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1. Introduction

The potential theory of a-stable processes, 0 < a < 2, was studied in-
tensively in the recent years. In [7] and [8], the boundary Harnack principle
for bounded Lipschitz domains of R? was proved for a-harmonic functions
using probabilistic proof. In [3], for a = 2 Bachar, Maagli and Zeddini
treated the following non linear singular elliptic problem

Au—+ f(.,u)=0, in D,
u=¢, on dD,

lim wu(z) =0,
|| =00
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where D is an unbounded regular domain in R?, (d > 3), with compact
boundary, and f is a nonnegative Borel function in D x (0,00), that be-
longs to a convex cone which contains, in particular, all functions f(z,t) =
q(z)t=7, v > 0 with ¢ is in a certain Kato class K(D).

In [11], the authors considered the following problem

Au+ F(z,u) = —g(z), in D,
u = ¢, on 0D,

| |lim u(x) = ,when D is unbounded,
x|——+00

where D is a domain in R, (d > 3), F is a measurable function defined on
D x (0,b) for some b € (0,00] and —U (z) f(x) < F(x,u) < V(z)f(u), where
1
U and V are Green tight functions on D such that sup ) < .
O<y<e Y CllVip
The authors used the implicit probabilistic representation for solutions of

Dirichlet boundary value problem combined with Schauder’s fixed point
theorem.

For the fractional Laplacian with « € (0,2] Belhaj Rhouma and Bez-
zarga in [4], considered the following problem

—(—A)%'LL = f(.,U), in D,
u = ¢, on D,

where ¢ € C(D), D is a bounded C'!-domain in R%(d > 3) and f is
assumed to be a measurable function in D x (0, c0) that belongs to a convex
cone which contains, in particular, all functions f(x,t) = g(x)t™7, v > 0,
with Borel function ¢ is in some class of functions.

The main goal of this paper is to obtain criteria for the existence and
uniqueness of positive solutions, bounded below by a positive a-harmonic
function, of a class of semilinear elliptic problems

—(=A)2u = f( yu), in B,

u = ¢, on B, (1.1)
‘ |lim |z|“"%u(x) = A >0,
x|—+00

where B is the exterior of the unit ball of R?. By a solution of (1.1), we
mean a continuous function u which satisfies the equivalent integral equation

ue) =h@) ~ [ Gmlonfudy, ceR, (12
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where Gg¢ is the Green function of (—A)?2 on B° and h is the a-harmonic
extension of ¢. The function f is assumed to be a measurable function on
B x (0, 00) that belongs to a convex cone which contains, in particular, all
functions f(z,t) = q(z)t™7, v > 0, with Borel function ¢ in some class of
functions related with the so-called Kato class Seo(XP). Also, with analytic
method and using estimations on the Green function, we will show that
solutions of (1.1) satisfy the boundary Harnack principle (BHP) without
any restriction on the sign of f.

As usual, if A is a subset of R?, we denote by B(A) the set of real Borel
functions in A and By(A) the set of bounded ones. C(A) will denote the
set of continuous real functions in A, C.(A) the set of ones with compact
carrier and

Co(A) :={veC(A): lim v(z) =0 and lim v(x) = 0}.

z—0A |z|—o00

If F is a set of functions, we denote by F' the set of positive elements of
F. As usual A€ is the complement of A and for any x € D, let us denote by
0p(z) the Euclidian distance between z and the boundary 0D of D. The
letter C' will denote a generic positive constant which may vary from line
to line. When two positive functions are defined on a set A, we write f ~ g

1
when the two-sided inequality c f<g<Cf holds on A.

2. The a-harmonic Dirichlet problem

In this section, we will recall some properties of the a-stable process in
R? which is associated to the infinitesimal generator (—A)z.

For a € (0,2), we denote by ((Xt)¢>0, P*) the standard rotation invari-
ant (or symmetric) a-stable process in R, with index of stability a, and
the characteristic EF%e®Xt = ¢~ ¢l" ¢ € RY, t > 0, (see [9] for an explicit
definition). As usual E7 is the expectation with respect to the distribution
P? of the process starting from 2 € R% The process (X;)i>0 has the po-

tential operator (see [1] or [12]), U, f(x) = A(d, a)/R f(y)

————d h
(o= gt Yy, where

d— a
A(d,~) = Aw) and the infinitesimal generator (—A)z,

- d
27 2T(13])

u(z +y) —u(x)
’y|d+a

—(=A)2u(z) = A(d, —a)/

R4
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To justify the notation (—A)%, we note that the Fourier transform of the
generator (—A)2 and the Fourier transform of the Laplacian A, satisfy the

equation (sce [12]) F((—A)%)(€) = €| = (F(=A)(©))5.

Note that a symmetric a-stable process X on R? is a Lévy process whose
transition density p(t,x — y) relative to the Lebesgue measure is uniquely
determined by its Fourier transform fRd emép(t, x)dx = e el When a = 2,
we get the Brownian motion.

For a Borel set A C R?, we define Ty = inf{t > 0: X, € A}, the first

entrance time of A.

DEFINITION 2.1. Let u be a Borel function on R?, which is bounded
from below. We say that u is a-harmonic in an open set U C RY if u(x) =
E*(uo Xr,.), * € B, for every bounded open set B with the closure B
contained in U. We say that u is reqular a-harmonic in U if u(z) = E¥(u o
XTUC), rzeU.

By the strong Markov property, a regular a-harmonic function w is nec-
essarily a-harmonic. The converse is not generally true. However, by the
proof of Proposition 24.10 in [13], if u is continuous on U and a-harmonic
in U, then it is regular a-harmonic in U provided U is bounded.

The above definitions have their analytic counterparts (See [5] or [12]).

Let U be the family of all open balls B(a,r). For every U = B(a,r)

we define a sweeping kernel Hfj by Hf f(z) = / ) fydy (f e
UC

Bt (RY),x € U), where the density is defined by

(r* — |z —al?)

(ly —af> = r?)

and a, = Wf(%ﬂ)f‘(%)sin(a—;).
For every z € R% and every open subset V of R? we define

ly—z|™% |z—al<r<|y—a

Pg(y) = Qq

[N][=]NT])

U ={UelU:2€U}, UV)={UeclU:UcCV}.

In the following D denotes a domain in R?, (d > 2) with compact C1!
boundary.

DEFINITION 2.2. A function s is said to be a-superharmonic in D if:
(a) s >0, s # o0,
(b) s is lower semicontinuous,

(c) Hijs < s, U eU(D).
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It is well known that, if f is a continuous function in D¢ and satisfying

/D @

e 1+ |z|dte

in the case where D¢ contains the point at infinity, then there is a function
H®f, defined in R, a-harmonic in D and coincides with f in D¢ (see [12]).

3. The 3G-theorem

In this section, we will give some estimates on the Green function of the
fractional Laplacian on an unbounded domain D C R, (d > 3) with com-
pact boundary such that D° is consisting of finitely many disjoints bounded
Cl1-domains, and we will prove the Harnack principle for the exterior of
the unit ball.

In [10] Chen and Song have obtained interesting estimates on the Green
function Gp of the fractional Laplacian in a bounded C*! domain D in R¢
(d > 3). In particular they showed the existence of a constant C' > 0, such
that for each x,y,z € D

Gp(z,y)Gp(y, 2) op(y) op(y)
Goo) =€ <(5D(:r) 5 (2)

where 0p(z) denotes the Euclidien distance between x and 0D, and using
the Kelvin transformation Bachar, Maagli and Zeddini in [3] obtained a 3G-
theorem for an unbounded domain D in R?, (d > 3) with compact boundary
such that D° is consisting of finitely many disjoints bounded C'''-domains,
they prove that there exists C' > 0 such that for each x,y,z € D we have

Gp(z,y)Gp(y, z) <c <(pD(y))3GD(x,y) I (PD(?/))‘;GD(%Z,)> . (3.2)

)%GD(xvy) + (

>3GD<y,z>) .3

Gp(,2) pp(x) pp(2)
_ dp(z) :
where pp(x) = ———— for x € D. They also prove that there exists
(5D(.’L') +1
C > 0 such that for each z,y,z € D,
2 C
PP gy < — S (33)
pp(x)? |z —y|T 2

Next we shall give some preliminary estimations of the Green function which
will be needed later, for that we recall [3] the following lemmas:
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LEMMA 3.1. There exists C' > 0 such that for each xz,y € D, we have

1 (3p(z)dp(y))?
il <G ). 3.4
C Ayt = P .
Moreover for M > 1 and r > 0, then there exists a constant C' > 0 such
that for each x € D and y € D satisfying |z — y| > r and |y| < M

o eo(@)pp(y))?

G <
D(xvy) — |CE—y|d_a

(3.5)

In the sequel of this section, let D = B and let z* = iz be the Kelvin
x
transformation from D into D* := {z* : x € D} = B\ {Opa}.

LEMMA 3.2. There exists C' > 0 such that for each x € D, we have

i) (6p(x) +1) <la| < C(op(x) + 1), (3.6)

i) Gpnle) < 8o (%) < Cpo(e). (3.7)

NOTATION. Let A be a subset of R?\ {Oga} and let f € B(A*). For any

~

€ A, we put f(z) = |7 f(x*).

THEOREM 3.1. Let ¢ € C(B) and let H%¢ the a-harmonic extension
of ¢ on D (as in [12] page 267) such that | llim 2|3~ HY p(z) = A > 0.
x|—-+00

Then there exists H§$ the a-harmonic extension of 5 on B. Moreover
we have Hggg =H%¢ on B\ {Oga}.

Proof. First we remark that ¢ € C(D) and ||f|(d?a| < HT:U‘EO"ZB n D,
where [|¢||,, 5 = sup [#(z)[. So (see [12] p.267), there exists Hg¢ the a-

rzeB
harmonic extension of ¢ on B. Moreover we have ngAﬁ(x) = / (E(y)s;(dy),
D
x € B\ {Oga}, with Green measure of D:

dy
|z —y|?’

1—|af?

%
-1

ex(dy) = X (>0 PE (1) dy = anX(jy>1)(
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where a, = F(g) —5-1 sin(%"). Now we fix x € D, then

dy
|z* —y|d

—|z* ] 2
(") = aa [ (- ;
b 1)
If we put y = &" in the right hand side and using the fact that (see [3])

x
|€F — x*| = =——, we get
T

|z

o *\ d—a -1 % dé — d—a
(") = aa | o O g = e JRGECS

o —1 o dE
where ¢, (d€) := aaX(¢|<1) (1 G )2 T is the Green measure of B.
—_— x —_—
By ([12] page 267), we get Hg;ﬁ(x*) = |z|9"*H®¢(z). This ends the proof.

[
Now we are ready to state the boundary Harnack inequality.

THEOREM 3.2. Let V be an open set and let K C V be a compact
subset. Then there exists a positive constant C' = C(K,V, D) such that for
any positive a-harmonic function u in D, vanishing on D* NV we have

9l ja-ago(z) 5 _ w2) _ ool 0o pple) g

el o’ S uw SN o)

z,y € KND.

P roof. In [4] Belhaj Rhouma and Bezzarga have proved that, if D is
a bounded C! domain, V is an open set and K C V is a compact subset,
then there exists a constant C' = C(K,V, D) such that for any positive
a-harmonic functions w in D, vanishing on DNV we have

1 ,0p(x)

3 U(SL‘) 5D(l‘) o
— 2 < <C 2, z,ye KND.
oo =) =) Y
By Theorem 3.1, this result is available for D* U {0}, so we can write
1 0p«(z*). o _ u(x®) Op=(x*), e
— 2 < — <C 2, a¥,y* e K*nD*".
clon-en))” =) = ) T

Using (3.7), we get

M)d—a(pD(x)

= [¥l\a-aipp(@) e
C'(|x| op(y)’ " = u(y) <O )2, ,y € KND.

N—
1)
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4. The class S, (XP) for (—A)%

In this section we will assume that D is an unbounded domain in R,
(d > 3) with compact boundary such that D¢ is consisting of finitely many
disjoints bounded C'! domains. In [11], Chen and Song have introduced
the following class of functions Su(XP) as follows:

DEFINITION 4.1. A function ¢ is said to be in the class Su(XP) if,
for every ¢ > 0, there exists a constant 6 = d(g) > 0 such that for any
measurable set B C D with Lebesgue measure |B| < 4,

GD x y GD y7 )
sup

ply)|dy < e, 4.1
(2,2)€DXD Gp(z,z2) p()l (4.1)

and there is a Borel subset K = K (¢) of finite Lebesgue measure such that

Gp(z,y)Gp(y, 2)
g / y)ldy <e. 4.9
(z,2)EDxD J D\K GD(I', Z) ’SO( )| ( )

REMARK 4.1. From (3.2) if for every € > 0, there exists a constant
0 = d(e) > 0 such that for all measurable sets B C D with Lebesgue measure

|B| < § such that
1 (pp(y))
reb /B (pp(@))

and there is a Borel subset K = K (¢) of finite Lebesgue measure such that

- (pp(y))
v /D\K )
then ¢ € Soo (XP).

REMARK 4.2. Note that, if ¢ satisfies (4.3) and (4.4), then

y— 6p(y)*¢(y) € Lioe(D) (4.5)

Gp(z,y)|e(y)ldy <e, (4.3)

wlR| NIR

Gp(z,y)le(y)ldy <, (4.4)

wlR| N[R

PROPOSITION 4.1. Let ¢ € Soo(XP), then

o GD('Ivy)GD(yaZ)
lello = sup [ SEEIEE D otyldy < o
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P roof. Let € >0, then there exists a compact K such that

/ Gp(z,y)Gp(y, 2)
D\K Gp(z,2)

sup lo(y)|dy < e.

(z,2)eDxD
Also, there exists § > 0 such that for all B C D with |B| < d, we have

/ GD(CC, y)GD(y7 Z)
B GD($72>

sup lo(y)|dy < e.

(x,2)eDxD

Let x1, 2, ..., 2, in K such that K C U B(z;,1), where r > 0 is the radius
1<i<p

of all the balls centered in x;; i € {1,2,...,p} and satisfies |B(z;,7)| < ¢ for

all z;; 4 € {1,2,...,p}. The proof, then holds by the above two inequalities.

[

PROPOSITION 4.2. Let ¢ € Sxo(XP), 29 € D and h be a nonnegative
a-superharmonic function in D. Then, for all x € D we have

/D G (. 9)l o) h(y)dy < Cllglphz). (4.6)

Moreover, from Proposition 3.1 in [11] we have

1

(o o5 [ oyl =0, 47

and

) 1
i oo [ Go@ @l =0, (48

P r o o f. Using Proposition 4.1, we get for all x,z € D

/D Gp(z,1)Cp(y, 2)leWldy < |¢lpGp(z, 2).

On the other hand by (3.3), the kernel V¢ given by V¢ f = / fW)Gp(.,y)dy,
D

f € By(R?), is proper for 0 < o < 2. Then (4.6) holds by Hunt’s approxi-
mation theorem (one can see p.23 in [6]). ]
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COROLLARY 4.1. Let ¢ € Soo(XP). Then we have:

i) sup / G (., y)|e(y)|dy < oo, (4.9)
xeD JD
.. a ) 2
i)y op(y)Eely) € Lo (D) and y @(j’l (v) € L'(D). (4.10)
Proof. By (3.4), we have
o |z|42
/ 50(9)% lo(y)ldy < c 2 / G () |(y)ldy < oo.
DA(ly|<M) dp(x)2 Jon(yl<m)

Using the same argument we can write

Sp(y)? |72
/D 75 p(y) < C5D($)% /DGD(%?J)W(Z/)WZ/ < oo.

That achieves the proof of (4.10). [

1

ProposITION 4.3.  Let q(y) 5, for y € D, then the

~ lylen(y)
function q satisfies (4.3) and (4.4) if and only if A < a < p.
Proof. Using (3.6 ite g(y) ! d using
r o o f. Using (3.6), we can write ¢(y) ~ —————, and usin
lyl+=*(0p ()
[3] we end the proof. [

THEOREM 4.1. Let ¢ be a function in So.(X?). Then the function
V() :/ Gp(z,y)e(y)dy is in Co(D).
D

Proof. Letzp€ D and g1 > 0, by (4.7) and (4.8), 3 > 0, IM > 1:

€
sup/ Gp(&y)le(y)ldy + sup/ Gp (& v)|ply)|dy < Zl
£€eD J DNB(xo,2¢) &eD JDN(|y|>M)

Let z, 2" € B(xg,e) N D, then we have

3
V() - Vela) < 5 + Gola, ) — Cola’, y)lle(v)ldy.
DNB¢(xo,2e)NB(0,M)
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On the other hand, for every y € B¢(xg,2¢)NB(0, M)ND, z, 2’ € B(xg,e)N
D we get using (3.5), that

(=1 (=1
2 2

pp(2') 2 pp(y) | < Cf;g(z)g'

pp(z)2 pp(y)
|z — yli— |z’ — yl|d-o

’GD(J?,Z/) - GD($I7y)| < C[

Now since Gp is continuous outside the diagonal, we deduce by the domi-
nated convergence theorem and (4.10) that

/ Gplz,y) — o y)lleW)ldy — 0 as |z — /| — 0.
DNBe(x0,2¢)NB(0,M)

Hence Vi € C(D). Finally, we need to prove that Vp(z) — 0 as |z| — oc.
Let x € D such that |z| > M + 1. Then we have

G (2, 9)lp(y)ldy + / Gz, 9)lp()ldy.
DNB(0,M)

Vel <

DNBe(0,M)
For y € DN B(0, M), we have |x — y| > 1. Hence by (3.5) we get

€1 C a
Vo(z §+_/ dp(y) 2 [p(y)|dy.
[Ve(z) 2 VG =307 Jongyenn p¥)2le(y)]

Using (4.10) we obtain V() — 0 as |z| — +oo. [

5. Existence of solutions of (1.1)

In this section, we are concerned with the existence of solutions of (1.1).
Moreover, when the function f is non increasing in u, we show the unique-
ness of the solution. We also show that such solutions satisfy the Boundary
Harnack Principle.

5.1. a-harmonic measure. Let ¢;, z € R%, be the Dirac measure,
and let V be an open set in R%. For each point z € R?, the P? distribution
of X7, is a probability measure on V¢, called a-harmonic measure (in x
with respect to V') and denoted by w{, which is usually supported on V¢
and w¥ = ¢, for x € V. In our case we remark that w% = ¢, and Whe = £,

Also, we recall that for a measure 1 on R%, we define its Riesz potential by

Uh(e) = Ao [

R |z —yld—”



258 M. Bezzarga, Kh. Kefi

We recall that the Green function satisfies
GD(CL',y) :Uéx(y)_U;‘)D(y)? l’,yGRd. (5]‘)

It is well known that the first term on the right hand side of (5.1) is a-
harmonic in R%\ {y} (see [12]) and the second term is regular a-harmonic
in x € D. Moreover, we have, in the sense of distributions,

A(d, «)

(—A)%(m) =¢e,, zeR? (5.2)

(see Lemma 1.11 in [12]). Thus, we get the following lemma:

LEMMA 5.1. For any measurable function g such that
x — / Gp(z,y)|g(y)|dy in L*(D) and such g = 0 in D¢, we have
D

/Gny y)dy =g(z), z€D
in the distributional sense.

Proof. Let peC§°(D)=Co(D)NC>®(D). Since/GD(:c,y)g(y)dy—O
D

in D¢ we get

/ / G (e, y)g(y)dy(~A)5 p(x)dz = / / G (e, y)g(y)dy(~A) p(z)dz.
ReJ D DJD

Using the fact that |(—A)2¢(y)| < C(1+ |y))~4*, y € R% we obtain, by
Fubini’s theorem and (5.2) the following identity:

/ /Gax V)9(y)(=1)2 p(w)dydz

= /Rdcp y)g(y)dy — /Rd /Rd 0(2)g9(y)dwp (z)dy.

Since / ¢(2)dw?,(z) = 0, it follows that
R4

/ /Gp(xyy)g(y)(—ﬂ)gw(w)dydx=/ (y)g(y)dy.
R4 JD

Rd

In the remaining of this paper we will assume that D = B
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5.2. The global results. We assume that the following assumptions
hold:

H;. ¢ € C(D¢) which is zero on a neighborhood of 9D and positive on
the complement.

H,. f is a measurable function defined on D x (0, 00) which is contin-
uous with respect to the second variable.

Let hg be a nonnegative continuous function which is a-harmonic in D
such that Z = {x : ho(x) = 0} is a nonempty connected subset contained
in a neighborhood of 9D and ho(z¢) = 1 for some xy € D.

In the sequel, let us consider the function A which solves the Dirichlet
problem

(=A)2h =0, in D,
h = ¢, on D¢ (5.3)
lim |z|¢"%h(z) = X > 0.
|| —+o0
For any a > 0, we set F, = {u € C(D) : u > a}.
Our main existence results are the following:

THEOREM 5.1. Assume Hq and Hs hold. For some a > 0, we suppose
that there exists a nonnegative function q, € Soo(X?), such that for every
u € Fy,

(@ u(@)h(2))] < ga(2)h(z), ¥z € D. (5.4)

Then there exists by = b(¢, a) > 0 such that for any b € [by, 00) there exists
a solution u of .
—(=A)2u= f(.,u), in D,
u = by, on D, (5.5)
|a:l|iL1r1Oo |z u(z) = X > 0.
Moreover, u > ah.

In the sequel, the following result will be used later to proof theorems.
First we remark that it follows from Theorem 3.2 and the assumptions on
h and D that there exists ¢; such that

hiz) > clp‘;”(f_f, for all z € D, (5.6)
and o
ho(2) > e P29 g al v e D, (5.7)

|4

Q
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For each w € F,, define Tyw, by
1
Tyw(z) =b— / Gp(z,y)f(y,w(y)h(y))dy , for all z € D.
h(z) Jp
PROPOSITION 5.1. The family of functions
1
K=ty | Golen) fowh(u)dy: w e F)
h(z) Jp

is uniformly bounded and equicontinuous in C(D), and, consequently, it is
relatively compact in C(D).

Proof Set Tw(x) = ﬁfD Gp(z,y)f(y,w(y)h(y))dy. By (5.4), we
have for all w € F,, |[Tw(z)| < ﬁfD Gp(x,9)q.(y)h(y)dy. Since ¢, €
Soo(XP), then by proposition () we get

[Twlloe < CllgallD- (5.8)
Hence, the family K is uniformly bounded. Now, we propose to prove the
equicontinuity of . Indeed, fix zyp € D and € > 0.

Using (4.7) and (4.8), for all £; > 0, there exists € > 0 and M > 1 such
that

)
sup—— Gp(2,y)4a(y)h(y)dy <
xEDh(x) DNB(zo,2¢) D( ) () ()
sup— /
zeD () DNBe(x0,2¢)N(|y|>M)

)

w|0 o2

Gp(z,y)qa(y)h(y)dy

IN

Then for any x,2’ € D N B(xg,¢) and w € F,, we have
/ €1
|Tw(x) — Tw(z")| < )

GD(xa y) GD(J’J? y)
+ / - qa(y)h(y)dy.
DﬂBC(:po,Qs)ﬂ(\y|§M)‘ h(z) h(x') 192(9)(0)

Moreover, if |xg — y| > 2¢ and |z — xo| < €, then |z — y| > . Using (5.6)
and (3.5) for all z,y € D such that |z — y| > ¢ and |y| < M, it follows that

o gu()nts) < LHE ot ileaal) < C0(0)? )
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GD ((IZ, y)
h(z)

y € B%x0,2¢e) N DN (lyl < M), then we conclude from (4.10) and the

Lebesgue’s dominated convergence theorem that

/ |GD(967 y) Gp('y)
DABe(o,20)N(lyl<M)  P(T) h(x')

Since the map z — is continuous in B(zg,&) N D, whenever

|4a(y)h(y)dy — 0, as [z—a'| — 0.

Finally, we deduce that |Tw(z) — Tw(z")| — 0, as |z — 2’| — 0 uniformly
for all w € F,. The last assertion then holds by Ascoli’s theorem. ]

Proofof Theorem 5.1. From (5.8) we have that Tyw > b—C|q4|| p-
Thus, for any b > by := a + C/||qa||p, we have Tpw > a. Hence

Ty(F,) C F,.

On the other hand, we note that if (wy), is a sequence in F, such that
lwn — w|lec — 0, then f(z, h(z)wy(z)) converges to f(z, h(z)w(zx)) for all
x € D. An application of the Lebesgue’s theorem implies that Twy,(z) —
Tw(x), for all x € D and by Proposition , the convergence holds in the
uniform norm. Thus we have shown that T}, : F,, — F, is continuous.

Since Ty (F,) is relatively compact, then the Shauder fixed point theorem
implies the existence of w € F, such that

w(z) =b— h(l) /D G (e, 9) (4, w(y)h(y))dy. (5.9)

For any = € D, put u(z) = w(z)h(z). Thus, u is a solution of

u() = bh(z) - /D G () (. uly))dy, (5.10)

i.e. u is a solution of (5.5). Since u = wh where w is the function given in
(5.9) and w > a, then u > ah. n

THEOREM 5.2. Assume that the conditions of Theorem 5.1 hold and
that the mapping uw — f(.,u) is nondecreasing. Moreover, we assume that
for any ¢ > 0, there exists a nonnegative measurable function q. such that:

i / Gp(z,9)g(y)dy < oo,

D
i) [f(z,y) = f(2,9)] < ¢e(@)ly — '], v,y €[0,c].
Then there exists an unique solution of (5.5).
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P roof. Letu; and uy be two solutions of (5.5) and let
¢ = maz(|[ur]loo; [|uzloo). Set

[z, u(x)) — f(z,ua(z))
w(x) — Ul(l’) — u2( ) ) if Ul(l’) 7£ u2($)7
0; if uq(x) = ug(x).
Then 0 < ¢ < ¢, and by (1.2) we get ui(z) — ua(x )+V¢ (u1 —ug) =0,
where for any Borel function g, Vw / Gp(x,y)g(y)Y(y)dy.

Since u1 — ug + V(w1 — ug)t = Vi (u1 — u2)”, we obtain

Vi(ur —ug)™ > Vi (ur — u2)™ on the set [(u1 — uz)™ > 0]. We get from

the complete maximum principle that Vi (u1 —u2)™ > V(w1 — ug)™ on D

and therefore u; > uo on D. Similarly, by interchanging u; by us we get

w1 = ug on D. Since u; = ug on D¢, we obtain u; = ug on RY. [ ]
We follow the proof of the boundary Harnack principle.

THEOREM 5.3. Suppose that the assumptions of Theorem 5.1 hold and
let V' be an open set. Then, for every compact K C V, there exist constants
c1, ¢ > 0 depending only on K,V and D such that for any solution u of
(1.1) given in Theorem 5.1 such that u(zg) = 1 we have

wR
[N]])

pD(x) <’LL( )S Cng L

e reKND.

C1

Q
|

Proof. Letuand w as defined above. Then, from (5.4) and (4.6) we

get
/ Gp(x, y)|f(y, w(y)h(y))ldy S/ Gp(2,9)qa.(y)h(y)dy < Cllgal ph(z).
D D

Finally, from (5.10) we get u(z) < (b+ 2||gq||p)h(z). Since
ah(z) < u(z) < (Cllqallp +b)A(z), = €D

and A vanishes continuously on V N D€ then Theorem 3.2 ends the proof. m

COROLLARY 5.1. Assume Hy and Hy hold. Moreover we suppose that
there exist B > 0, v > 0 and two nonnegative functions q and ¢, satisfying:

a: [f(z,t)] < qlx)t™, for 0 <t <g,

b: |f(z,t)| < qi(z), for t > 3,
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c: The maps © — q(x)pp(z) 2 1H7)|g|@-a)(1+7)
and z — q1(z)|z|"pp(x) 2 are in Seo(XP).
Then, there exists by > 0 such that for every b € [by, 00) there exists a
solution of (5.5) satisfying u > ah.

Proof. From (5.6), we have
q(z)h(x) 7177 < erg(x)pp(x) 7 T | (@14

and |q1(2)h(z)"Y < crqu(z)|z|*pp(x) =, which yields that gh~ '~ and
qih~!arein Sy (XP). Set Ay, = C|lgh~'"||p and By, = C||g1h™!||p. Then,
the mapping a — a+ Apa™" 4 By, attains its minimal value bg for a positive
number ag. Setting gq, = sup(aawqh_l_v,qlh_l), we get that for every
w € Foo, |f(z,w(y)h(y))] < qao(z)h(y). The conclusion follows from the
previous theorem. ™

ExaMPLE 5.1. Under the conditions of Corollary 5.1, we suppose that
there exists C' > 0 and v quite small such that ¢(z) < -————— and
. |z|*(pp ()

q1(7) < ————— for A < § and d < p, then using Proposition 4.3, the
|z |#(pp(2)
result of Theorem 5.1 holds.

THEOREM 5.4. Assume Hj is true. Suppose that there exist 3 > 0, v >
0 and two nonnegative functions q and q; satisfying the same conditions of
Corollary 5.1, then there exists by > 0,ag > 0 such that for any ¢ € C.(D°)
with ¢ > bohyg, there exists a solution u of (1.1) such that u > aghyp.

P roof By (5.7), we get that qhgl_7 and g hy! are in Soo(XP).
So let A = C||qh6177||p and B = C||q1hy||p. Then, the map a — a +
Aa™7 + B has its minimal value by for a positive number ag. Set K(x) =
sup(aavq(x)halfw,qlhal). Let ¢ € C.(D) be such that ¢ > bphy. Set
gz~5 = %gb and h the solution of
{ (=A)2h =0, in D,

h = %qb, on D¢ (5.11)

Then, by the maximum principle (see Theorem 1.28 in [12]), we get h > hg.
Using the fact that v > 0 and the assumptions on ¢ and ¢; we get that for
every w € Fg,, we have

| f(z, w(y)h(y))| < (ag q(x)h ™ (2)) V q1(x)
< [(ag q(@)hg 77 (@) V (q1(2)hg  (2)))]h(z) = K ()h(z).
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Hence

w7 L ol whmiy < o [ Golan) Kty

< C|K|p < Aay” + B.

Hence for b > by = Aag'y + B+ ag, we get Tyu > b — Aagﬂ’ — B > qqg.
As in the proof of Theorem 5.1, Ty(F,,) C Fy,. Hence, we conclude that
there exists a function w € F,, such that T,w = w, i.e. w is a solution of

Ty(w) = b— h(lx) /D G (. 9) f (4, w(y)h(y))dy. (5.12)

It follows that if we take b = by in (5.12), the function u = wh is a solution
of (1.1) such that w > agho. ]

In the sequel, we shall give the general Boundary Harnack Principle
(BHP) for the case f > 0.

THEOREM 5.5. We assume Hi, Hs and the function f is nonnegative.

Let u be a solution of (1.1) which is minorized by hg. Moreover, we
suppose that there exists an open set V such that u vanishes continuously
on VN D€, Then, for every compact K C V', there exist constants ¢, co > 0
depending only on u, hg, K,V and D such that

P r o o f. Using the assumption on u, we get hg < u < h in D. The
conclusion then follows from Theorem 3.2. ]
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