16]).

The operator −ψα(D) with domain S(R2) is known to have an extension
A(p) which generates an Lp-sub-Markovian semigroup (T (p)

t )t≥0. On S(R2)
we have for 1 ≤ p < ∞ the representation

T
(p)
t u(x, y) = (2π)−1

∫

R

∫

R
ei(xξ+yη)e−tψα(ξ,η)û(ξ, η) dξdη. (4.20)

Our problem is to determine D(A(p)), i.e. the domain of the Lp-generator
of (T (p)

t )t≥0, in terms of function spaces.

5. On the domain of A(p)

In order to study the operator ψα(D) as an Lp-operator we prove first
a Fourier multiplier theorem.

Theorem 5.1. Let ψα be defined by (4.10) and suppose that ϕ satisfies
(4.3). Then the function

(ξ, η) 7→ eiαarg(1+ϕ(ξ)+iη) (5.1)

is an Lp-Fourier multiplier, 1 < p < ∞.
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P r o o f. Clearly (ξ, η) 7→ eiαarg(1+ϕ(ξ)+iη) belongs to L∞(R2), and
in order to apply the Lizorkin Fourier multiplier theorem, compare P.F.
Lizorkin [20] or [11], p.241, we estimate

ηξ
∂2

∂η∂ξ

(
eiαarg(1+ϕ(ξ)+iη)

)
.

An elementary, but lengthy calculations gives first

∂2

∂η∂ξ

(
eiαarg(1+ϕ(ξ)+iη)

)

=
αϕ′(ξ)(η2 − (1 + ϕ(ξ))2)

(η2 + (1 + ϕ(ξ))2)2
(
− sin

(
α arctan

η

1 + ϕ(ξ)
)

+ i cos
(
α arctan

η

1 + ϕ(ξ)
))

+
α2ϕ′(ξ)(1 + ϕ(ξ))η
(η2 + (1 + ϕ(ξ))2)2

(
cos

(
α arctan

η

1 + ϕ(ξ)
)

+ i sin
(
α arctan

η

1 + ϕ(ξ)
))

,

and now we may estimate

∣∣∣ηξ
∂2

∂η∂ξ

(
eiαarg(1+ϕ(ξ)+iη)

)∣∣∣

≤ α|ϕ′(ξ)||ξ||η|
η2 + (1 + ϕ(ξ))2

+
α2|ϕ′(ξ)|(1 + ϕ(ξ))|η|2|ξ|

(η2 + (1 + ϕ(ξ))2)2

≤ 2|ϕ′(ξ)||ξ||η|
η2 + (1 + ϕ(ξ))2

=
2|η|

(η2 + (1 + ϕ(ξ))2)1/2
· |ϕ′(ξ)||ξ|
(η2 + (1 + ϕ(ξ))2)1/2

≤ C ′,

for all ξ, η ∈ R where we used (4.3) to estimate the second term in the last
line.

From our calculations it is easy to derive also the bounds for

η
∂

∂η

(
eiα arg(1+ϕ(ξ)+iη)

)
and ξ

∂

∂ξ

(
eiα arg(1+ϕ(ξ)+iη)

)
.

Thus, by the Lizorkin Fourier multiplier theorem the proposition is proved.
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For a real-valued continuous negative defined function ψ : Rn → R the
space Hψ,s

p (Rn) had been introduced and discussed in detail in [5]. On
S(Rn) which turns out to be a dense subspace of each of spaces Hψ,s

p (Rn),
s ≥ 0, 1 < p < ∞, the norm ‖ · ‖

Hψ,s
p

is given by

‖u‖
Hψ,s

p
= ‖F−1((1 + ψ(·))s/2û(·))‖Lp . (5.2)

Now, in general for a continuous negative definite function ϕ : R → R
the function ψ̃α(ξ, η) := (1 + ϕ2(ξ) + η2)α/4 need not to be a continuous
negative definite function since ϕ2 need not be negative definite. However,
by inspection one may prove that the norms

‖u‖
Hψ̃α,s

p
= ‖F−1((1 + ψα)s/2û)‖Lp (5.3)

lead to Banach space H ψ̃α,s
p (R2) having all properties as the spaces Hψ,s

p (R2),
ψ : R2 → R being a continuous negative definite function, s ≥ 0 and
1 < p < ∞, except that the contractions need not to operate on H ψ̃α,s

p (R2)
for 0 < s ≤ 1.

Proposition 5.2. The operator ψα(D) maps the space H ψ̃α,2
p (R2)

continuously into Lp(R2), 1 < p < ∞, where

ψ̃α(ξ, η) = (1 + ϕ2(ξ) + η2)α/2, (5.4)

i.e. we have the estimate

‖ψα(D)u‖Lp ≤ c‖u‖
Hψ̃α,2

p
(5.5)

for all u ∈ H ψ̃α,2
p (R2).

P r o o f. For u ∈ S(R2) we find (with some abuse of notation which is
however selfexplaining)

‖ψα(D)u‖Lp = ‖F−1(ψαû)‖Lp

= ‖F−1
(
(1 + ϕ2(ξ) + η2)α/2eiαarg(1+ϕ(ξ)+iη)û(ξ, η)

)
‖Lp

= ‖F−1
(
eiαarg(1+ϕ(ξ)+iη)F (F−1((1 + ϕ2(ξ) + η2)α/2û(ξ, η)))

)
‖Lp

≤ c‖F−1
(
(1 + ϕ2(ξ) + η2)α/2û(ξ, η)

)
‖Lp = c‖u‖

Hψ̃α,2
p

,

where we used for the crucial estimate of course Theorem 5.1.
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Proposition 5.3. For all u ∈ H ψ̃α,2
p (R2), 1 < p < ∞, the lower

estimate
‖ψα(D)u‖Lp ≥ c‖u‖

Hψ̃α,2
p

(5.6)

is satisfied.

P r o o f. It is sufficient to prove (5.6) for all u ∈ S(R2). For u, v ∈ S(R2)
we find using the estimate

‖F−1
(
ei arg ψα(ξ,η)v̂

)
‖Lp′ ≤ c‖v‖Lp′

that

‖ψα(D)u‖Lp‖v‖Lp′ ≥ c‖F−1(ψαû)‖Lp‖F−1
(
ei arg ψα(ξ,η)v̂

)
‖Lp′

= c‖F−1
(
|ψα|ei arg ψα(ξ,η)û

)
‖Lp‖F−1

(
ei arg ψα(ξ,η)v̂

)
‖Lp′

≥ c
∣∣∣
∫

R

∫

R
F−1

(
|ψα|ei arg ψα(ξ,η)û

)
F−1

(
ei arg ψα(ξ,η)v̂

)
dξdη

∣∣∣

= c
∣∣∣
∫

R

∫

R
|ψα|ûv̂ dξdη

∣∣∣

= c
∣∣∣
∫

R

∫

R
(1 + ϕ(ξ)2 + η2)α/2û(ξ, η)v̂(ξ, η) dξdη

∣∣∣

= c
∣∣∣
∫

R

∫

R
F−1

(
(1 + ϕ(ξ)2 + η2)α/2û

)
F−1v̂dξdη

∣∣∣

= c
∣∣∣
(
F−1

(
(1 + ϕ(ξ)2 + η2)α/2û

)
, v

)
L2

∣∣∣,

implying

‖ψα(D)u‖Lp ≥ c′
∣∣(F−1

(
(1 + ϕ(ξ)2 + η2)α/2û

)
, v

)
L2

∣∣
‖v‖Lp′

.

Taking the supremum over all v ∈ S(R2) ⊂ Lp′(R2) we arrive at

‖ψα(D)u‖Lp ≥ c′‖F−1((1 + ϕ(ξ)2 + η2)α/2û)‖Lp = c′‖u‖
Hψ̃α,2

p

proving the proposition.
Combining Proposition 5.2 and Proposition 5.3, we finally derive

Theorem 5.4. The domain of the closure of (ψα(D), S(R2)) in Lp(R2),
1 < p < ∞, is the space H ψ̃α,2

p (R2).
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P r o o f. This follows from the estimates

γ0‖u‖
Hψ̃α,2

p
≤ ‖ψα(D)u‖Lp ≤ γ1‖u‖

Hψ̃α,2
p

(5.7)

and the obvious estimate ‖u‖Lp ≤ ‖u‖
Hψ̃α,2

p
.

Remark 5.5. As pointed out in the introduction, the behaviour of
(ξ, η) 7→ (ψ(ξ) + iη)α with respect to η is considered to play a different rôle
compared with that to ξ. The y - or η - direction should be seen as a direction
normal to the boundary, the x - or ξ - direction should be seen as a direction
tangent to a boundary. For this reason, considering the one-dimensional case
with respect to x (or ξ) is sufficient for our case study. However, there in no
doubt that the higher dimensional case (with respect to ξ) is of course also
of interest, especially when thinking on applications. In her PhD-thesis, the
second author is considering this question in detail for some larger classes
of continuous negative definite functions. While her general approach is
along the lines of the considerations in this paper, calculations are more
involved and of course condition (4.3) must be extended in order to apply
the Lizorkin Fourier multiplier theorem. For details we refer to [17].

6. Back to the boundary value problem

In this section we outline recent results contained in the second author’s
PhD-thesis. We do not long to contain her most general results but we want
to give some ideas.

Clearly we may study a “Dirichlet” problem

−∂u(x, y)
∂y

+ ϕ(Dx)u(x, y) = 0, x ∈ R, y > 0,

u(x, 0) = g(x), x ∈ R,

(6.1)

where

ϕ(Dx)u(x, y) = (2π)−1/2

∫

R
eixξϕ(ξ)

(
Fx7→ξu(·, y)

)
(ξ, y) dξ,

and ϕ : R → R is as in Section 5. Further we may consider ∂
∂y − ϕ(Dx)

as pregenerator of an Lp-sub-Markovian semigroup on Lp(R2). In fact we
have more
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Theorem 6.1. In the situation of Theorem 5.4 the operator ψα(D)
extends from S(R2) to a generator of an Lp-sub-Markovian semigroup with

domain H ψ̃α,2
p (R2).

The question is whether we can get some type of ”fractional power
version” for (6.1).

For this we introduce the space

H̃ ψ̃α,s
p,+ := {f ; f ∈ H ψ̃α,s

p and supp f ⊂ R2
0,+} (6.2)

Now with some efforts, mainly by following the classical case as discussed
in H. Triebel [28], one can prove, compare V. Knopova [17],

Theorem 6.2. Let ϕ satisfy the assumptions of Theorem 6.1. Then

the operator with symbol (1+ iη +ϕ(ξ))α is an isomorphism between H̃ ψ̃α,t
p,+

and H̃ ψ̃α,t−2
p,+ , t ≥ 2.

Using this result as well as the fact that −(
∂
∂y + ϕ(Dx)

)α extends from

H1
p,+(R0,+)⊗Hϕ,2α

p (R) to a generator of an Lp-sub-Markovian yields finally

Theorem 6.3. Let ϕ be as in Theorem 5.4. The operator
(
− (

∂
∂y +

ϕ(Dx)
)α

, H̃ ψ̃α,2
p,+

)
generates an Lp-sub-Markovian semigroup by

Ttu(x, y) =
∫

R

(∫ y

0
u(x− x′, y − s)Ws(x′)σ(α)(s) ds

)
dx′

where σ(α)(s) satisfies

e−tzα
=

∫ ∞

0
e−zsσ(α)(s) ds

and Ws(·) is the inverse Fourier transform of e−ϕ(ξ)s.

This final theorem is just a proto-type result of those obtained in [17]
by V. Knopova. These results partly extend those obtained by A. Krägeloh
[18], see also [13] and [14], in the setting of Feller semigroups to the Lp-sub-
Markovian semigroup setting. Once again, by constructing semigroups using
fractional derivatives and fractional powers we obtain solutions to some
Wentzell problems by characterizing domains of generators of semigroups.
A detailed analysis of the boundary behaviour of elements in H̃ ψ̃α,s

p,+ of course
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requires some restriction and extension results for these spaces — some
results are given in [17]. In this approach we could ignore the lack of having
no transmission condition at our disposal by using the fact that we work
with generators of semigroups which are obtained as subordinate operators
of operators satisfying (a type of) the transmission condition. (Note that
Y. Ishikawa [8] proved that the transmission condition in general is violated
after subordination.)
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