FRACTIONAL CALCULUS OF THE GENERALIZED WRIGHT FUNCTION

Anatoly A. Kilbas ${ }^{1}$

Dedicated to Acad. Bogoljub Stanković, on the occasion of his 80-th birthday

Abstract

The paper is devoted to the study of the fractional calculus of the generalized Wright function ${ }_{p} \Psi_{q}(z)$ defined for $z \in \mathbf{C}$, complex $a_{i}, b_{j} \in \mathbf{C}$ and real $\alpha_{i}, \beta_{j} \in \mathbf{R}(i=1,2, \cdots p ; j=1,2, \cdots, q)$ by the series $$
{ }_{p} \Psi_{q}(z)=\sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)} \frac{z^{k}}{k!} .
$$

It is proved that the Riemann-Liouville fractional integrals and derivative of the Wright function are also the Wright functions but of greater order. Special cases are considered.

Mathematics Subject Classification: 26A33, 33C20 Key Words and Phrases: Riemann-Liouville fractional integrals and derivatives, generalized Wright function, Wright and Bessel-Maitland functions

^[1 The present investigation was partially supported by Belarusian Fundamental Research Fund.]

1. Introduction

The paper deals with the generalized Wright function defined for $z \in \mathbf{C}$, complex $a_{i}, b_{j} \in \mathbf{C}$ and real $\alpha_{i}, \beta_{j} \in \mathbf{R}=(-\infty, \infty)\left(\alpha_{i}, \beta_{j} \neq 0 ; i=\right.$ $1,2, \cdots p ; j=1,2, \cdots, q)$ by the series

$$
{ }_{p} \Psi_{q}(z) \equiv_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \tag{1}\\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, z\right]=\sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)} \frac{z^{k}}{k!} .
$$

Here $\Gamma(z)$ is the Euler gamma-function [3, Section 1.1]. The function in (1) was introduced by Wright [21] and is called the generalized Wright function, see [3, Section 4.1]. Conditions for the existence of the generalized Wright function (1) together with its representation in terms of the Mellin-Barnes integral and of the H-function were established in [6].

The special case of the function (1) in the form

$$
\begin{equation*}
\phi(\beta, b ; z) \equiv{ }_{0} \Psi_{1}\left[{ }_{(b, \beta)} \mid z\right]=\sum_{k=0}^{\infty} \frac{1}{\Gamma(\beta k+b)} \frac{z^{k}}{k!} \tag{2}
\end{equation*}
$$

with complex $z, b \in \mathbf{C}$ and real $\beta \in \mathbf{R}$, known as the Wright function [4, Section 18.1], was introduced by Wright in [19]. When $\beta=\delta, b=\nu+1$ and z is replaced by $-z$, the function $\phi(\delta, \nu+1 ;-z)$ is denoted by $J_{\nu}^{\delta}(z)$:

$$
\begin{equation*}
J_{\nu}^{\delta}(z) \equiv \phi(\delta, \nu+1 ;-z)=\sum_{k=0}^{\infty} \frac{1}{\Gamma(\delta k+\nu+1)} \frac{(-z)^{k}}{k!}, \tag{3}
\end{equation*}
$$

and such a function is known as the Bessel-Maitland function, or the Wright generalized Bessel function, see [7, p. 352] and [14, (8.3)]. Some other particular cases of the generalized Wright function (1), generalizing the classical Mittag-Leffler function, were presented in [6, Section 6].

Wright in [20], [24] investigated the asymptotic expansions of the function $\phi(\beta, b ; z)$ for large values of z in the cases $\beta>0$ and $-1<\beta<0$, respectively, making use of the "steepest descent" method. In [20] he gives an application of the obtained results to the asymptotic theory of partitions. In [21]-[23] Wright extended the last results to the generalized Wright function (1) and proved several theorems on the asymptotic expansion of ${ }_{p} \Psi_{q}(z)$ for all values of the argument z under the condition

$$
\begin{equation*}
\sum_{j=1}^{q} \beta_{j}-\sum_{i=1}^{p} \alpha_{i}>-1 . \tag{4}
\end{equation*}
$$

The properties of the Wright function (2) were studied in a series of papers. Some of them can be found in [4, Section 18.1]. We also mention that some fractional integral relations for the function (2) were presented in [2], asymptotic relations for zeros of the Wright function $\phi(\beta, b ; z)$ were established in [8], and distributions of these zeros were investigated in [9]. Applications of the Wright function (2) to the operational calculus were given in [15], to integral transforms of Hankel type - in [5] and [18], to partial differential equations of fractional order - in [1] and [10]-[13], see also [16, Section 4.1.2]. We also note [2], where solution in closed form of the integral equation of the first with the Wright function as a kernel was obtained.

The present paper is devoted to the study of the Riemann-Liouville fractional integration and differentiation of the Wright function (1). For $\alpha \in \mathbf{C}(\operatorname{Re}(\alpha)>0)$, such a left- and right-hand sided fractional integration operators are defined by

$$
\begin{equation*}
\left(I_{0+}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x} \frac{f(t)}{(x-t)^{1-\alpha}} d t(x>0) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I_{-}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} \frac{f(t)}{(t-x)^{1-\alpha}} d t(x>0) \tag{6}
\end{equation*}
$$

respectively [17, Section 5.1], and the corresponding fractional differentiation operators have the forms

$$
\begin{gather*}
\left(D_{0+}^{\alpha} f\right)(x)=\left(\frac{d}{d x}\right)^{[\operatorname{Re}(\alpha)+1}\left(I_{0+}^{1-\alpha+[\operatorname{Re}(\alpha)]} f\right)(x) \\
=\left(\frac{d}{d x}\right)^{[\operatorname{Re}(\alpha)+1} \frac{1}{\Gamma(1-\alpha+[\operatorname{Re}(\alpha)])} \int_{0}^{x} \frac{f(t)}{(x-t)^{\alpha-[\operatorname{Re}(\alpha)]} d t(x>0)} \tag{7}
\end{gather*}
$$

and

$$
\begin{gather*}
\left(D_{-}^{\alpha} f\right)(x)=\left(-\frac{d}{d x}\right)^{[\operatorname{Re}(\alpha)+1}\left(I_{-}^{1-\alpha+[\operatorname{Re}(\alpha)]} f\right)(x) \\
=\left(-\frac{d}{d x}\right)^{[\operatorname{Re}(\alpha)+1} \frac{1}{\Gamma(1-\alpha+[\operatorname{Re}(\alpha)])} \int_{x}^{\infty} \frac{f(t)}{(t-x)^{\alpha-[\operatorname{Re}(\alpha)]}} d t(x>0), \tag{8}
\end{gather*}
$$

respectively, where $[\operatorname{Re}(\alpha)]$ is the integral part of $\operatorname{Re}(\alpha)$.
The paper is organized as follows. Some known results are presented in Section 2. The fractional integration and differentiation of the generalized

Wright function (1) is established in Sections 3 and 4, respectively. The corresponding results for the Wright function (2) and the Bessel-Maitland function (3) are presented in Section 5.

2. Preliminaries

In this section we present the conditions for the existence of the generalized Wright function ${ }_{p} \Psi_{q}(z)$ in (1) proved in [6], and the known formulas for the fractional integration (5) and (6) of a power function [17]. To formulate the first result we use the following notation:

$$
\begin{gathered}
\Delta=\sum_{j=1}^{q} \beta_{j}-\sum_{i=1}^{p} \alpha_{i}, \\
\delta=\prod_{i=1}^{p}\left|\alpha_{i}\right|^{-\alpha_{i}} \prod_{j=1}^{q}\left|\beta_{j}\right|^{\beta_{j}}, \\
\mu=\sum_{j=1}^{q} b_{j}-\sum_{i=1}^{p} a_{i}+\frac{p-q}{2} .
\end{gathered}
$$

Theorem 1. Let $a_{i}, b_{j} \in \mathbf{C}$ and $\alpha_{i}, \beta_{j} \in \mathbf{R}(i=1,2, \cdots p ; j=$ $1,2, \cdots, q$).
(a) If $\Delta>-1$, then the series in (1) is absolutely convergent for all $z \in \mathbf{C}$.
(b) If $\Delta=-1$, then the series in (1) is absolutely convergent for all values of $|z|<\delta$ and of $|z|=\delta, \Re(\mu)>1 / 2$.

Corollary 1.1. Let $a_{i}, b_{j} \in \mathbf{C}$ and $\alpha_{i}, \beta_{j} \in \mathbf{R}(i=1,2, \cdots p ; j=$ $1,2, \cdots, q)$ be such that the condition in (4) is satisfied. Then the generalized Wright function ${ }_{p} \Psi_{q}(z)$ is an entire function of z.

Corollary 1.2. Let $\alpha \in \mathbf{R}$ and $\beta \in \mathbf{C}$.
(a) If $\alpha>-1$, then the series in (2) is absolutely convergent for all $z \in \mathbf{C}$.
(b) If $\alpha=-1$, then the series in (2) is absolutely convergent for all values of $|z|<1$ and of $|z|=1, \Re(\beta)>1$.

Corollary 1.3. If $\alpha>-1$ and $\beta \in \mathbf{C}$, then the Wright function $\phi(\alpha, \beta ; z)$ is an entire function of z.

Corollary 1.4. If $\delta>-1$ and $\nu \in \mathbf{C}$, then the Bessel-Maitland function $J_{\nu}^{\delta}(z)$ is an entire function of z.

The next assertion is well known, see [17, (2.44) and Table 9.3, formula $1]$.

Lemma 1. Let $\alpha \in \mathbf{C}(\operatorname{Re}(\alpha)>0)$ and $\gamma \in \mathbf{C}$.
(a) If $\operatorname{Re}(\gamma)>0$, then

$$
\begin{equation*}
\left(I_{0+}^{\alpha} t^{\gamma-1}\right)(x)=\frac{\Gamma(\gamma)}{\Gamma(\alpha+\gamma)} x^{\alpha+\gamma-1} \tag{9}
\end{equation*}
$$

(b) If $\operatorname{Re}(\gamma)>\operatorname{Re}(\alpha)>0$, then

$$
\begin{equation*}
\left(I_{-}^{\alpha} t^{-\gamma}\right)(x)=\frac{\Gamma(\gamma-\alpha)}{\Gamma(\gamma)} x^{\alpha-\gamma} \tag{10}
\end{equation*}
$$

3. Fractional integration of the generalized Wright function

In this section we establish a formula for the fractional integration of the generalized Wright function (1). We begin with the left-hand sided fractional integral (5).

Theorem 2. Let $\alpha, \gamma \in \mathbf{C}$ be complex numbers such that $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\gamma)>0$, and let $a \in \mathbf{C}, \mu>0$. If the condition (4) is satisfied, then the fractional integration I_{0+}^{α} of the generalized Wright function (1) is given for $x>0$ by

$$
\left.\left.\left.\begin{array}{rl}
& \left(I _ { 0 + } ^ { \alpha } \left(t ^ { \gamma - 1 } { } _ { p } \Psi _ { q } \left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, a t^{\mu}\right.\right.\right.
\end{array}\right]\right)\right)(x) .
$$

Proof. According to (4) and Corollary 1.1, the generalized Wright functions in both sides of (11) exist for $x>0$. By (5) and (1) we have

$$
\left(I_{0+}^{\alpha}\left(t^{\gamma-1}{ }_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, a t^{\mu}\right]\right)\right)(x)
$$

$$
\begin{equation*}
=\left(I_{0+}^{\alpha}\left[t^{\gamma-1} \sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)} \frac{\left(a t^{\mu}\right)^{k}}{k!}\right]\right)(x) \tag{12}
\end{equation*}
$$

According to [17, Lemma 15.1] a term-by-term integration of a series in the right-hand side of (12) is possible. Carrying out such an integration and using (9) we obtain

$$
\begin{aligned}
& \left(I_{0+}^{\alpha}\left(t^{\gamma-1}{ }_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, a t^{\mu}\right]\right)\right)(x) \\
& =\sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)} \frac{a^{k}}{k!}\left(I_{0+}^{\alpha} t^{\gamma+\mu k-1}\right)(x) \\
& =x^{\gamma+\alpha-1} \sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)} \frac{\Gamma(\gamma+\mu k)}{\Gamma(\gamma+\alpha+\mu k)} \frac{\left(a x^{\mu}\right)^{k}}{k!} .
\end{aligned}
$$

According to (1) from here we deduce (11), which completes the proof of theorem.

The following result yields the right-hand sided fractional integration (6) of the generalized Wright function (1).

Theorem 3. Let $\alpha, \gamma \in \mathbf{C}$ be complex numbers such that $\operatorname{Re}(\gamma)>$ $\operatorname{Re}(\alpha)>0$, and let $a \in \mathbf{C}, \mu>0$. If the condition (4) is satisfied, then the fractional integration I_{-}^{α} of the generalized Wright function (1) is given by

$$
\begin{align*}
& \left(I_{-}^{\alpha}\left(t^{-\gamma}{ }_{p} \Psi_{q}\left[\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \mid a t^{-\mu} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array}\right]\right)\right)(x) \\
= & x^{\alpha-\gamma}{ }_{p+1} \Psi_{q+1}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p},(\gamma-\alpha, \mu) \\
\left(b_{j}, \beta_{j}\right)_{1, q},(\gamma, \mu)
\end{array} \right\rvert\, a x^{-\mu}\right] . \tag{13}
\end{align*}
$$

Proof. According to (4) and Corollary 1.1, the generalized Wright functions in both sides of (13) exist for $x>0$. The fractional integrals (5) and (6) are connected by the relation

$$
\left(I_{-}^{\alpha} f\left[\frac{1}{t}\right]\right)(x)=x^{\alpha-1}\left(I_{0+}^{\alpha}\left[t^{-\alpha-1} f(t)\right]\right)\left(\frac{1}{x}\right) .
$$

Using this formula and taking into account (11) with γ replaced by $\gamma-\alpha$, we have

$$
\begin{aligned}
& \left(I_{-}^{\alpha}\left(t^{-\gamma}{ }_{p} \Psi_{q}\left[\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \mid a t^{-\mu} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array}\right]\right)\right)(x) \\
= & x^{\alpha-1}\left(I_{0+}^{\alpha}\left(t^{\gamma-\alpha-1}{ }_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, a t^{\mu}\right]\right)\right)\left(\frac{1}{x}\right) \\
= & x^{\alpha-\gamma}{ }_{p+1} \Psi_{q+1}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p},(\gamma-\alpha, \mu) \\
\left(b_{j}, \beta_{j}\right)_{1, q},(\gamma, \mu)
\end{array} \right\rvert\, a x^{-\mu}\right],
\end{aligned}
$$

and (13) is proved.

4. Fractional differentiation of the generalized Wright function

In this section we establish a formula for the fractional differentiation of the generalized Wright function (1). As in Section 3, we begin with the left-hand sided fractional differentiation (7).

Theorem 4. Let $\alpha, \gamma \in \mathbf{C}$ and $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\gamma)>0$, and let $a \in \mathbf{C}, \mu>0$. If condition (4) is satisfied, then the fractional differentiation D_{0+}^{α} of the generalized Wright function (1) is given for $x>0$ by

$$
\begin{align*}
& \left(D_{0+}^{\alpha}\left(t^{\gamma-1}{ }_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, a t^{\mu}\right]\right)\right)(x) \\
= & x^{\gamma-\alpha-1}{ }_{p+1} \Psi_{q+1}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p},(\gamma, \mu) \\
\left(b_{j}, \beta_{j}\right)_{1, q},(\gamma-\alpha, \mu)
\end{array} \right\rvert\, a x^{\mu}\right] . \tag{14}
\end{align*}
$$

Proof. According to (1) and Corollary 1.1, the generalized Wright functions on both sides of (14) exist for $x>0$. Let $n=[\operatorname{Re}(\alpha)]+1$, where $[\operatorname{Re}(\alpha)]$ is an integer part of $\operatorname{Re}(\alpha)$. Using (7) and (1) and taking into account (11), with α replaced by $n-\alpha$, we have

$$
\left(D_{0+}^{\alpha}\left(t^{\gamma-1}{ }_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, a t^{\mu}\right]\right)\right)(x)
$$

$$
\begin{gather*}
=\left(\frac{d}{d x}\right)^{n}\left(I_{0+}^{n-\alpha}\left(t^{\gamma-1}{ }_{p} \Psi_{q}\left[\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \mid a t^{\mu} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array}\right]\right)(x)\right. \\
=\left(\frac{d}{d x}\right)^{n}\left(x^{\gamma+n-\alpha-1}{ }_{p+1} \Psi_{q+1}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p},(\gamma, \mu) \\
\left(b_{j}, \beta_{j}\right)_{1, q},(\gamma+n-\alpha, \mu)
\end{array} \right\rvert\, a x^{\mu}\right]\right) \\
=\left(\frac{d}{d x}\right)^{n}\left[\sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)} \frac{\Gamma(\gamma+\mu k)}{\Gamma(\gamma+n-\alpha+\mu k)} \frac{a^{k}}{k!} x^{\gamma+n-\alpha+\mu k-1}\right] . \tag{15}
\end{gather*}
$$

According to [17, Lemma 15.1], a term-by-term differentiation of the series on the right-hand side of (15) is possible. Therefore

$$
\begin{aligned}
& \left(D_{0+}^{\alpha}\left(t^{\gamma-1}{ }_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, a t^{\mu}\right]\right)\right)(x) \\
= & \sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)} \frac{\Gamma(\gamma+\mu k)}{\Gamma(\gamma-\alpha+\mu k)} \frac{a^{k}}{k!} x^{\gamma-\alpha+\mu k-1} .
\end{aligned}
$$

Thus, in accordance with (1), (14) is proved.
The next result yields the right-hand sided fractional differentiation (8) of the generalized Wright function (1).

Theorem 5. Let $\alpha, \gamma \in \mathbf{C}$ be complex numbers such that $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\gamma)>[\operatorname{Re}(\alpha)]+1-\operatorname{Re}(\alpha)$, and let $a \in \mathbf{C}, \mu>0$. If condition (4) is satisfied, then the fractional differentiation D_{-}^{α} of the generalized Wright function (1) is given by

$$
\begin{align*}
& \left(D_{-}^{\alpha}\left(t^{-\gamma}{ }_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, a t^{-\mu}\right]\right)\right)(x) \\
= & x^{-\alpha-\gamma}{ }_{p+1} \Psi_{q+1}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p},(\gamma+\alpha, \mu) \\
\left(b_{j}, \beta_{j}\right)_{1, q},(\gamma, \mu)
\end{array} \right\rvert\, a x^{-\mu}\right] . \tag{16}
\end{align*}
$$

Proof. By (4) and Corollary 1.1, the generalized Wright functions in both sides of (16) exist for $x>0$. Let $n=[\operatorname{Re}(\alpha)]+1$. Using (8) and (1) and taking into account (13) with α replaced by $n-\alpha$, similarly to the proof of Theorem 4, we obtain

$$
\begin{gather*}
\left(D_{-}^{\alpha}\left(t^{-\gamma}{ }_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \mid \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, \begin{array}{c}
a t^{-\mu}
\end{array}\right]\right)(x)\right. \\
=\left(-\frac{d}{d x}\right)^{n}\left(I_{-}^{n-\alpha}\left(t^{-\gamma}{ }_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, a t^{-\mu}\right]\right)\right)(x) \\
=\left(-\frac{d}{d x}\right)^{n}\left(x^{n-\alpha-\gamma}{ }_{p+1} \Psi_{q+1}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p},(\gamma-n+\alpha, \mu) \\
\left(b_{j}, \beta_{j}\right)_{1, q},(\gamma, \mu)
\end{array} \right\rvert\, a x^{-\mu}\right]\right) \\
=\left(-\frac{d}{d x}\right)^{n}\left[\sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)} \frac{\Gamma(\gamma-n+\alpha+\mu k)}{\Gamma(\gamma+\mu k)} \frac{a^{k}}{k!} x^{n-\alpha-\gamma-\mu k}\right] \\
=\sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)}(-1)^{n} \frac{\Gamma(\gamma-n+\alpha+\mu k)}{\Gamma(\gamma+\mu k)} \\
\times \frac{\Gamma(1+n-\alpha-\gamma-\mu k)}{\Gamma(1-\gamma-\alpha-\mu k)} \frac{a^{k}}{k!} x^{-\alpha-\gamma-\mu k} . \tag{17}
\end{gather*}
$$

By the reflection formula for the gamma-function, see for example, [17, (1.60)],

$$
\begin{gathered}
\frac{1}{\Gamma(1-\gamma-\alpha-\mu k)}=\frac{\Gamma(\gamma+\alpha+\mu k)}{\Gamma(\gamma+\alpha+\mu k) \Gamma(1-\gamma-\alpha-\mu k)} \\
=\frac{\Gamma(\gamma+\alpha+\mu k) \sin [(\gamma+\alpha+\mu k) \pi]}{\pi}
\end{gathered}
$$

and

$$
\begin{gathered}
\Gamma(\gamma-n+\alpha+\mu k) \Gamma(1+n-\alpha-\gamma-\mu k)=\frac{\pi}{\sin [(\gamma-n+\alpha+\mu k) \pi]} \\
=\frac{\pi}{\sin [(\gamma+\alpha+\mu k) \pi] \cos (n \pi)}=\frac{(-1)^{n} \pi}{\sin [(\gamma+\alpha+\mu k) \pi]} .
\end{gathered}
$$

Substituting these relations into (17) we obtain

$$
\begin{aligned}
& \left(D_{-}^{\alpha}\left(t^{-\gamma}{ }_{p} \Psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, a t^{-\mu}\right]\right)\right)(x) \\
= & x^{-\alpha-\gamma} \sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)}(-1)^{n} \frac{\Gamma(\gamma+\alpha+\mu k)}{\Gamma(\gamma+\mu k)} \frac{\left(a x^{-\mu}\right)^{k}}{k!},
\end{aligned}
$$

which, in accordance with (1), yields (16).

5. Fractional calculus of the Wright and the Bessel-Maitland functions

In this section we establish fractional integration and differentiation of the Wright function $\phi(\beta, b ; z)$ and Bessel-Maitland function $J_{\nu}^{\delta}(z)$. Using (2), from Theorems 2-3 and Theorems 4-5 we deduce formulas for the fractional integration and differentiation of $\phi(\beta, b ; z)$.

Theorem 6. Let $\alpha, \gamma, b, a \in \mathbf{C}$ and $\mu>0$ and $\beta>-1$.
(a) If $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\gamma)>0$, then the fractional integration I_{0+}^{α} of the Wright function (2) is given for $x>0$ by

$$
\left(I_{0+}^{\alpha}\left[t^{\gamma-1} \phi\left(\beta, b ; a t^{\mu}\right)\right]\right)(x)=x^{\gamma+\alpha-1}{ }_{1} \Psi_{2}\left[\begin{array}{c|c}
(\gamma, \mu) & a x^{\mu} \tag{18}\\
(b, \beta),(\gamma+\alpha, \mu)
\end{array}\right] .
$$

(b) If $\operatorname{Re}(\gamma)>\operatorname{Re}(\alpha)>0$, then the fractional integration I_{-}^{α} of the Wright function (2) is given for $x>0$ by

$$
\left(I_{-}^{\alpha}\left[t^{-\gamma} \phi\left(\beta, b ; a t^{-\mu}\right)\right]\right)(x)=x^{\alpha-\gamma}{ }_{1} \Psi_{2}\left[\begin{array}{c|c}
(\gamma-\alpha, \mu) & a x^{-\mu} \tag{19}\\
(b, \beta),(\gamma, \mu) &
\end{array}\right] .
$$

Corollary 6.1. Let $\alpha, \gamma, a \in \mathbf{C}$ and $\mu>0$.
(a) If $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\gamma)>0$, then

$$
\begin{equation*}
\left(I_{0+}^{\alpha}\left[t^{\gamma-1} \phi\left(\mu, \gamma ; a t^{\mu}\right)\right]\right)(x)=x^{\gamma+\alpha-1} \phi\left(\mu, \gamma+\alpha ; a x^{\mu}\right) . \tag{20}
\end{equation*}
$$

(b) If $\operatorname{Re}(\gamma)>\operatorname{Re}(\alpha)>0$, then

$$
\begin{equation*}
\left(I_{-}^{\alpha}\left[t^{-\gamma} \phi\left(\mu, \gamma-\alpha ; a t^{-\mu}\right)\right]\right)(x)=x^{\alpha-\gamma} \phi\left(\mu, \gamma ; a x^{-\mu}\right) . \tag{21}
\end{equation*}
$$

Theorem 7. Let $\alpha, \gamma, b, a \in \mathbf{C}$ and $\mu>0$ and $\beta>-1$.
(a) If $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\gamma)>0$, then the fractional differentiation D_{0+}^{α} of the Wright function (2) is given for $x>0$ by

$$
\left(D_{0+}^{\alpha}\left[t^{\gamma-1} \phi\left(\beta, b ; a t^{\mu}\right)\right]\right)(x)=x^{\gamma-\alpha-1}{ }_{1} \Psi_{2}\left[\begin{array}{c|c}
(\gamma, \mu) & a x^{\mu} \tag{22}\\
(b, \beta),(\gamma-\alpha, \mu)
\end{array}\right] .
$$

(b) If $\operatorname{Re}(\gamma)>[\operatorname{Re}(\alpha)]+1-\operatorname{Re}(\alpha)$, then the fractional differentiation D_{-}^{α} of the Wright function (2) is given for $x>0$ by

$$
\left(D_{-}^{\alpha}\left[t^{-\gamma} \phi\left(\beta, b ; a t^{-\mu}\right)\right]\right)(x)=x^{-\alpha-\gamma}{ }_{1} \Psi_{2}\left[\left.\begin{array}{c}
(\gamma+\alpha, \mu) \tag{23}\\
(b, \beta),(\gamma, \mu)
\end{array} \right\rvert\, a x^{-\mu}\right] .
$$

Corollary 7.1. Let $\alpha, \gamma, a \in \mathbf{C}$ and $\mu>0$.
(a) If $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\gamma)>0$, then

$$
\begin{equation*}
\left(D_{0+}^{\alpha}\left[t^{\gamma-1} \phi\left(\mu, \gamma ; a t^{\mu}\right)\right]\right)(x)=x^{\gamma-\alpha-1} \phi\left(\mu, \gamma-\alpha ; a x^{\mu}\right) . \tag{24}
\end{equation*}
$$

(b) If $\operatorname{Re}(\gamma)>[\operatorname{Re}(\alpha)]+1-\operatorname{Re}(\alpha)$, then

$$
\begin{equation*}
\left(I_{-}^{\alpha}\left[t^{-\gamma} \phi\left(\mu, \gamma+\alpha ; a t^{-\mu}\right)\right]\right)(x)=x^{\alpha-\gamma} \phi\left(\mu, \gamma ; a x^{-\mu}\right) . \tag{25}
\end{equation*}
$$

Similarly, in accordance with (3), from Theorems 2-3 and Theorems 4-5 we obtain the fractional integration and differentiation of $J_{\nu}^{\delta}(z)$.

Theorem 8. Let $\alpha, \gamma, \nu, a \in \mathbf{C}$ and $\mu>0$ and $\delta>-1$.
(a) If $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\gamma)>0$, then the fractional integration I_{0+}^{α} of the Bessel-Maitland function (3) is given for $x>0$ by

$$
\left(I_{0+}^{\alpha}\left[t^{\gamma-1} J_{\nu}^{\delta}\left(a t^{\mu}\right)\right]\right)(x)=x^{\gamma+\alpha-1}{ }_{1} \Psi_{2}\left[\left.\begin{array}{c|c}
(\gamma, \mu) \tag{26}\\
(\nu+1, \delta),(\gamma+\alpha, \mu)
\end{array} \right\rvert\, a x^{\mu}\right] .
$$

(b) If $\operatorname{Re}(\gamma)>\operatorname{Re}(\alpha)>0$, then the fractional integration I_{-}^{α} of the Bessel-Maitland function (3) is given for $x>0$ by

$$
\left(I_{-}^{\alpha}\left[t^{-\gamma} J_{\nu}^{\delta}\left(a t^{-\mu}\right)\right]\right)(x)=x^{\alpha-\gamma}{ }_{1} \Psi_{2}\left[\left.\begin{array}{c}
(\gamma-\alpha, \mu) \tag{27}\\
(\nu+1, \delta),(\gamma, \mu)
\end{array} \right\rvert\, a x^{-\mu}\right] .
$$

Corollary 8.1. Let $\alpha, \nu, a \in \mathbf{C}$ be complex numbers such that $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\nu)>-1$, and let $\mu>0$. Then there hold the relations

$$
\begin{equation*}
\left(I_{0+}^{\alpha}\left[t^{\nu} J_{\nu}^{\mu}\left(a t^{\mu}\right)\right]\right)(x)=x^{\nu+\alpha} J_{\nu+1+\alpha}^{\mu}\left(a x^{\mu}\right) . \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I_{-}^{\alpha}\left[t^{-\alpha-\nu-1} J_{\nu}^{\mu}\left(a t^{-\mu}\right)\right]\right)(x)=x^{-\nu-1} J_{\nu+1+\alpha}^{\mu}\left(a x^{-\mu}\right) . \tag{29}
\end{equation*}
$$

Theorem 9. Let $\alpha, \gamma, b, \nu \in \mathbf{C}$ and $\mu>0$ and $\delta>-1$.
(a) If $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\gamma)>0$, then the fractional differentiation D_{0+}^{α} of the Bessel-Maitland function (3) is given for $x>0$ by

$$
\left(D_{0+}^{\alpha}\left[t^{\gamma-1} J_{\nu}^{\delta}\left(a t^{\mu}\right)\right]\right)(x)=x^{\gamma-\alpha-1}{ }_{1} \Psi_{2}\left[\left.\begin{array}{c|c}
(\gamma, \mu) \tag{30}\\
(\nu+1, \delta),(\gamma-\alpha, \mu)
\end{array} \right\rvert\, a x^{\mu}\right] .
$$

(b) If $\operatorname{Re}(\gamma)>[\operatorname{Re}(\alpha)]+1-\operatorname{Re}(\alpha)$, then the fractional differentiation D_{-}^{α} of the Bessel-Maitland function (3) is given for $x>0$ by

$$
\left(D_{-}^{\alpha}\left[t^{-\gamma} J_{\nu}^{\delta}\left(a t^{-\mu}\right)\right]\right)(x)=x^{-\alpha-\gamma}{ }_{1} \Psi_{2}\left[\left.\begin{array}{c}
(\gamma+\alpha, \mu) \tag{31}\\
(\nu+1, \delta),(\gamma, \mu)
\end{array} \right\rvert\, a x^{-\mu}\right] .
$$

Corollary 9.1. Let $\alpha, \nu, a \in \mathbf{C}$ and $\mu>0$.
(a) If $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\nu)>-1$, then

$$
\begin{equation*}
\left(D_{0+}^{\alpha}\left[t^{\nu} J_{\nu}^{\mu}\left(a t^{\mu}\right)\right]\right)(x)=x^{\nu-\alpha} J_{\nu+1-\alpha}^{\mu}\left(a x^{\mu}\right) . \tag{32}
\end{equation*}
$$

(b) If $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\nu)>[\operatorname{Re}(\alpha)]$, then

$$
\begin{equation*}
\left(D_{-}^{\alpha}\left[t^{\alpha-\nu-1} J_{\nu}^{\mu}\left(a t^{-\mu}\right)\right]\right)(x)=x^{-\nu-1} J_{\nu+1-\alpha}^{\mu}\left(a x^{-\mu}\right) . \tag{33}
\end{equation*}
$$

References

[1] E. Buckwar E. and Yu. Luchko, Invariance of partial differential equations of fractonal order under the Lie group of scaling transformations. J. Math. Anal. Appl. 237, No 1 (1998), 81-97.
[2] M.R. Dotsenko, On some applications of Wright's hypergeometric function. C.R. Acad. Bulgare Sci. 44, No 6 (1991), 13-16.
[3] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. I. McGraw-Hill, New York (1953); Reprinted: Krieger, Melbourne-Florida (1981).
[4] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. III. McGraw-Hill, New York (1954); Reprinted: Krieger, Melbourne-Florida (1981).
[5] L. Gajic and B. Stankovic, Some properties of Wright's function. Publ. l'Institut Math. Beograd, Nouvelle Ser. 20, No 34 (1976), 91-98.
[6] A.A. Kilbas, M. Saigo and J.J. Trujillo, On the generalized Wright function. Fract. Calc. Appl. Anal. bf 5, No 4 (2002), 437-460.
[7] V.S. Kiryakova, Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics, 301, John Wiley and Sons, New York (1994).
[8] Yu.F. Luchko, Asymptotics of zeros of the Wright function. Z. Anal. Anwendungen 19, No 2 (2000), 583-595.
[9] Yu. Luchko, On the distribution of zeros of the Wright function. Integral Transform. Spec. Funct. 11, No 2 (2001), 195-200.
[10] Yu. Luchko and R. Gorenflo, Scale-invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal. 1, No 1 (1998), 63-78.
[11] F. Mainardi, On the initial value problem for the fractional diffusionwave equation. Waves and Stability in Continuous Media (Bologna, 1993), Ser. Adv. Math. Appl. Sci. 23 (1994), 246-251.
[12] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (A.Carpintery and F. Mainardi, Editors) (Udine, 1996), CIAM Courses and Lectures 378 (1997), 291-348.
[13] F. Mainardi and M. Timorotti, On a special function arising in the time fractional diffusion-wave equation. Transform Methods and Special Functions, Sofia'94 (Proc. 1st Intern. Workshop), SCTP, Singapore (1995), 171-183.
[14] O.I. Marichev, Handbook of Integral Transforms and Higher Transcendental Functions. Theory and Algorithmic Tables. Ellis Horwood, Chichester [John Wiley and Sons], New York (1983).
[15] J. Mikusinski, On the function whose Laplace transform is $\exp \left(-s^{\alpha}\right)$, $0<\alpha<1$. Studia Math. J. 18, (1959), 191-198.
[16] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solutions and Some of Their Applications. Mathematics in Sciences and Engineering. 198, Academic Press, San-Diego (1999).
[17] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, New York (1993).
[18] B. Stankovic, On the function of E.M. Wright. Publ. de l'Institut Mathematique, Nouvelle Ser. 10, NO 24 (1970), 113-124.
[19] E.M. Wright, On the coefficients of power series having exponential singularities. J. London Math. Soc. 8 (1933), 71-79.
[20] E.M. Wright, The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. (2) 38 (1934), 257-270.
[21] E.M. Wright, The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. 10 (1935), 287-293.
[22] E.M. Wright, The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. Roy. Soc. London, Ser. A 238 (1940), 423-451.
[23] E.M. Wright, The asymptotic expansion of the generalized hypergeometric funciton. Proc. London Math. Soc. (2) 46, (1940), 389-408.
[24] E.M. Wright, The generalized Bessel functions of order greater than one. Quart. J. Math. Oxford Ser. 11 (1940), 36-48.

Department of Mathematics and Mechanics
Belarusian State University
Received: April 28, 2003
Fr. Skaryny Avenue 4
220050 Minsk, BELARUS
e-mail: kilbas@bsu.by

