AN $L^{P}-L^{Q}$-VERSION OF MORGAN'S THEOREM ASSOCIATED WITH

 PARTIAL DIFFERENTIAL OPERATORS

 PARTIAL DIFFERENTIAL OPERATORS}

Lotfi Kamoun

Abstract

In this paper we take the strip $\mathbb{K}_{\ell}=[0,+\infty[\times[-\ell \pi, \ell \pi]$, where ℓ is a positive integer. We consider, for a nonnegative real number α, two partial differential operators D and D_{α} on $] 0,+\infty[\times]-\ell \pi, \ell \pi[$. We associate a generalized Fourier transform \mathcal{F}_{α} to the operators D and D_{α}. For this transform \mathcal{F}_{α}, we establish an $L^{p}-L^{q}$-version of the Morgan's theorem under the assumption $1 \leq p, q \leq+\infty$.

2000 Mathematics Subject Classification: 42B10, 43A32
Key Words and Phrases: generalized Fourier transform, Morgan's theorem

1. Introduction

A rigourous formulation of the uncertainty principle in the framework of the classical Fourier analysis on \mathbb{R} is to investigate the $L^{p}-L^{q}$-sufficient pairs of positive functions in the following meaning. A pair (g, h) of positive functions is called an $L^{p}-L^{q}$-sufficient pair if, for every measurable function f, the conditions $g^{-1} f \in L^{p}(\mathbb{R})$ and $h^{-1} \widehat{f} \in L^{q}(\mathbb{R})$ imply that $f=0$ almost everywhere, where \widehat{f} is the Fourier transform of f defined by

$$
\widehat{f}(y)=\int_{\mathbb{R}} f(x) e^{-i x y} d x
$$

Several authors have studied this form of the uncertainty principle in many situations. Let us to indicate some of such works. In 1933, Hardy [9] showed that the pair ($\left.e^{-a x^{2}}, e^{-b \lambda^{2}}\right)$ is $L^{\infty}-L^{\infty}-$ sufficient if and only if $a b>\frac{1}{4}$. After fifty years, M. Cowling and J.F. Price generalized Hardy's theorem to an $L^{p}-L^{q}$-version, where $1 \leq p, q \leq+\infty$. In 2001, M. Ebata [5] has given a similar theorem for the group $\mathbf{S U}(1,1)$. In 2003, N.B. Andersen [1] has established an $L^{p}-L^{q}-$ version of Hardy's theorem for the Jacobi transform. Also, L. Gallardo and K. Trimèche [8], in 2004, have given an $L^{p}-L^{q}$-version of Hardy's theorem related to the Dunkl transform. Another famous result is Morgan's theorem. For the classical Fourier transform, this theorem was proved in 1934 by G.W. Morgan [11] and it states that, for $u>2$ and $v=\frac{u}{u-1}$, the pair $\left(e^{-a|x|^{u}}, e^{-b|\lambda|^{v}}\right)$ is $L^{\infty}-L^{\infty}$-sufficient if and only if

$$
(a u)^{1 / u}(b v)^{1 / v}>\left(\sin \frac{\pi(v-1)}{2}\right)^{1 / v}
$$

Recently, in 2003, S. Ben Farah and K. Mokni [3] have generalized Morgan's theorem to an $L^{p}-L^{q}$-version, where $1 \leq p, q \leq+\infty$. Also, they extended this result to the euclidien space \mathbb{R}^{n}, to the Heisenberg group and to noncompact real symmetric spaces. For the Dunkl transform, S. Ayadi [2] in 2004, has given an $L^{p}-L^{q}$-version of Morgan's theorem.

In this paper we take the strip $\mathbb{K}_{\ell}=[0,+\infty[\times[-\ell \pi, \ell \pi]$, where $\ell \in$ $\mathbb{N} \backslash\{0\}$, and for a nonnegative real number α, we consider the following system of partial differential operators

$$
\left\{\begin{aligned}
D= & \frac{\partial}{\partial \theta} \\
D_{\alpha}= & \frac{\partial^{2}}{\partial y^{2}}+[(2 \alpha+1) \operatorname{coth} y+\operatorname{th} y] \frac{\partial}{\partial y}-\frac{1}{\operatorname{ch}^{2} y} \frac{\partial^{2}}{\partial \theta^{2}}+(\alpha+1)^{2} \\
\text { with } & (y, \theta) \in] 0,+\infty[\times]-\ell \pi, \ell \pi[.
\end{aligned}\right.
$$

For $\alpha=n-1, n$ being a positive integer, the operators D and $\left[D_{n-1}-n^{2}\right]$ with the identity generate the algebra $\mathbf{D}(\widetilde{G} / K)$ of left invariant differential operators on \widetilde{G} / K, where \widetilde{G} is the universal covering group of $G=\mathbf{U}(n, 1)$ and K is the subgroup $\mathbf{U}(n)$ (see [7]).

These operators give rise to generalizations of many two variables structures, like the Fourier transform and the convolution (see [14]), the dispersion and Gaussian distributions (see [13]).

An harmonic analysis related to these operators was introduced, in 1991, by K. Trimèche [14]. In particular, a generalized Fourier transform \mathcal{F}_{α} associated to the operators D and D_{α} is defined for a suitable function f as follows

$$
\forall(\lambda, \mu) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C}, \quad \mathcal{F}_{\alpha} f(\lambda, \mu)=\int_{\mathbb{K}_{\ell}} f(y, \theta) \varphi_{-\lambda, \mu}(y, \theta) d m_{\alpha}(y, \theta),
$$

where $\varphi_{\lambda, \mu}$ are eigenfunctions of the operators D and D_{α}, and m_{α} is a weighted Lebesgue measure on \mathbb{K}_{ℓ} (see section 2).

The main result of this paper is an $L^{p}-L^{q}$-version, where $1 \leq p, q \leq$ $+\infty$, of Morgan's theorem related to the generalized Fourier transform \mathcal{F}_{α}. More precisely, take $u>2, v=\frac{u}{u-1}$ and $p, q \in[1,+\infty]$. If a measurable function f on \mathbb{K}_{ℓ} satisfies the conditions $e^{a y^{u}} f \in L^{p}\left(m_{\alpha}\right)$ and for all $\lambda \in \frac{1}{\ell} \mathbb{Z}$, $e^{b|\mu|^{v}} \mathcal{F}_{\alpha} f(\lambda, .)_{\mid \mathbb{R}} \in L_{*}^{q}\left(\left|c_{\alpha, \lambda}(\mu)\right|^{-2} d \mu\right)($ see Section 3), where $a, b \in] 0,+\infty[$, then, whenever $(a u)^{1 / u}(b v)^{1 / v}>\left(\sin \frac{\pi(v-1)}{2}\right)^{1 / v}$, the function f is null almost everywhere.

The contents of this paper is as follows: Section 2 is dedicated to some properties and results concerning the eigenfunctions $\varphi_{\lambda, \mu}$ and the generalized Fourier transform \mathcal{F}_{α}. In Section 3 we establish a PhragmenLindelöff type result that we need to prove the main statement of this paper. In Section 4 we prove an $L^{p}-L^{q}$-version of Morgan's theorem related to the operators D and D_{α} under the assumption $1 \leq p, q \leq+\infty$ and $(a u)^{1 / u}(b v)^{1 / v}>\left(\sin \frac{\pi(v-1)}{2}\right)^{1 / v}$. In the particular case where $\alpha=\frac{1}{2}$ and ℓ is even, we show that this last condition is sharp.

2. Generalized Fourier transform associated with the operators D and D_{α}

This section is organized in the following way. First we introduce the eigenfunctions $\varphi_{\lambda, \mu}$ and recall some of these properties. Next we deal with the generalized Fourier transform \mathcal{F}_{α}.

Proposition 1. (See [14], Théorème I.1) For $\lambda \in \frac{1}{\ell} \mathbb{Z}$ and $\mu \in \mathbb{C}$, the initial problem

$$
\left\{\begin{array}{l}
D \Phi=i \lambda \Phi \\
D_{\alpha} \Phi=-\mu^{2} \Phi \\
\left.\Phi(0,0)=1, \quad \frac{\partial \Phi}{\partial y}(0, \theta)=0, \quad \theta \in\right]-\ell \pi, \ell \pi[
\end{array}\right.
$$

has a unique solution given by

$$
\varphi_{\lambda, \mu}(y, \theta)=e^{i \lambda \theta}(\operatorname{ch} y)^{\lambda} \varphi_{\mu}^{(\alpha, \lambda)}(y)
$$

where $\varphi_{\mu}^{(\alpha, \lambda)}$ is the Jacobi function defined by

$$
\varphi_{\mu}^{(\alpha, \lambda)}(y)={ }_{2} F_{1}\left(\frac{\alpha+\lambda+1+i \mu}{2}, \frac{\alpha+\lambda+1-i \mu}{2} ; \alpha+1 ;-\operatorname{sh}^{2} y\right),
$$

${ }_{2} F_{1}$ being the Gaussian hypergeometric function (see [6], ChII).
Properties. (See [14] and also [13])
i) For all $\lambda \in \frac{1}{\ell} \mathbb{Z}$ and $\mu \in \mathbb{C}, \quad \varphi_{\lambda, \mu}$ is even with respect to the first variable and $2 \ell \pi$-periodic with respect to the second variable.
ii) For all $\lambda \in \frac{1}{\ell} \mathbb{Z}, \mu \in \mathbb{C}$ and $(y, \theta) \in \mathbb{K}_{\ell}$,

$$
\begin{equation*}
\varphi_{\lambda, \mu}(y, \theta)=e^{i \lambda \theta}(\operatorname{ch} y)^{-\lambda} \varphi_{\mu}^{(\alpha,-\lambda)}(y) . \tag{1}
\end{equation*}
$$

iii) For all $\lambda \in \frac{1}{\ell} \mathbb{Z}, \mu \in \mathbb{C}$ and $(y, \theta) \in \mathbb{K}_{\ell}$,

$$
\overline{\varphi_{\lambda, \mu}(y, \theta)}=\varphi_{-\lambda, \mu}(y, \theta) \quad \text { and } \quad \varphi_{\lambda,-\mu}(y, \theta)=\varphi_{\lambda, \mu}(y, \theta) .
$$

iv) Consider the following set

$$
\Gamma_{\ell}=\left\{\left.(\lambda, \mu) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C}| | \Im m \mu \right\rvert\, \leq \alpha+1\right\} \cup \widetilde{\Omega},
$$

where

$$
\begin{equation*}
\widetilde{\Omega}=\bigcup_{m \in \mathbb{N}}\left\{\left.(\lambda, i \eta) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C} \right\rvert\, \eta \geq-(\alpha+1), \lambda= \pm(\alpha+2 m+1+\eta)\right\} \tag{2}
\end{equation*}
$$

$$
\text { AN } L^{P}-L^{Q} \text {-VERSION OF MORGAN'S THEOREM ... } 303
$$

Then we have

$$
\begin{equation*}
\forall(\lambda, \mu) \in \Gamma_{\ell}, \quad \sup _{(y, \theta) \in \mathbb{K}_{\ell}}(y, \theta) \mid=1 \tag{3}
\end{equation*}
$$

v) According to [10] page 150 , we can assert that, for all $(\lambda, \mu) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C}$ and $(y, \theta) \in \mathbb{K}_{\ell}$, we have

$$
\begin{equation*}
\left|\varphi_{\lambda, \mu}(y, \theta)\right| \leq C(1+y) e^{(|\Im \mathrm{m} \mu|-(\alpha+1)) y} \tag{4}
\end{equation*}
$$

where C is a positive constant.
Notations.

1) We consider the Lebesgue weighted measure on \mathbb{K}_{ℓ},

$$
d m_{\alpha}(y, \theta)=2^{2(\alpha+1)}(\operatorname{sh} y)^{2 \alpha+1} \operatorname{ch} y d y d \theta .
$$

2) We designate by:
i) $\mathcal{C}\left(\mathbb{K}_{\ell}\right)$ the space of continuous functions on \mathbb{K}_{ℓ}.
ii) $\mathcal{C}_{c}\left(\mathbb{K}_{\ell}\right)$ the space of continuous functions on \mathbb{K}_{ℓ} compactly supported.
3) We denote by $L^{p}\left(m_{\alpha}\right), 1 \leq p \leq+\infty$, the space of measurable functions f on \mathbb{K}_{ℓ} satisfying

$$
\|f\|_{p, \alpha}=\left\{\int_{\mathbb{K}_{\ell}}|f(y, \theta)|^{p} d m_{\alpha}(y, \theta)\right\}^{\frac{1}{p}}<+\infty \quad \text { if } p<+\infty
$$

and

$$
\|f\|_{\infty, \alpha}=\underset{(y, \theta) \in \mathbb{K}_{\ell}}{\operatorname{ess} \sup }|f(y, \theta)| .
$$

Definition 1. We define the generalized Fourier transform \mathcal{F}_{α}, associated to the operators D and D_{α}, on \mathbb{K}_{ℓ} by

$$
\begin{equation*}
\forall(\lambda, \mu) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C}, \quad \mathcal{F}_{\alpha} f(\lambda, \mu)=\int_{\mathbb{K}_{\ell}} f(y, \theta) \varphi_{-\lambda, \mu}(y, \theta) d m_{\alpha}(y, \theta) \tag{5}
\end{equation*}
$$

where $f \in \mathcal{C}_{c}\left(\mathbb{K}_{\ell}\right)$.
Remark 1. We notice that for all $f \in L^{1}\left(m_{\alpha}\right)$ and all $(\lambda, \mu) \in$ $\Gamma_{\ell}, \mathcal{F}_{\alpha} f$ is well defined.

The following two propositions are proved by K. Trimèche in [14].

Proposition 2. (See [14], Proposition VI.5) Let p and q be real numbers such that $1 \leq p<2$ and $\frac{1}{p}+\frac{1}{q}=1$. We consider the following strip:

$$
S_{p}=\left\{\mu \in \mathbb{C} \quad|\quad| \Im \mathrm{m} \mu \left\lvert\,<\left(\frac{2}{p}-1\right)(\alpha+1)\right.\right\} .
$$

Then the function $\varphi_{\lambda, \mu}$ belongs to $L^{q}\left(m_{\alpha}\right)$ in the following cases:

- $\lambda \in \frac{1}{\ell} \mathbb{Z}$ and $\mu \in S_{p}$.
- $\mu \in \mathbb{C}$ such that $\Re \mathrm{e} \mu=0, \quad \Im \mathrm{~m} \mu>0$ and $\lambda= \pm(\alpha+1+2 m+\Im \mathrm{m} \mu)$, $m \in \mathbb{N}$, with $\lambda \in \frac{1}{\ell} \mathbb{Z}$.

Proposition 3. (See [14], Proposition VI.7) We have:

1) For all $p \in\left[1,2\left[\right.\right.$ and $q \in \mathbb{R}$ such that $\frac{1}{p}+\frac{1}{q}=1$
i) If $f \in L^{p}\left(m_{\alpha}\right)$, then

$$
\left|\mathcal{F}_{\alpha} f(\lambda, \mu)\right| \leq\|f\|_{p, \alpha}\left\|\varphi_{\lambda, \mu}\right\|_{q, \alpha}
$$

in the two following cases:

- $\lambda \in \frac{1}{\ell} \mathbb{Z}$ and $\mu \in S_{p}$.
- $\mu \in \mathbb{C}$ such that $\Re \mathrm{e} \mu=0, \quad \Im \mathrm{~m} \mu>0$ and $\lambda=\mp(\alpha+1+2 m+\Im \mathrm{m} \mu)$, $m \in \mathbb{N}$, with $\lambda \in \frac{1}{\ell} \mathbb{Z}$.
ii) If $f \in L^{1}\left(m_{\alpha}\right)$, then

$$
\left|\mathcal{F}_{\alpha} f(\lambda, \mu)\right| \leq\|f\|_{1, \alpha}
$$

in the two following cases:

- $\lambda \in \frac{1}{\ell} \mathbb{Z}$ and $\mu \in S_{1}$.
- $(\lambda, \mu) \in \widetilde{\Omega}$, where $\widetilde{\Omega}$ is given by (2).

2) For all $p \in[1,2]$, the generalized Fourier transform \mathcal{F}_{α} associated to the operators D and D_{α} is one to one on $L^{p}\left(m_{\alpha}\right)$.

3. Phragmen-Lindelöff type result

In this section we provide an L^{q}-version of Phragmen-Lindelöff type principle which we need for the proof of our main result. Firstly we state the following lemma proved in [3].

AN $L^{P}-L^{Q}$-VERSION OF MORGAN'S THEOREM ... 305

Lemma 1. (See [3], Lemma 2.3) Suppose that $\rho \in] 1,2[, \quad q \in[1,+\infty]$, $\sigma>0$ and $B>\sigma \sin \frac{\pi}{2}(\rho-1)$. If g is an entire function on \mathbb{C} satisfying the conditions

$$
|g(x+i y)| \leq \text { const } e^{\sigma|y|^{\rho}} \quad \text { for any } x, y \in \mathbb{R}
$$

and

$$
e^{B|x|^{\rho}} g_{\mid \mathbb{R}} \in L^{q}(\mathbb{R}),
$$

then $g=0$.
Notations. For $\lambda \in \frac{1}{\ell} \mathbb{N}$ we consider the following function defined in \mathbb{R} by

$$
c_{\alpha, \lambda}(\mu)=\frac{2^{\alpha+\lambda+1-i|\mu|} \Gamma(\alpha+1) \Gamma(i|\mu|)}{\Gamma\left(\frac{\alpha+\lambda+1+i|\mu|}{2}\right) \Gamma\left(\frac{\alpha-\lambda+1+i|\mu|}{2}\right)} .
$$

We denote by $L_{\star}^{p}\left(\left|c_{\alpha, \lambda}(\mu)\right|^{-2} d \mu\right), 1 \leq p \leq+\infty$, the space of measurable even functions h on \mathbb{R} satisfying

$$
\|h\|_{p, c}=\left\{\int_{0}^{+\infty}|h(\mu)|^{p}\left|c_{\alpha, \lambda}(\mu)\right|^{-2} d \mu\right\}^{\frac{1}{p}}<+\infty \quad \text { if } p<+\infty
$$

and

$$
\|h\|_{\infty, c}=\underset{\mu \in \mathbb{R}_{+}}{\operatorname{ess} \sup }|h(\mu)| .
$$

Lemma 2. Let $\rho \in] 1,2\left[, q \in[1,+\infty], \sigma>0\right.$ and $B>\sigma \sin \frac{\pi}{2}(\rho-1)$. If g is an even entire function on \mathbb{C} satisfying the conditions

$$
|g(x+i y)| \leq \text { const } e^{\sigma|y|^{\rho}} \quad \text { for any } x, y \in \mathbb{R}
$$

and

$$
e^{\left.B|x|\right|^{\rho}} g_{\mid \mathbb{R}} \in L_{\star}^{q}\left(\left|c_{\alpha, \lambda}(x)\right|^{-2} d x\right),
$$

then $g=0$.
Proof. Assume that $1 \leq q<+\infty$. According to ([15], p.99) we can assert that the function $x \longmapsto\left|c_{\alpha, \lambda}(x)\right|^{-2}$ is continuous on $[0,+\infty[$ and there exist a positive constant γ such that $\gamma x^{2} \leq\left|c_{\alpha, \lambda}(x)\right|^{-2}$ for all $x \in[0,+\infty[$. Therefore,

$$
\gamma \int_{1}^{+\infty} e^{q B|x| \rho}|g(x)|^{q} d x \leq \int_{1}^{+\infty} e^{q B|x|^{\rho}}|g(x)|^{q}\left|c_{\alpha, \lambda}(x)\right|^{-2} d x<+\infty .
$$

This implies that $e^{B|x|^{\rho}} g_{\mid \mathbb{R}} \in L^{q}(\mathbb{R})$. Consequently, by using Lemma 1, we get the desired result.

4. Morgan's theorem related to the operators D and D_{α}

Throughout this section ℓ designates a positive integer.
Proposition 4. Let $p \in[1,+\infty], a \in] 0,+\infty[$ and let u be a real number such that $u>2$. Assume that f is a measurable function on \mathbb{K}_{ℓ} satisfying

$$
e^{a y^{u}} f \in L^{p}\left(m_{\alpha}\right) .
$$

Then we have $f \in L^{1}\left(m_{\alpha}\right)$. Furthermore, $\mathcal{F}_{\alpha} f(\lambda, \mu)$ is well defined for every $\lambda \in \frac{1}{\ell} \mathbb{Z}$ and $\mu \in \mathbb{C}$, and the function $\mu \longmapsto \mathcal{F}_{\alpha} f(\lambda, \mu)$ is analytic on whole \mathbb{C} for every $\lambda \in \frac{1}{\ell} \mathbb{Z}$.

Proof.
First case : $p=1$.

$$
\int_{\mathbb{K}_{\ell}}|f(y, \theta)| d m_{\alpha}(y, \theta) \leq \int_{\mathbb{K}_{\ell}}\left|e^{a y^{u}} f(y, \theta)\right| d m_{\alpha}(y, \theta)<+\infty .
$$

Second case : $p=+\infty$.

$$
\int_{\mathbb{K}_{\ell}}|f(y, \theta)| d m_{\alpha}(y, \theta) \leq 2^{2 \alpha+3} \pi\left\|e^{a y^{u}} f\right\|_{\infty, \alpha} \int_{0}^{+\infty} e^{-a y^{u}+2(\alpha+1) y} d y<+\infty .
$$

Third case : $1<p<+\infty$. We consider the real number p^{\prime} satisfying $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Using the Hölder inequality, we get

$$
\int_{\mathbb{K}_{\ell}}|f(y, \theta)| d m_{\alpha}(y, \theta) \leq\left\|e^{a y^{u}} f\right\|_{p, \alpha}\left\{\int_{\mathbb{K}_{\ell}} e^{-a p^{\prime} y^{u}} d m_{\alpha}(y, \theta)\right\}^{\frac{1}{p^{\prime}}} .
$$

On the other hand we have

$$
\int_{\mathbb{K}_{\ell}} e^{-a p^{\prime} y^{u}} d m_{\alpha}(y, \theta) \leq 2^{2 \alpha+3} \pi \int_{0}^{+\infty} e^{-a p^{\prime} y^{u}+2(\alpha+1) y} d y<+\infty .
$$

Consequently we have $f \in L^{1}\left(m_{\alpha}\right)$.
By virtue of relation (4) and the fact that $(1+y) e^{-(\alpha+1) y} \leq 1$, for all $y>0$, we can write

$$
\int_{\mathbb{K}_{\ell}}\left|f(y, \theta) \varphi_{-\lambda, \mu}(y, \theta)\right| d m_{\alpha}(y, \theta) \leq C \int_{\mathbb{K}_{\ell}}|f(y, \theta)| e^{|\Im m \mu| y} d m_{\alpha}(y, \theta),
$$

$$
\text { AN } L^{P}-L^{Q}-\text { VERSION OF MORGAN'S THEOREM ... } 307
$$

where C is a positive constant.
By the same manner as above we show, for all $\lambda \in \frac{1}{\ell} \mathbb{Z}$ and $\mu \in \mathbb{C}$, that we have

$$
\int_{\mathbb{K}_{\ell}}\left|f(y, \theta) \varphi_{-\lambda, \mu}(y, \theta)\right| d m_{\alpha}(y, \theta)<+\infty .
$$

Let us now to prove the analyticity of the function $\mu \longmapsto \mathcal{F}_{\alpha} f(\lambda, \mu)$ on \mathbb{C}. We have, for all $(y, \theta) \in \mathbb{K}_{\ell}$ and $\lambda \in \frac{1}{\ell} \mathbb{Z}$, the function $\mu \longmapsto \varphi_{-\lambda, \mu}(y, \theta)$ is analytic on \mathbb{C} (see [13], Corollary 1.1). Again by a same manner as above, we prove that, for all $\mu_{0}>0$, the function $\mu \longmapsto \mathcal{F}_{\alpha} f(\lambda, \mu)$ is analytic on the strip $\left\{\mu \in \mathbb{C} \quad|\quad| \Im m \mu \mid<\mu_{0}\right\}$.

This completes the proof of the proposition.
Theorem 1. Let $p, q \in[1,+\infty], a, b \in] 0,+\infty[$ and let u, v be two real numbers such that $u>2$ and $\frac{1}{u}+\frac{1}{v}=1$. Assume that f is a measurable function on \mathbb{K}_{ℓ} satisfying:
i) $e^{a y^{u}} f \in L^{p}\left(m_{\alpha}\right)$,
ii) for all $\lambda \in \frac{1}{\ell} \mathbb{Z}, \quad e^{b|\mu|^{v}} \mathcal{F}_{\alpha} f(\lambda, .)_{\mathbb{R}} \in L_{\star}^{q}\left(\left|c_{\alpha, \lambda}(\mu)\right|^{-2} d \mu\right)$.

If $(a u)^{1 / u}(b v)^{1 / v}>\left(\sin \frac{\pi(v-1)}{2}\right)^{1 / v}$, then f is null almost everywhere.
Proof. As in the proof of Proposition 4, we have for all $(\lambda, \mu) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C}$,

$$
\begin{equation*}
\left|\mathcal{F}_{\alpha} f(\lambda, \mu)\right| \leq C \int_{\mathbb{K}_{\ell}}|f(y, \theta)| e^{|\Im \mathrm{m} \mu| y} d m_{\alpha}(y, \theta), \tag{6}
\end{equation*}
$$

where C is a positive constant. Choose

$$
\delta \in](b v)^{-1 / v}\left(\sin \frac{\pi(v-1)}{2}\right)^{1 / v},(a u)^{1 / u}[
$$

Applying the convex inequality $|\xi \tau| \leq \frac{1}{u}|\xi|^{u}+\frac{1}{v}|\tau|^{v} \quad$ to the real numbers δy and $\frac{\Im \mathrm{m} \mu}{\delta}$, we get

$$
\begin{equation*}
|\Im \mathrm{m} \mu| y \leq \frac{\delta^{u} y^{u}}{u}+\frac{|\Im \mathrm{m} \mu|^{v}}{v \delta^{v}} \tag{7}
\end{equation*}
$$

Next, by combining the relations (6) and (7) we obtain

$$
\left|\mathcal{F}_{\alpha} f(\lambda, \mu)\right| \leq C e^{\frac{|\Im m \mu|^{v}}{v \delta^{v}}} \int_{\mathbb{K}_{\ell}}|f(y, \theta)| e^{\frac{\delta^{u} y^{u}}{u}} d m_{\alpha}(y, \theta) .
$$

Put

$$
I=\int_{\mathbb{K}_{\ell}}|f(y, \theta)| e^{\frac{\delta^{u} y^{u}}{u}} d m_{\alpha}(y, \theta) .
$$

Thus we have

$$
I=\int_{\mathbb{K}_{\ell}}\left|e^{a y^{u}} f(y, \theta)\right| e^{\left(\frac{\delta^{u}}{u}-a\right) y^{u}} d m_{\alpha}(y, \theta)
$$

Consider the function ψ_{δ} defined on \mathbb{K}_{ℓ} by $\psi_{\delta}(y, \theta)=e^{\left(\frac{\delta^{u}}{u}-a\right) y^{u}}$. Taking account that $\frac{\delta^{u}}{u}<a$, we can assert that $\psi_{\delta}(y, \theta) \in L^{p}\left(m_{\alpha}\right)$ for all $p \in$ $[1,+\infty]$. Take $p^{\prime} \in[1,+\infty]$ such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. It is easy to see that

$$
I \leq\left\|e^{a y^{u}} f\right\|_{p, \alpha}\left\|\psi_{\delta}\right\|_{p^{\prime}, \alpha}
$$

Using this last inequality we can assert that we have

$$
\begin{equation*}
\forall \lambda \in \frac{1}{\ell} \mathbb{Z}, \forall \mu \in \mathbb{C}, \quad\left|\mathcal{F}_{\alpha} f(\lambda, \mu)\right| \leq k e^{\frac{\mid \Im m \mu v^{v}}{v \delta^{v}}} \tag{8}
\end{equation*}
$$

where k is a positive constant.
We have $1<v<2$ and $b>\frac{1}{v \delta^{v}} \sin \frac{\pi(v-1)}{2}$. Moreover, for all $\lambda \in \frac{1}{\ell} \mathbb{Z}$, the function $\mu \longmapsto \mathcal{F}_{\alpha} f(\lambda, \mu)$ is analytic on \mathbb{C}. The condition ii) and the relation (8) allow us to assert that $\mathcal{F}_{\alpha} f=0$, by using Lemma 2. Finally, by applying 2) of Proposition 3, we find that $f=0$ almost everywhere.

In the end of this section we shall prove, in the particular case where $\alpha=\frac{1}{2}$ and ℓ is even, that the condition

$$
(a u)^{1 / u}(b v)^{1 / v}>\left(\sin \frac{\pi(v-1)}{2}\right)^{1 / v}
$$

in Theorem 1 is sharp.
For this goal we need the following proposition proved in [3].

Proposition 5. (See [3], Proposition 3.1.) Let $p, q \in[1,+\infty], a>$ $0, b>0$, and let u and v be positive real numbers satisfying $u>2$ and $\frac{1}{u}+\frac{1}{v}=1$. If

$$
(a u)^{1 / u}(b v)^{1 / v} \leq\left(\sin \frac{\pi(v-1)}{2}\right)^{1 / v}
$$

then there are infinity many even measurable functions on \mathbb{R} satisfying the conditions

$$
e^{a|y|^{u}} f \in L^{p}(\mathbb{R}) \quad \text { and } \quad e^{b|\mu|^{v}} \widehat{f} \in L^{q}(\mathbb{R})
$$

where \widehat{f} is the classical Fourier transform on \mathbb{R}.
Theorem 2. Let $p, q \in[1,+\infty], a, b \in] 0,+\infty[$ and let u, v be two real numbers such that $u>2$ and $\frac{1}{u}+\frac{1}{v}=1$. Assume that

$$
(a u)^{1 / u}(b v)^{1 / v}<\left(\sin \frac{\pi(v-1)}{2}\right)^{1 / v}
$$

If ℓ is even, then there exists a nonzero measurable function f on \mathbb{K}_{ℓ} satisfying the conditions:
i) $e^{a y^{u}} f \in L^{p}\left(m_{1 / 2}\right)$,
ii) $e^{b|\mu|^{v}} \mathcal{F}_{1 / 2} f(\lambda, .)_{\mid \mathbb{R}} \in L_{\star}^{q}\left(\left|c_{1 / 2, \lambda}(\mu)\right|^{-2} d \mu\right), \quad$ for all $\lambda \in \frac{1}{\ell} \mathbb{Z}$.

Proof. Let $a^{\prime}, a^{\prime \prime}$ and b^{\prime} be real numbers such that $a^{\prime}>a^{\prime \prime}>a, b^{\prime}>b$, and

$$
\left(a^{\prime} u\right)^{1 / u}\left(b^{\prime} v\right)^{1 / v}<\left(\sin \frac{\pi(v-1)}{2}\right)^{1 / v}
$$

From Proposition 5, there exists a nonzero even measurable function h on \mathbb{R} such that

$$
e^{2 a^{\prime}|y|^{u}} h \in L^{p}(\mathbb{R}) \quad \text { and } \quad e^{b^{\prime}|\mu|^{v}} \widehat{h} \in L^{q}(\mathbb{R})
$$

Choose k an infinitely differentiable function compactly supported and odd on \mathbb{R}. Let $g=h \star k$ be the classical convolution product of h and $k . g$ is an odd function on \mathbb{R}. Since \widehat{k} is bounded on \mathbb{R} we have

$$
\begin{equation*}
e^{b^{\prime}|\mu|^{v}} \widehat{g} \in L^{q}(\mathbb{R}) \tag{9}
\end{equation*}
$$

Suppose that Supp $k \subset[-A, A], A>0$. For $p=+\infty$, by using the fact that the function $\xi \longmapsto e^{2 a^{\prime \prime}(\xi+A)^{u}} e^{-2 a^{\prime} \xi^{u}}$ is bounded on $[0,+\infty$ [we conclude that
$e^{2 a^{\prime \prime}|y|^{u}} g \in L^{\infty}(\mathbb{R})$. For $1 \leq p<+\infty$, the generalized Minkowski inequality (see [12], page 21) and the fact that the function $\xi \longmapsto e^{2 p a^{\prime \prime}(\xi+A)^{u}} e^{-2 p a^{\prime} \xi^{u}}$ is bounded on $\left[0,+\infty\left[\right.\right.$ allow us to conclude again that $e^{2 a^{\prime \prime}|y|^{u}} g \in L^{p}(\mathbb{R})$. In all cases we have

$$
\begin{equation*}
e^{2 a|y|^{u}} g \in L^{p}(\mathbb{R}) \tag{10}
\end{equation*}
$$

Take the function f defined on \mathbb{K}_{ℓ} by

$$
f(y, \theta)=\frac{e^{i \theta / 2} g(y)(\operatorname{ch} y)^{1 / 2}}{\operatorname{sh} 2 y}
$$

It is easy to check, by using (10), that we have

$$
e^{a y^{u}} f \in L^{p}\left(m_{1 / 2}\right)
$$

According to (5) and (1) we can write, for all $\lambda \in \frac{1}{\ell} \mathbb{Z}$ and all $\mu \in \mathbb{R}$,
$\mathcal{F}_{1 / 2} f(\lambda, \mu)=4\left(\int_{-\ell \pi}^{\ell \pi} e^{i(1 / 2-\lambda) \theta} d \theta\right)\left(\int_{0}^{+\infty} g(y) \varphi_{\mu}^{(1 / 2, \lambda)}(y) \operatorname{sh} y(\operatorname{ch} y)^{\lambda+1 / 2} d y\right)$.
Thus it follows that, for all $\lambda \neq \frac{1}{2}$ and all $\mu \in \mathbb{R}, \quad \mathcal{F}_{1 / 2} f(\lambda, \mu)=0$.
On the other hand we have

$$
\mathcal{F}_{1 / 2} f(1 / 2, \mu)=4 \ell \pi \int_{0}^{+\infty} g(y) \varphi_{\mu}^{(1 / 2,1 / 2)}(y) \operatorname{sh} 2 y d y
$$

where $\varphi_{\mu}^{(1 / 2,1 / 2)}$ is the Jacobi function which is the unique solution of the following initial problem

$$
\left\{\begin{array}{c}
\frac{d^{2} \psi}{d y^{2}}+4 \frac{\operatorname{ch} 2 y}{\operatorname{sh} 2 y} \frac{d \psi}{d y} \quad=\quad-\left(\mu^{2}+4\right) \psi \\
\psi(0)=1 \quad \text { and } \quad \psi^{\prime}(0)=0
\end{array}\right.
$$

Hence we have

$$
\forall y>0, \quad \varphi_{\mu}^{(1 / 2,1 / 2)}(y)=\frac{2 \sin \mu y}{\mu \operatorname{sh} 2 y},
$$

then, since g is odd, we get

$$
\mathcal{F}_{1 / 2} f(1 / 2, \mu)=\frac{4 \ell \pi}{\mu} \widehat{g}(\mu)
$$

$$
\text { AN } L^{P}-L^{Q}-\text { VERSION OF MORGAN'S THEOREM ... }
$$

Furthermore, a straightforward calculation, using well known formulas of gamma function, gives us

$$
\left|c_{1 / 2,1 / 2}\right|^{-2}=\frac{\mu^{2}}{4}
$$

Thus, by using the relation (9), we obtain

$$
\forall \lambda \in \frac{1}{\ell} \mathbb{Z}, \quad e^{b|\mu|^{v}} \mathcal{F}_{1 / 2} f(\lambda, .)_{\mid \mathbb{R}} \in L_{\star}^{q}\left(\left|c_{1 / 2, \lambda}(\mu)\right|^{-2} d \mu\right)
$$

References

[1] N.B. Andersen, Hardy's theorem for Jacobi transform. Hiroshima Math. J. 33 (2003), 229-251.
[2] S. Ayadi, An $L^{p}-L^{q}$-version of Morgan's theorem for the Dunkl transform. Math. Sci. Res. J. 8, No 11 (2004), 318-327.
[3] S. Ben Farah and K. Mokni, Uncertainty principle and the $L^{p}-L^{q_{-}}$ version of Morgan's theorem on some groups. Math. Russian J. of Math. Phys. 10, No 3 (2003), 1-16.
[4] M. Cowling and J.F. Price, Generalisations of Heisenberg's inequality. Lecture Notes in Math. 992, Springer, Berlin (1983), 443-449.
[5] M. Ebata, On the Cowling-Price theorem for $\mathbf{S U}(1,1)$. Hiroshima Math. J. 31 (2001), 409-423.
[6] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Ffunctions, Vol. 1. McGraw-Hill, New-York (1953).
[7] M. Flensted-Jensen, Spherical functions on a simply connected semisimple Lie group, II: The Paley-Wiener theorem for rank one case. Math. Ann. 228 (1977), 65-92.
[8] L. Gallardo and K. Trimèche, An L^{p} version of Hardy's theorem for the Dunkl transform. J. Austral. Math. Soc. Ser. A 77, Part 3 (2004), 371-382.
[9] G.H. Hardy, A theorem concerning Fourier transforms. J. London Math. Soc. 8 (1933), 227-231.
[10] T. Koornwinder, A new proof of a Paley-Wiener theorem for the Jacobi function. Ark. Math. 13 (1975), 145-159.
[11] G.W. Morgan, A note on Fourier transforms. J. London Math. Soc. 9 (1934), 187-192.
[12] S.M. Nilkol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Die Grun. Der Math. Wiss. in Einze. Band 205, Springer-Verlag, Berlin - Heidelberg - New York (1975).
[13] M. Sifi, Central theorem and infinitely divisible probabilities associated with partial differential operators. J. Theo. Probab. 8, No 3 (1995), 475-499.
[14] K.Trimèche, Opérateurs de permutaions et analyse harmonique associés à des opérateurs aux dérivées partielles. J. Math. Pures et Applic. 70 (1991), 1-73.
[15] K.Trimèche, Inversion of the Lions transmutations operators using generalized wavelets. App. Comput. Harm. Anal. 4 (1997), 97-112.

Department of Mathematics

