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Abstract

This paper deals with the study of an entire function of the form

Eδ
β,γ(z) :=

∞∑

n=0

(δ)n

Γ(βn + γ) n!
zn,

where β > 0 and γ > 0. For δ = 1, it reduces to Mittag-Leffler function
Eβ,γ(z). Certain relations that exist between Eδ

β,γ(z) and the Riemann-
Liouville fractional integrals and derivatives are investigated. It has been
shown that the fractional integration and differentiation operators transform
such functions with power multipliers into the functions of the same form.
Some of the results given earlier by Kilbas and Saigo follow as special cases.
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1. Introduction and preliminaries

The function defined by the series representation

Eβ(z) =
∞∑

n=0

1
Γ(βn + 1)

zn (β > 0, z ∈ C) (1)

and its generalization

Eβ,γ(z) =
∞∑

n=0

1
Γ(βn + γ)

zn (β > 0, γ > 0, z ∈ C) (2)

were introduced and studied by Mittag-Leffler [21, 22], Wiman [25, 26],
Agarwal [1], Humbert [10] and Humbert and Agarwal [11], where C is the
set of complex numbers. The main properties of these functions are given
in the book by Erdélyi et al. [4, Section 18.1] and a more extensive and
detailed account on Mittag-Leffler functions is presented in Dzherbashyan
[2, Chapter 2]. In particular, the functions (1) and (2) are entire functions
of order ρ = 1/β and type σ = 1; see, for example, [2, p.118].

The Mittag-Leffler function is not given in the tables of Laplace trans-
forms, where it naturally occurs in the derivation of the inverse Laplace
transform of the functions of the type pε/(a + bpβ). This function also oc-
curs in the solution of certain boundary value problems involving fractional
integro-differential equations of Volterra-type [24]. During the various de-
velopments of Fractional Calculus in the last three decades this function
has gained importance on account of its applications in the fields of phys-
ical, mathematical and engineering sciences. Hille and Tamarkin [9] have
presented a solution of the Abel-Volterra type equation in terms of Mittag-
Leffler function. For a detailed account of various properties, generalizations
and applications of this function, the reader may refer to an excellent work of
Dzherbashyan [2], Kilbas and Saigo [12, 13, 14, 15], Gorenflo and Mainardi
[8], Gorenflo, Luchko and Rogosin [7] and Gorenflo, Kilbas and Rogosin [6].

By means of the series representation a generalization of (2) is intro-
duced by Prabhakar [23] as:

Eδ
β,γ(z) =

∞∑

n=0

(δ)n

Γ(βn + γ) n!
zn, (3)

where β, γ, δ ∈ C (Re(β) > 0). It is an entire function of order [Re(β)]−1

[23, p. 7]. It is a special case of Wright’s generalized hypergeometric function
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[27, 28] as well as H-function [5] as shown in (5) and (6), below. For various
properties of the function defined by (3), see [17].

Some important special cases of this function are enumerated below:

(i) Eβ(z) = E1
β,1(z);

(ii) Eβ,γ(z) = E1
β,γ(z);

(iii) βδEδ+1
β,γ (z) = (1 + βδ − γ)Eδ

β,γ(z) + Eδ
β,γ−1(z);

(iv) Φ(γ, δ; z) = Γ(δ)Eγ
1,δ(z), where Φ(γ, δ; z) is the Kummer confluent

hypergeometric function [3, p. 248, Eq. 1];

(v) Zµ
m(z; k) = Γ(km + µ + 1)E−m

k,µ+1(z
k), where m, k ∈ R+ = [0,∞) and

Zµ
m(·) is a one set of the biorthogonal polynomial pair discussed by

Konhauser [19];

(vi) If µ ∈ R+, we have

Eγ
m,δ(z) =

1
Γ(δ) 1Fm

(
γ; ∆(δ; m);

z

mm

)
, (4)

where 1Fm(·) is the generalized hypergeometric function and the sym-
bol ∆(a; m) represents the sequence of parameters a/m, (a+1)/m, · · · ,
(a + m− 1)/m;

(vii) Eδ
β,γ(z) has the forms:

Eδ
β,γ(z) =

1
Γ(δ) 1Ψ1

[
(δ, 1)
(γ, β)

; z
]

(5)

=
1

Γ(δ)
H1,1

1,2

[
−z

∣∣∣∣
(1− δ, 1)
(0, 1), (1− γ, β)

]
(6)

=
1

2πωΓ(δ)

∫

Ω

Γ(−s)Γ(δ + s)
Γ(γ + sβ)

(−z)sds, (7)

where 1Ψ1(·) and H1,1
1,2 (·) are respectively Wright’s generalized hyper-

geometric function [27] and H-function [5]. In (7), ω =
√−1 and the

contour Ω is a straight line parallel to the imaginary axis separating
the poles of Γ(−s) at the points s = ν (ν ∈ N0 = {0, 1, 2, · · · }) from
those of Γ(δ + s) at the points s = −δ − ν (ν ∈ N0). The poles of the
integrand in (7) are assumed to be simple.
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Formula (7) gives the Mellin-Barnes integral representation for the gen-
eralized Mittag-Leffler function Eδ

β,γ(z). A detailed account of H-function
is available from the monographs of Mathai and Saxena [20] and Kilbas and
Saigo [16].

Another generalization of Wiman function defined by (1) was recently
introduced by Kilbas and Saigo [12] in terms of a special entire function of
the form

Eα,m,l(z) =
∞∑

n=0

cnzn with cn =
n−1∏

i=0

Γ(α[im + l] + 1)
Γ(α[im + l + 1] + 1)

(n ∈ N0), (8)

where an empty product is to be interpreted as unity. Certain properties
of this function associated with Riemann-Liouville fractional integrals and
derivatives are obtained and exact solutions of certain integral equations of
Abel-Volterra type are derived by their applications [12, 14, 15]. The order
and type of the above entire function, defined by (8) alongwith its recur-
rence relations, connection with hypergeometric functions and differential
formulas are obtained by Gorenflo, Kilbas and Rogosin [6]. Also, see [6, 8] in
this connection. In a recent paper, Kilbas, Saigo and Saxena [18] obtained
a closed form solution of a fractional generalization of a free electron laser
equation of the form:

Dα
τ a(τ) = λ

∫ τ

0
tδa(τ − t)Eb

ρ,δ+1(iνtρ)dt + βτσEγ
ρ,σ+1(iντρ) (9)

(0 5 τ 5 1)

where β, λ ∈ C, ν, b, β ∈ R, α > 0, ρ > 0, σ > −1, δ > −1 and Eb
ρ,δ+1(z)

is the generalized Mittag-Leffler function defined by (3). The object of this
paper is to derive the relations that exist between the generalized Mittag-
Leffler function defined by (3) and the left- and right-sided operators of
Riemann-Liouville fractional calculus [24]. The results derived in this paper
are believed to be new.

The operators are defined by (see Samko, Kilbas and Marichev [24, Sect.
2]) for α > 0:

(
Iα
0+f

)
(x) =

1
Γ(α)

∫ x

0

f(t)
(x− t)1−α

dt; (10)

(
Iα
−f

)
(x) =

1
Γ(α)

∫ ∞

x

f(t)
(t− x)1−α

dt; (11)
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(
Dα

0+f
)
(x) =

(
d

dx

)[α]+1 (
I

1−{α}
0+ f

)
(x);

=
1

Γ(1− {α})
(

d

dx

)[α]+1 ∫ x

0

f(t)
(x− t){α}

dt; (12)

(
Dα
−f

)
(x) =

(
d

dx

)[α]+1 (
I

1−{α}
− f

)
(x);

=
1

Γ(1− {α})
(
− d

dx

)[α]+1 ∫ ∞

x

f(t)
(t− x){α}

dt, (13)

where [α] means the maximal integer not exceeding α and {α} is the frac-
tional part of α.

2. Properties of generalized Mittag-Leffler function

In this section we derive several interesting properties of the generalized
Mittag-Leffler function Eδ

β,γ(z) defined by (3) associated with Riemann-
Liouville fractional integrals and derivatives.

Theorem 1. Let α > 0, β > 0, γ > 0 and a ∈ R. Let Iα
0+ be the left-

sided operator of Riemann-Liouville fractional integral (10). Then there
holds the formula

(
Iα
0+[tγ−1Eδ

β,γ(atβ)]
)
(x) = xα+γ−1Eδ

β,α+γ(axβ). (14)

P r o o f. By virtue of (3) and (10) we have

K ≡
(
Iα
0+[tγ−1Eδ

β,γ(atβ)]
)
(x)

=
1

Γ(α)

∫ x

0
(x− t)α−1

∞∑

n=0

(δ)n

Γ(βn + γ) n!
antnβ+γ−1dt.

Interchanging the order of integration and summation and evaluating the
inner integral by beta-function formula, it gives

K = xα+γ−1
∞∑

n=0

(δ)n

Γ(α + βn + γ) n!
(axβ)n = xα+γ−1Eδ

β,α+γ(axβ).
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The interchange of the order of integration and summation is permissible
under the conditions stated with the theorem dues to convergence of the
integrals involved in the process. This completes the proof of Theorem 1.

Corollary 1.1. For α > 0, β > 0, γ > 0 and a ∈ R, there holds the
formula

(
Iα
0+[tγ−1Eβ,γ(atβ)]

)
(x) = xα+γ−1Eβ,α+γ(axβ). (15)

Remark 1. The formula (15) is a known relation [24, Table 9.1, For-
mula 23]. If we set β = α in (15), then in view of the relation [4, p. 210,
Eq. 23]

Eα,γ(x) =
1

Γ(γ)
+ xEα,α+γ(x) (16)

it follows that
(
Iα
0+[tγ−1Eα,γ(atα)]

)
(x) =

xγ−1

a

[
Eα,γ(axα)− 1

Γ(γ)

]
(a 6= 0). (17)

We now give a lemma.

Lemma 1. For a ∈ R there holds the formula

axβEδ
β,γ(axβ) = Eδ

β,γ−β(axβ)− Eδ−1
β,γ−β(axβ). (18)

P r o o f. The formula (18) is easily verified by virtue of the relation
(n + 1)(δ)n = (δ)n+1 − (δ − 1)n+1.

Theorem 1 and Lemma 1 imply

Theorem 2. Let α > 0, β > 0, γ > 0, a ∈ R (a 6= 0) and let Iα
0+ be

the left-sided operator of Riemann-Liouville fractional integral (10). Then
there holds the formula

(
Iα
0+[tγ−1Eδ

β,γ(atβ)]
)
(x)

=
1
a
xα+γ−β−1

[
Eδ

β,α+γ−β(axβ)−Eδ−1
β,α+γ−β(axβ)

]
. (19)
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Corollary 2.1. For α > 0, β > 0, γ > 0 with α + γ > β and for
a ∈ R (a 6= 0), there holds the formula

(
Iα
0+[tγ−1Eβ,γ(atβ)]

)
(x)

=
1
a
xα+γ−β−1

[
Eβ,α+γ−β(axβ)− 1

Γ(α + γ − β)

]
. (20)

Remark 2. When β = α in (20), it yields the following result given
by Kilbas and Saigo [14, p. 359, Eq. 20]

(
Iα
0+[tγ−1Eα,γ(atα)]

)
(x) =

xγ−1

a

[
Eα,γ(axα)− 1

Γ(γ)

]
(a 6= 0); (21)

(
Iα
0+[Eα(atα)]

)
(x) =

1
a

[Eα(axα)− 1] (a 6= 0). (22)

Theorem 3. Let α > 0, β > 0, γ > 0, a ∈ R and let Iα− be the right-
sided operator of Riemann-Liouville fractional integral (11). Then there
holds the formula

(
Iα
−[t−α−γEδ

β,γ(at−β)]
)
(x) = x−γEδ

β,α+γ(ax−β). (23)

P r o o f. By virtue of (3) and (11) we find

K ≡
(
Iα
−[t−α−γEδ

β,γ(at−β)]
)
(x)

=
1

Γ(α)

∫ ∞

x
t−α−γ(t− x)α−1

∞∑

n=0

(δ)n

Γ(βn + γ) n!
ant−βndt.

Interchanging the order of integration and summation and evaluating the
inner integral, we obtain

K =
∞∑

n=0

(δ)n

Γ(βn + α + γ) n!
anx−βn−γ = x−γEδ

β,α+γ(ax−β).
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Corollary 3.1. For α > 0, β > 0, γ > 0, a ∈ R there holds the
formula

(
Iα
−[t−α−γEβ,γ(at−β)]

)
(x) = x−γEβ,α+γ(ax−β). (24)

Theorem 4. Let α > 0, β > 0, γ > 0, a ∈ R (a 6= 0) and let Iα− be
the right-sided operator of Riemann-Liouville fractional integral (11). Then
there holds the formula

(
Iα
−[t−α−γEδ

β,γ(at−β)]
)
(x)

=
1
a
xβ−γ

[
Eδ

β,α+γ−β(ax−β)− Eδ−1
β,α+γ−β(ax−β)

]
. (25)

The proof can be developed on similar lines to that of Theorem 3.

Corollary 4.1. For α > 0, β > 0, γ > 0 with α + γ > β and for
a ∈ R (a 6= 0) there holds the formula

(
Iα
−[t−α−γEβ,γ(at−β)]

)
(x)=

1
a
xβ−γ

[
Eβ,α+γ−β(ax−β)− 1

Γ(α + γ − β)

]
. (26)

Remark 3. If we set β = α in (26) it reduces to the following result
given earlier by Kilbas and Saigo [14, p. 360, Eq. 25], a 6= 0:

(
Iα
−[t−α−γEα,γ(at−α)]

)
(x)=

xα−γ

a

[
Eα,γ(ax−α)− 1

Γ(γ)

]
(a 6= 0);(27)

(
Iα
−[t−α−1Eα(at−α)]

)
(x)=

xα−1

a

[
Eα(ax−α)−1

]
(a 6= 0). (28)

We now proceed to derive certain other properties of Eδ
β,γ(z) associated

with the fractional derivative operators Dα
+0 and Dα− defined by (12) and

(13) respectively.
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Theorem 5. Let α > 0, β > 0, γ > 0, a ∈ R and let Dα
0+ be the left-

sided operator of Riemann-Liouville fractional derivative (12). Then there
holds the formula

(
Dα

0+[tγ−1Eδ
β,γ(atβ)]

)
(x) = xγ−α−1Eδ

β,γ−α(axβ). (29)

P r o o f. By virtue of (3) and (12) we have

K ≡
(
Dα

0+[tγ−1Eδ
β,γ(atβ)]

)
(x) =

(
d

dx

)[α]+1 (
I

1−{α}
0+ [tγ−1Eδ

β,γ(atβ)]
)
(x)

=
∞∑

n=0

an(δ)n

Γ(γ + nβ)Γ(1− {α})n!

(
d

dx

)[α]+1 ∫ x

0
tnβ+γ−1(x− t)−{α}dt

=
∞∑

n=0

an(δ)n

Γ(γ + nβ + 1− {α})n!

(
d

dx

)[α]+1

xnβ+γ−{α}

=
∞∑

n=0

an(δ)n

Γ(nβ + γ − α)n!
xγ+nβ−α−1 = xγ−α−1Eδ

β,γ−α(axβ),

which proves the theorem.

Corollary 5.1. For α > 0, β > 0, γ > 0, a ∈ R there holds the
formula

(
Dα

0+[tγ−1Eβ,γ(atβ)]
)
(x) = xγ−α−1Eβ,γ−α(axβ). (30)

If, however, we set β = α and δ = 1, then (29) also reduces to the
relation ([14, p. 362, Eq. 35])

(
Dα

0+[tγ−1Eα,γ(atα)]
)
(x) =

xγ−α−1

Γ(γ − α)
+ axγ−1Eα,γ(axα). (31)

When γ = 1 in (31) there holds the formula

(
Dα

0+[Eα(atα)]
)
(x) =

x−α

Γ(1− α)
+ aEα(axα). (32)

Following a similar procedure, we arrive at the following theorem:
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Theorem 6. Let α > 0, γ > β > 0, a ∈ R (a 6= 0) and let Dα
0+ be the

left-sided operator of Riemann-Liouville fractional derivative (12). Then
there holds the formula(

Dα
0+[tγ−1Eδ

β,γ(atβ)]
)
(x)

=
1
a
xγ−α−β−1

[
Eδ

β,γ−α−β(axβ)− Eδ−1
β,γ−α−β(axβ)

]
. (33)

Corollary 6.1. Let α > 0, γ > β > 0, a ∈ R (a 6= 0), then there
holds the formula(

Dα
0+[tγ−1Eβ,γ(atβ)]

)
(x)

=
1
a
xγ−α−β−1

[
Eβ,γ−α−β(axβ)− 1

Γ(γ − α− β)

]
. (34)

Theorem 7. Let α > 0, γ > 0 with γ−α+{α} > 1, and a ∈ R, and let
Dα− be the right-sided operator of Riemann-Liouville fractional derivative
(13). Then there holds the formula

(
Dα
−[tα−γEδ

β,γ(at−β)]
)
(x) = x−γEδ

β,γ−α(ax−β). (35)

P r o o f. From (3) and (13) it follows that

K ≡
(
Dα
−[tα−γEδ

β,γ(at−β)]
)
(x)

=
(
− d

dx

)[α]+1 (
I

1−{α}
− [tα−γEδ

β,γ(at−β)]
)
(x)

=
∞∑

n=0

an(δ)n

Γ(nβ + γ)Γ(1− {α})n!

(
− d

dx

)[α]+1 ∫ ∞

x
t−nβ+α−γ(t− x)−{α}dt.

If we set t = x/u, then the above expression transforms into the form

K =
∞∑

n=0

an(δ)n

Γ(nβ + γ)Γ(1− {α})n!

×
∫ 1

0
unβ−α+γ+{α}−2(1− u)−{α}du

(
− d

dx

)[α]+1

xα−nβ−γ−{α}+1

=
∞∑

n=0

an(δ)n

Γ(nβ + γ − α)n!
x−nβ−γ = x−γEδ

β,γ−α(ax−β).
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Corollary 7.1. Let α > 0, γ > β > 0 and a ∈ R, then there holds
the formula

(
Dα
−[tα−γEβ,γ(at−β)]

)
(x) = x−γEβ,γ−α(ax−β). (36)

In a similar manner we can prove the following theorems and corollaries.

Theorem 8. Let α > 0, β > 0 with γ − [α] > 1, a ∈ R (a 6= 0) and let
Dα− be the right-sided operator of Riemann-Liouville fractional derivative
(13). Then there holds the formula

(
Dα
−[tα−γEδ

β,γ(at−β)]
)
(x)

=
1
a
xβ−γ

[
Eδ

β,γ−α−β(ax−β)−Eδ−1
β,γ−α−β(ax−β)

]
. (37)

Corollary 8.1. For α > 0, β > 0 with γ − [α] > 1, a ∈ R (a 6= 0) let
α + γ > β, there holds the formula

(
Dα
−[tα−γEβ,γ(at−β)]

)
(x)

=
1
a
xβ−γ

[
Eβ,γ−α−β(ax−β)− 1

Γ(γ − α− β)

]
. (38)

Theorem 9. Let α > 0, β > 0 with γ − [α] > 0, a ∈ R (a 6= 0) and let
Dα− be the right-sided operator of Riemann-Liouville fractional derivative
(13). Then there holds the formula

(
Dα
−[tα−γ−1Eδ

β,γ(at−β)]
)
(x)

=
1
a
x−γ−1

[
(γ − βδ)Eδ

β,γ−α+1(ax−β) + βδEδ+1
β,γ−α−1(ax−β)

]
. (39)
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Corollary 9.1. Let α > 0, β > 0 with γ− [α] > 0 and a ∈ R (a 6= 0),
then there holds the formula

(
Dα
−[tα−γ−1Eβ,γ(at−β)]

)
(x)

=
1
a
x−γ−1

[
(γ − β)Eβ,γ−α+1(ax−β) + βE2

β,γ−α+1(ax−β)
]
. (40)
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[4] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher
Transcendental Functions, Vol. III. McGraw-Hill, New York (1955).

[5] C. Fox, The G and H-functions as symmetrical Fourier kernels. Trans.
Amer. Math. Soc. 98 (1961), 395-429.

[6] R. Gorenflo, A.A. Kilbas and S.V. Rogosin, On the generalized Mittag-
Leffler type function. Integral Transforms Spec. Funct. 7 (1998),
215-224.

[7] R. Gorenflo, Yu. Luchko and S.V. Rogosin, Mittag-Leffler type func-
tions, notes on growth properties and distribution of zeros. Preprint
No. A04-97, Freie Universität Berlin, Serie A Mathematik, Berlin
(1997).

[8] R. Gorenflo and F. Mainardi, The Mittag-Leffler type function in the
Riemann-Liouville fractional calculus. In: Boundary Value Problems,
Special Functions and Fractional Calculus (Proc. Int. Conf. Minsk
1996) Belarusian State Univ., Minsk (1996), 215-225.

[9] E. Hille and J.D. Tamarkin, On the theory of linear integral equations.
Ann. Math. 31 (1930), 479-528.



CERTAIN PROPERTIES OF FRACTIONAL CALCULUS . . . 153

[10] P. Humbert, Quelques resultats d’le fonction de Mittag-Leffler. C. R.
Acad. Sci. Paris 236 (1953), 1467-1468.

[11] P. Humbert and R.P. Agarwal, Sur la fonction de Mittag-Leffler et
quelques unes de ses generalizations. Bull. Sci. Math. (2) 77 (1953),
180-185.

[12] A.A. Kilbas and M. Saigo, On solution of integral equations of Abel-
Volterra type. Differential and Integral Equations 8 (1995), 993-1011.

[13] A.A. Kilbas and M. Saigo, Fractional integrals and derivatives of
Mittag-Leffler type function (Russian). Dokl. Akad. Nauk Belarusi
39, No 4(1995), 22-26.

[14] A.A. Kilbas and M. Saigo, On Mittag-Leffler type function, fractional
calculus operators and solutions of integral equations. Integral Trans-
form. Spec. Funct. 4 (1996), 355-370.

[15] A.A. Kilbas and M. Saigo, Solution in closed form of a class of linear
differential equations of fractional order (Russian). Differentsialnye
Uravnenija 33 (1997), 195-204; Translation in: Differential Equations
33 (1997), 194-204.

[16] A.A. Kilbas and M. Saigo, H-Transforms. Theory and Applications.
Ser. ’Analytic Methods and Special Functions’, Vol. 9, CRC Press,
London and New York (2004).

[17] A.A. Kilbas, M. Saigo and R.K. Saxena, Generalized Mittag-Leffler
function and generalized fractional calculus operators. Integral Trans-
form. Spec. Funct. 15 (2004), 31-49.

[18] A.A. Kilbas, M. Saigo and R.K. Saxena, Solution of Volterra integro-
differential equations with generalized Mittag-Leffler function in the
kernels. J. Integral Eq. Appl. 14 (2002), 377-396.

[19] J.D.E. Konhauser, Biorthogonal polynomials suggested by the La-
guerre polynomials. Pacific J. Math. 21 (1967), 303-314.

[20] A.M. Mathai and R.K. Saxena, The H-Function with Applications in
Statistics and Other Disciplines. John Wiley and Sons, New York-
London-Sydney (1978).

[21] G.M. Mittag-Leffler, Sur la nouvelle fonction Eα(x),˙C. R. Acad. Sci.
Paris 137 (1903), 554-558.



154 R.K. Saxena, M. Saigo

[22] G.M. Mittag-Leffler, Sur la representation analytiqie d’une fonction
monogene (cinquieme note). Acta Math. 29(1905), 101-181.

[23] T.R. Prabhakar, A singular integral equation with a generalized Mittag-
Leffler function in the kernel. Yokohama Math. J. 19(1971), 7-15.

[24] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and
Derivatives. Theory and Applications. Gordon and Breach, Yverdon
et al. (1993).
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