

AN L^P-L^Q -VERSION OF MORGAN'S THEOREM ASSOCIATED WITH PARTIAL DIFFERENTIAL OPERATORS

Lotfi Kamoun

Abstract

In this paper we take the strip $\mathbb{K}_{\ell} = [0, +\infty[\times[-\ell\pi, \ell\pi]],$ where ℓ is a positive integer. We consider, for a nonnegative real number α , two partial differential operators D and D_{α} on $]0, +\infty[\times] - \ell\pi, \ell\pi[$. We associate a generalized Fourier transform \mathcal{F}_{α} to the operators D and D_{α} . For this transform \mathcal{F}_{α} , we establish an $L^p - L^q$ -version of the Morgan's theorem under the assumption $1 \leq p, q \leq +\infty$.

2000 Mathematics Subject Classification: 42B10, 43A32 Key Words and Phrases: generalized Fourier transform, Morgan's theorem

1. Introduction

A rigourous formulation of the uncertainty principle in the framework of the classical Fourier analysis on $\mathbb R$ is to investigate the L^p-L^q -sufficient pairs of positive functions in the following meaning. A pair (g,h) of positive functions is called an L^p-L^q -sufficient pair if, for every measurable function f, the conditions $g^{-1}f\in L^p(\mathbb R)$ and $h^{-1}\widehat f\in L^q(\mathbb R)$ imply that f=0 almost everywhere, where $\widehat f$ is the Fourier transform of f defined by

$$\widehat{f}(y) = \int_{\mathbb{R}} f(x) e^{-ixy} dx.$$

Several authors have studied this form of the uncertainty principle in many situations. Let us to indicate some of such works. In 1933, Hardy [9] showed that the pair $(e^{-ax^2}, e^{-b\lambda^2})$ is $L^{\infty} - L^{\infty}$ -sufficient if and only if $ab > \frac{1}{4}$. After fifty years, M. Cowling and J.F. Price generalized Hardy's theorem to an $L^p - L^q$ -version, where $1 \le p, q \le +\infty$. In 2001, M. Ebata [5] has given a similar theorem for the group $\mathbf{SU}(1,1)$. In 2003, N.B. Andersen [1] has established an $L^p - L^q$ -version of Hardy's theorem for the Jacobi transform. Also, L. Gallardo and K. Trimèche [8], in 2004, have given an $L^p - L^q$ -version of Hardy's theorem related to the Dunkl transform. Another famous result is Morgan's theorem. For the classical Fourier transform, this theorem was proved in 1934 by G.W. Morgan [11] and it states that, for u > 2 and $v = \frac{u}{u-1}$, the pair $(e^{-a|x|^u}, e^{-b|\lambda|^v})$ is $L^{\infty} - L^{\infty}$ -sufficient if and only if

$$(au)^{1/u}(bv)^{1/v} > \left(\sin\frac{\pi(v-1)}{2}\right)^{1/v}$$
.

Recently, in 2003, S. Ben Farah and K. Mokni [3] have generalized Morgan's theorem to an $L^p - L^q$ -version, where $1 \leq p, q \leq +\infty$. Also, they extended this result to the euclidien space \mathbb{R}^n , to the Heisenberg group and to noncompact real symmetric spaces. For the Dunkl transform, S. Ayadi [2] in 2004, has given an $L^p - L^q$ -version of Morgan's theorem.

In this paper we take the strip $\mathbb{K}_{\ell} = [0, +\infty[\times[-\ell\pi, \ell\pi]],$ where $\ell \in \mathbb{N} \setminus \{0\}$, and for a nonnegative real number α , we consider the following system of partial differential operators

$$\begin{cases} D = \frac{\partial}{\partial \theta} \\ D_{\alpha} = \frac{\partial^2}{\partial y^2} + [(2\alpha + 1)\coth y + thy] \frac{\partial}{\partial y} - \frac{1}{\cosh^2 y} \frac{\partial^2}{\partial \theta^2} + (\alpha + 1)^2 \\ \text{with} \qquad (y, \theta) \in]0, +\infty[\times] - \ell\pi, \ell\pi[. \end{cases}$$

For $\alpha = n - 1$, n being a positive integer, the operators D and $[D_{n-1} - n^2]$ with the identity generate the algebra $\mathbf{D}(\widetilde{G}/K)$ of left invariant differential operators on \widetilde{G}/K , where \widetilde{G} is the universal covering group of $G = \mathbf{U}(n, 1)$ and K is the subgroup $\mathbf{U}(n)$ (see [7]).

These operators give rise to generalizations of many two variables structures, like the Fourier transform and the convolution (see [14]), the dispersion and Gaussian distributions (see [13]).

An harmonic analysis related to these operators was introduced, in 1991, by K. Trimèche [14]. In particular, a generalized Fourier transform \mathcal{F}_{α} associated to the operators D and D_{α} is defined for a suitable function f as follows

$$\forall (\lambda,\mu) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C} \,, \quad \mathcal{F}_{\alpha} f(\lambda,\mu) = \int_{\mathbb{K}_{\ell}} f(y,\theta) \varphi_{-\lambda\,,\,\mu}(y,\theta) dm_{\alpha}(y,\theta) \,,$$

where $\varphi_{\lambda,\mu}$ are eigenfunctions of the operators D and D_{α} , and m_{α} is a weighted Lebesgue measure on \mathbb{K}_{ℓ} (see section 2).

The main result of this paper is an $L^p - L^q$ -version, where $1 \leq p, q \leq +\infty$, of Morgan's theorem related to the generalized Fourier transform \mathcal{F}_{α} . More precisely, take u > 2, $v = \frac{u}{u-1}$ and $p, q \in [1, +\infty]$. If a measurable function f on \mathbb{K}_{ℓ} satisfies the conditions $e^{ay^u} f \in L^p(m_{\alpha})$ and for all $\lambda \in \frac{1}{\ell}\mathbb{Z}$, $e^{b|\mu|^v} \mathcal{F}_{\alpha} f(\lambda\,,\,.)_{|\mathbb{R}} \in L^q_{\star}(|c_{\alpha\,,\lambda}(\mu)|^{-2}d\mu)$ (see Section 3), where $a,b\in]0,+\infty[$, then, whenever $(au)^{1/u}(bv)^{1/v} > \left(\sin\frac{\pi(v-1)}{2}\right)^{1/v}$, the function f is null almost everywhere.

The contents of this paper is as follows: Section 2 is dedicated to some properties and results concerning the eigenfunctions $\varphi_{\lambda,\mu}$ and the generalized Fourier transform \mathcal{F}_{α} . In Section 3 we establish a Phragmen-Lindelöff type result that we need to prove the main statement of this paper. In Section 4 we prove an L^p-L^q -version of Morgan's theorem related to the operators D and D_{α} under the assumption $1 \leq p,q \leq +\infty$ and $(au)^{1/u}(bv)^{1/v} > \left(\sin\frac{\pi(v-1)}{2}\right)^{1/v}$. In the particular case where $\alpha = \frac{1}{2}$ and ℓ is even, we show that this last condition is sharp.

2. Generalized Fourier transform associated with the operators D and D_{α}

This section is organized in the following way. First we introduce the eigenfunctions $\varphi_{\lambda,\mu}$ and recall some of these properties. Next we deal with the generalized Fourier transform \mathcal{F}_{α} .

PROPOSITION 1. (See [14], Théorème I.1) For $\lambda \in \frac{1}{\ell}\mathbb{Z}$ and $\mu \in \mathbb{C}$, the initial problem

$$\begin{cases} D\Phi = i\lambda\Phi \\ D_{\alpha}\Phi = -\mu^{2}\Phi \\ \Phi(0,0) = 1, \quad \frac{\partial\Phi}{\partial y}(0,\theta) = 0, \quad \theta \in]-\ell\pi, \ell\pi[\end{cases}$$

has a unique solution given by

$$\varphi_{\lambda,\mu}(y,\theta) = e^{i\lambda\theta} (\cosh y)^{\lambda} \varphi_{\mu}^{(\alpha,\lambda)}(y),$$

where $\varphi_{\mu}^{(\alpha,\lambda)}$ is the Jacobi function defined by

$$\varphi_{\mu}^{(\alpha,\lambda)}(y) = {}_{2}F_{1}\left(\frac{\alpha+\lambda+1+i\mu}{2}, \frac{\alpha+\lambda+1-i\mu}{2}; \alpha+1; -\mathrm{sh}^{2}y\right),$$

 $_2F_1$ being the Gaussian hypergeometric function (see [6], ChII).

PROPERTIES. (See [14] and also [13])

- i) For all $\lambda \in \frac{1}{\ell}\mathbb{Z}$ and $\mu \in \mathbb{C}$, $\varphi_{\lambda,\mu}$ is even with respect to the first variable and $2\ell\pi$ -periodic with respect to the second variable.
 - ii) For all $\lambda \in \frac{1}{\ell} \mathbb{Z}$, $\mu \in \mathbb{C}$ and $(y, \theta) \in \mathbb{K}_{\ell}$,

$$\varphi_{\lambda,\mu}(y,\theta) = e^{i\lambda\theta}(\text{ch}y)^{-\lambda}\varphi_{\mu}^{(\alpha,-\lambda)}(y).$$
 (1)

iii) For all $\lambda \in \frac{1}{\ell} \mathbb{Z}$, $\mu \in \mathbb{C}$ and $(y, \theta) \in \mathbb{K}_{\ell}$,

$$\overline{\varphi_{\lambda,\mu}(y,\theta)} = \varphi_{-\lambda,\mu}(y,\theta) \quad \text{and} \quad \varphi_{\lambda,-\mu}(y,\theta) = \varphi_{\lambda,\mu}(y,\theta).$$

iv) Consider the following set

$$\Gamma_{\ell} = \left\{ (\lambda, \mu) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C} \mid |\Im \mu| \le \alpha + 1 \right\} \cup \widetilde{\Omega},$$

where

$$\widetilde{\Omega} = \bigcup_{m \in \mathbb{N}} \left\{ (\lambda, i\eta) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C} \mid \eta \ge -(\alpha + 1), \lambda = \pm(\alpha + 2m + 1 + \eta) \right\}.$$
(2)

Then we have

$$\forall (\lambda, \mu) \in \Gamma_{\ell}, \qquad \sup_{(y, \theta) \in \mathbb{K}_{\ell}} (y, \theta) | = 1.$$
 (3)

v) According to [10] page 150, we can assert that, for all $(\lambda, \mu) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C}$ and $(y, \theta) \in \mathbb{K}_{\ell}$, we have

$$|\varphi_{\lambda,\mu}(y,\theta)| \le C(1+y)e^{(|\Im \mu| - (\alpha+1))y}, \tag{4}$$

where C is a positive constant.

NOTATIONS.

1) We consider the Lebesgue weighted measure on \mathbb{K}_{ℓ} ,

$$dm_{\alpha}(y,\theta) = 2^{2(\alpha+1)}(\operatorname{sh} y)^{2\alpha+1}\operatorname{ch} y \, dy d\theta.$$

- 2) We designate by:
- i) $\mathcal{C}(\mathbb{K}_{\ell})$ the space of continuous functions on \mathbb{K}_{ℓ} .
- ii) $C_c(\mathbb{K}_{\ell})$ the space of continuous functions on \mathbb{K}_{ℓ} compactly supported.
- 3) We denote by $L^p(m_\alpha)$, $1 \le p \le +\infty$, the space of measurable functions f on \mathbb{K}_ℓ satisfying

$$||f||_{p,\alpha} = \left\{ \int_{\mathbb{K}_s} |f(y,\theta)|^p dm_{\alpha}(y,\theta) \right\}^{\frac{1}{p}} < +\infty \quad \text{if } p < +\infty,$$

and

$$||f||_{\infty,\alpha} = \operatorname*{ess\,sup}_{(y,\theta)\in\mathbb{K}_{\ell}} |f(y,\theta)|.$$

DEFINITION 1. We define the generalized Fourier transform \mathcal{F}_{α} , associated to the operators D and D_{α} , on \mathbb{K}_{ℓ} by

$$\forall (\lambda, \mu) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C} \,, \quad \mathcal{F}_{\alpha} f(\lambda, \mu) = \int_{\mathbb{K}_{\ell}} f(y, \theta) \varphi_{-\lambda, \mu}(y, \theta) dm_{\alpha}(y, \theta) \,, \quad (5)$$

where $f \in \mathcal{C}_c(\mathbb{K}_\ell)$.

REMARK 1. We notice that for all $f \in L^1(m_\alpha)$ and all $(\lambda, \mu) \in \Gamma_\ell$, $\mathcal{F}_\alpha f$ is well defined.

The following two propositions are proved by K. Trimèche in [14].

Proposition 2. (See [14], Proposition VI.5) Let p and q be real numbers such that $1 \le p < 2$ and $\frac{1}{p} + \frac{1}{q} = 1$. We consider the following strip:

$$S_p = \left\{ \mu \in \mathbb{C} \quad | \quad |\Im \mu| < \left(\frac{2}{p} - 1\right)(\alpha + 1) \right\}.$$

Then the function $\varphi_{\lambda,\mu}$ belongs to $L^q(m_\alpha)$ in the following cases:

- $\lambda \in \frac{1}{\ell} \mathbb{Z}$ and $\mu \in S_p$. $\mu \in \mathbb{C}$ such that $\Re \mu = 0$, $\Im \mu > 0$ and $\lambda = \pm (\alpha + 1 + 2m + \Im \mu)$, $m \in \mathbb{N}$, with $\lambda \in \frac{1}{\ell}\mathbb{Z}$.

PROPOSITION 3. (See [14], Proposition VI.7) We have:

1) For all
$$p \in [1, 2[$$
 and $q \in \mathbb{R}$ such that $\frac{1}{p} + \frac{1}{q} = 1$
i) If $f \in L^p(m_{\Omega})$, then

$$|\mathcal{F}_{\alpha}f(\lambda,\mu)| < ||f||_{n,\alpha} ||\varphi_{\lambda,\mu}||_{q,\alpha}$$

in the two following cases:

- $\lambda \in \frac{1}{\ell}\mathbb{Z}$ and $\mu \in S_p$. $\mu \in \mathbb{C}$ such that $\Re e\mu = 0$, $\Im m\mu > 0$ and $\lambda = \mp(\alpha + 1 + 2m + \Im m\mu)$, $m \in \mathbb{N}$, with $\lambda \in \frac{1}{\ell}\mathbb{Z}$.

ii) If
$$f \in L^1(m_\alpha)$$
, then

$$|\mathcal{F}_{\alpha}f(\lambda,\mu)| \leq ||f||_{1,\alpha}$$

in the two following cases:

- $\lambda \in \frac{1}{\ell}\mathbb{Z}$ and $\mu \in S_1$.
- $(\lambda, \mu) \in \widetilde{\Omega}$, where $\widetilde{\Omega}$ is given by (2).
- 2) For all $p \in [1,2]$, the generalized Fourier transform \mathcal{F}_{α} associated to the operators D and D_{α} is one to one on $L^{p}(m_{\alpha})$.

3. Phragmen-Lindelöff type result

In this section we provide an L^q -version of Phragmen-Lindelöff type principle which we need for the proof of our main result. Firstly we state the following lemma proved in [3].

LEMMA 1. (See [3], Lemma 2.3) Suppose that $\rho \in]1,2[\,,\,\,q \in [1,+\infty]\,,$ $\sigma > 0$ and $B > \sigma \sin \frac{\pi}{2}(\rho - 1)$. If g is an entire function on $\mathbb C$ satisfying the conditions

$$|g(x+iy)| \le \operatorname{const} e^{\sigma|y|^{\rho}} \quad \text{for any } x, y \in \mathbb{R}$$

and

$$e^{B|x|^{\rho}}g_{\mathbb{R}}\in L^{q}(\mathbb{R})$$
,

then g = 0.

NOTATIONS. For $\lambda \in \frac{1}{\ell}\mathbb{N}$ we consider the following function defined in \mathbb{R} by

$$c_{\alpha,\lambda}(\mu) = \frac{2^{\alpha+\lambda+1-i|\mu|} \Gamma(\alpha+1) \Gamma(i|\mu|)}{\Gamma\left(\frac{\alpha+\lambda+1+i|\mu|}{2}\right) \Gamma\left(\frac{\alpha-\lambda+1+i|\mu|}{2}\right)}.$$

We denote by $L^p_{\star}(|c_{\alpha,\lambda}(\mu)|^{-2}d\mu)$, $1 \leq p \leq +\infty$, the space of measurable even functions h on \mathbb{R} satisfying

$$||h||_{p,c} = \left\{ \int_0^{+\infty} |h(\mu)|^p |c_{\alpha,\lambda}(\mu)|^{-2} d\mu \right\}^{\frac{1}{p}} < +\infty \quad \text{if } p < +\infty,$$

and

$$||h||_{\infty,c} = \operatorname{ess\,sup} |h(\mu)|.$$

LEMMA 2. Let $\rho \in]1,2[$, $q \in [1,+\infty]$, $\sigma > 0$ and $B > \sigma \sin \frac{\pi}{2}(\rho - 1)$. If g is an even entire function on $\mathbb C$ satisfying the conditions

$$|g(x+iy)| \le \operatorname{const} e^{\sigma|y|^{\rho}}$$
 for any $x, y \in \mathbb{R}$

and

$$e^{B|x|^{\rho}}g_{|\mathbb{R}}\in L^{q}_{\star}(|c_{\alpha,\lambda}(x)|^{-2}dx),$$

then g = 0.

P r o o f. Assume that $1 \leq q < +\infty$. According to ([15], p.99) we can assert that the function $x \longmapsto |c_{\alpha,\lambda}(x)|^{-2}$ is continuous on $[0,+\infty[$ and there exist a positive constant γ such that $\gamma x^2 \leq |c_{\alpha,\lambda}(x)|^{-2}$ for all $x \in [0,+\infty[$. Therefore,

$$\gamma \int_{1}^{+\infty} e^{qB|x|^{\rho}} |g(x)|^{q} dx \le \int_{1}^{+\infty} e^{qB|x|^{\rho}} |g(x)|^{q} |c_{\alpha,\lambda}(x)|^{-2} dx < +\infty.$$

This implies that $e^{B|x|^{\rho}}g_{|\mathbb{R}}\in L^{q}(\mathbb{R})$. Consequently, by using Lemma 1, we get the desired result.

4. Morgan's theorem related to the operators D and D_{α}

Throughout this section ℓ designates a positive integer.

PROPOSITION 4. Let $p \in [1, +\infty]$, $a \in]0, +\infty[$ and let u be a real number such that u > 2. Assume that f is a measurable function on \mathbb{K}_{ℓ} satisfying

$$e^{ay^u}f \in L^p(m_\alpha).$$

Then we have $f \in L^1(m_\alpha)$. Furthermore, $\mathcal{F}_{\alpha}f(\lambda,\mu)$ is well defined for every $\lambda \in \frac{1}{\ell}\mathbb{Z}$ and $\mu \in \mathbb{C}$, and the function $\mu \longmapsto \mathcal{F}_{\alpha}f(\lambda,\mu)$ is analytic on whole \mathbb{C} for every $\lambda \in \frac{1}{\ell}\mathbb{Z}$.

Proof.

First case: p = 1.

$$\int_{\mathbb{K}_{\ell}} |f(y,\theta)| \, dm_{\alpha}(y,\theta) \le \int_{\mathbb{K}_{\ell}} |e^{ay^{u}} f(y,\theta)| \, dm_{\alpha}(y,\theta) < +\infty.$$

Second case: $p = +\infty$.

$$\int_{\mathbb{K}_{\ell}} |f(y,\theta)| \, dm_{\alpha}(y,\theta) \leq 2^{2\alpha+3}\pi \, \|e^{ay^u}f\|_{\infty,\,\alpha} \int_0^{+\infty} e^{-ay^u+2(\alpha+1)y} dy < +\infty.$$

Third case : 1 . We consider the real number <math>p' satisfying $\frac{1}{p} + \frac{1}{p'} = 1$. Using the Hölder inequality, we get

$$\int_{\mathbb{K}_{\ell}} |f(y,\theta)| \, dm_{\alpha}(y,\theta) \le \|e^{ay^u} f\|_{p,\alpha} \left\{ \int_{\mathbb{K}_{\ell}} e^{-ap'y^u} dm_{\alpha}(y,\theta) \right\}^{\frac{1}{p'}}.$$

On the other hand we have

$$\int_{\mathbb{K}_{\ell}} e^{-ap'y^u} dm_{\alpha}(y,\theta) \leq 2^{2\alpha+3}\pi \int_0^{+\infty} e^{-ap'y^u+2(\alpha+1)y} dy < +\infty.$$

Consequently we have $f \in L^1(m_\alpha)$.

By virtue of relation (4) and the fact that $(1+y)e^{-(\alpha+1)y} \le 1$, for all y>0, we can write

$$\int_{\mathbb{K}_{\ell}} |f(y,\theta)\varphi_{-\lambda,\mu}(y,\theta)| dm_{\alpha}(y,\theta) \leq C \int_{\mathbb{K}_{\ell}} |f(y,\theta)| e^{|\Im m\mu|y} dm_{\alpha}(y,\theta),$$

where C is a positive constant.

By the same manner as above we show, for all $\lambda \in \frac{1}{\ell}\mathbb{Z}$ and $\mu \in \mathbb{C}$, that we have

$$\int_{\mathbb{K}_{\ell}} |f(y,\theta)\varphi_{-\lambda,\mu}(y,\theta)| dm_{\alpha}(y,\theta) < +\infty.$$

Let us now to prove the analyticity of the function $\mu \longmapsto \mathcal{F}_{\alpha} f(\lambda, \mu)$ on \mathbb{C} . We have, for all $(y, \theta) \in \mathbb{K}_{\ell}$ and $\lambda \in \frac{1}{\ell}\mathbb{Z}$, the function $\mu \longmapsto \varphi_{-\lambda, \mu}(y, \theta)$ is analytic on \mathbb{C} (see [13], Corollary 1.1). Again by a same manner as above, we prove that, for all $\mu_0 > 0$, the function $\mu \longmapsto \mathcal{F}_{\alpha} f(\lambda, \mu)$ is analytic on the strip $\{\mu \in \mathbb{C} \mid |\Im m \mu| < \mu_0\}$.

This completes the proof of the proposition.

THEOREM 1. Let $p, q \in [1, +\infty]$, $a, b \in]0, +\infty[$ and let u, v be two real numbers such that u > 2 and $\frac{1}{u} + \frac{1}{v} = 1$. Assume that f is a measurable function on \mathbb{K}_{ℓ} satisfying:

$$i) e^{ay^u} f \in L^p(m_\alpha),$$

ii) for all
$$\lambda \in \frac{1}{\ell}\mathbb{Z}$$
, $e^{b|\mu|^v}\mathcal{F}_{\alpha}f(\lambda,.)_{|\mathbb{R}} \in L^q_{\star}(|c_{\alpha,\lambda}(\mu)|^{-2}d\mu)$.

If
$$(au)^{1/u}(bv)^{1/v} > \left(\sin\frac{\pi(v-1)}{2}\right)^{1/v}$$
, then f is null almost everywhere.

Proof. As in the proof of Proposition 4, we have for all $(\lambda, \mu) \in \frac{1}{\ell} \mathbb{Z} \times \mathbb{C}$,

$$|\mathcal{F}_{\alpha}f(\lambda,\mu)| \le C \int_{\mathbb{K}_{e}} |f(y,\theta)| e^{|\Im m\mu|y} dm_{\alpha}(y,\theta),$$
 (6)

where C is a positive constant. Choose

$$\delta \in \left[(bv)^{-1/v} \left(\sin \frac{\pi(v-1)}{2} \right)^{1/v} , (au)^{1/u} \right[.$$

Applying the convex inequality $|\xi\tau| \leq \frac{1}{u}|\xi|^u + \frac{1}{v}|\tau|^v$ to the real numbers δy and $\frac{\Im m\mu}{\delta}$, we get

$$\left|\Im \mu\right| y \le \frac{\delta^u y^u}{u} + \frac{\left|\Im \mu\right|^v}{v\delta^v}.\tag{7}$$

Next, by combining the relations (6) and (7) we obtain

$$|\mathcal{F}_{\alpha}f(\lambda,\mu)| \leq Ce^{\frac{|\Im m\mu|^v}{v\delta^v}} \int_{\mathbb{K}_{\ell}} |f(y,\theta)| e^{\frac{\delta^u y^u}{u}} dm_{\alpha}(y,\theta).$$

Put

$$I = \int_{\mathbb{K}_{\ell}} |f(y,\theta)| e^{\frac{\delta^{u} y^{u}}{u}} dm_{\alpha}(y,\theta).$$

Thus we have

$$I = \int_{\mathbb{K}_{\theta}} |e^{ay^u} f(y, \theta)| e^{(\frac{\delta^u}{u} - a)y^u} dm_{\alpha}(y, \theta).$$

Consider the function ψ_{δ} defined on \mathbb{K}_{ℓ} by $\psi_{\delta}(y,\theta) = e^{(\frac{\delta^u}{u} - a)y^u}$. Taking account that $\frac{\delta^u}{u} < a$, we can assert that $\psi_{\delta}(y,\theta) \in L^p(m_{\alpha})$ for all $p \in [1,+\infty]$. Take $p' \in [1,+\infty]$ such that $\frac{1}{p} + \frac{1}{p'} = 1$. It is easy to see that

$$I \leq \|e^{ay^u}f\|_{p,\alpha} \|\psi_{\delta}\|_{p',\alpha}.$$

Using this last inequality we can assert that we have

$$\forall \lambda \in \frac{1}{\rho} \mathbb{Z}, \, \forall \mu \in \mathbb{C}, \qquad |\mathcal{F}_{\alpha} f(\lambda, \mu)| \le k \, e^{\frac{|\Im m \mu|^v}{v \delta^v}}, \tag{8}$$

where k is a positive constant.

We have 1 < v < 2 and $b > \frac{1}{v\delta^v}\sin\frac{\pi(v-1)}{2}$. Moreover, for all $\lambda \in \frac{1}{\ell}\mathbb{Z}$, the function $\mu \longmapsto \mathcal{F}_{\alpha}f(\lambda,\mu)$ is analytic on \mathbb{C} . The condition ii) and the relation (8) allow us to assert that $\mathcal{F}_{\alpha}f=0$, by using Lemma 2. Finally, by applying 2) of Proposition 3, we find that f=0 almost everywhere.

In the end of this section we shall prove, in the particular case where $\alpha=\frac{1}{2}$ and ℓ is even, that the condition

$$(au)^{1/u}(bv)^{1/v} > \left(\sin\frac{\pi(v-1)}{2}\right)^{1/v}$$

in Theorem 1 is sharp.

For this goal we need the following proposition proved in [3].

PROPOSITION 5. (See [3], Proposition 3.1.) Let $p,q\in[1,+\infty]$, $a>0,\ b>0,$ and let u and v be positive real numbers satisfying u>2 and $\frac{1}{u}+\frac{1}{v}=1$. If

$$(au)^{1/u}(bv)^{1/v} \le \left(\sin\frac{\pi(v-1)}{2}\right)^{1/v},$$

then there are infinity many even measurable functions on $\mathbb R$ satisfying the conditions

$$e^{a|y|^u} f \in L^p(\mathbb{R})$$
 and $e^{b|\mu|^v} \widehat{f} \in L^q(\mathbb{R})$,

where \hat{f} is the classical Fourier transform on \mathbb{R} .

Theorem 2. Let $p,q\in[1,+\infty]$, $a,b\in]0,+\infty[$ and let u,v be two real numbers such that u>2 and $\frac{1}{u}+\frac{1}{v}=1$. Assume that

$$(au)^{1/u}(bv)^{1/v} < \left(\sin\frac{\pi(v-1)}{2}\right)^{1/v}$$
.

If ℓ is even, then there exists a nonzero measurable function f on \mathbb{K}_{ℓ} satisfying the conditions:

i)
$$e^{ay^u} f \in L^p(m_{1/2})$$
,

ii)
$$e^{b|\mu|^v} \mathcal{F}_{1/2} f(\lambda, .)_{|\mathbb{R}} \in L^q_{\star}(|c_{1/2, \lambda}(\mu)|^{-2} d\mu)$$
, for all $\lambda \in \frac{1}{\ell} \mathbb{Z}$.

Proof. Let a', a'' and b' be real numbers such that a' > a'' > a, b' > b, and

$$(a'u)^{1/u}(b'v)^{1/v} < \left(\sin\frac{\pi(v-1)}{2}\right)^{1/v}$$
.

From Proposition 5, there exists a nonzero even measurable function h on $\mathbb R$ such that

$$e^{2a'|y|^u}h \in L^p(\mathbb{R})$$
 and $e^{b'|\mu|^v}\widehat{h} \in L^q(\mathbb{R}).$

Choose k an infinitely differentiable function compactly supported and odd on \mathbb{R} . Let $g = h \star k$ be the classical convolution product of h and k. g is an odd function on \mathbb{R} . Since \hat{k} is bounded on \mathbb{R} we have

$$e^{b'|\mu|^v}\widehat{g} \in L^q(\mathbb{R}). \tag{9}$$

Suppose that Supp $k \subset [-A,A]$, A>0. For $p=+\infty$, by using the fact that the function $\xi \longmapsto e^{2a''(\xi+A)^u}e^{-2a'\xi^u}$ is bounded on $[0,+\infty[$ we conclude that

 $e^{2a''|y|^u}g \in L^{\infty}(\mathbb{R})$. For $1 \leq p < +\infty$, the generalized Minkowski inequality (see [12], page 21) and the fact that the function $\xi \longmapsto e^{2pa''(\xi+A)^u}e^{-2pa'\xi^u}$ is bounded on $[0, +\infty[$ allow us to conclude again that $e^{2a''|y|^u}g \in L^p(\mathbb{R})$. In all cases we have

$$e^{2a|y|^u}g \in L^p(\mathbb{R}). \tag{10}$$

Take the function f defined on \mathbb{K}_{ℓ} by

$$f(y,\theta) = \frac{e^{i\theta/2}g(y)(\cosh y)^{1/2}}{\sinh 2y}.$$

It is easy to check, by using (10), that we have

$$e^{ay^u} f \in L^p(m_{1/2}).$$

According to (5) and (1) we can write, for all $\lambda \in \frac{1}{\ell}\mathbb{Z}$ and all $\mu \in \mathbb{R}$,

$$\mathcal{F}_{1/2}f(\lambda,\mu) = 4\left(\int_{-\ell\pi}^{\ell\pi} e^{i(1/2-\lambda)\theta} d\theta\right) \left(\int_{0}^{+\infty} g(y)\varphi_{\mu}^{(1/2,\lambda)}(y) \mathrm{sh}y (\mathrm{ch}y)^{\lambda+1/2} dy\right).$$

Thus it follows that, for all $\lambda \neq \frac{1}{2}$ and all $\mu \in \mathbb{R}$, $\mathcal{F}_{1/2}f(\lambda,\mu) = 0$. On the other hand we have

$$\mathcal{F}_{1/2}f(1/2,\mu) = 4\ell\pi \int_0^{+\infty} g(y)\varphi_{\mu}^{(1/2,1/2)}(y) \sinh 2y dy,$$

where $\varphi_{\mu}^{(1/2,1/2)}$ is the Jacobi function which is the unique solution of the following initial problem

$$\begin{cases} \frac{d^2\psi}{dy^2} + 4\frac{\text{ch}2y}{\text{sh}2y}\frac{d\psi}{dy} &= -(\mu^2 + 4)\psi\\ \psi(0) = 1 & \text{and} & \psi'(0) = 0 \end{cases}.$$

Hence we have

$$\forall y > 0, \qquad \varphi_{\mu}^{(1/2, 1/2)}(y) = \frac{2\sin \mu y}{u \sinh 2u},$$

then, since g is odd, we get

$$\mathcal{F}_{1/2}f(1/2,\mu) = \frac{4\ell\pi}{\mu}\widehat{g}(\mu).$$

Furthermore, a straightforward calculation, using well known formulas of gamma function, gives us

$$|c_{1/2,1/2}|^{-2} = \frac{\mu^2}{4}.$$

Thus, by using the relation (9), we obtain

$$\forall \lambda \in \frac{1}{\ell} \mathbb{Z}, \quad e^{b|\mu|^v} \mathcal{F}_{1/2} f(\lambda, .)_{|\mathbb{R}} \in L^q_{\star}(|c_{1/2, \lambda}(\mu)|^{-2} d\mu).$$

References

- [1] N.B. Andersen, Hardy's theorem for Jacobi transform. *Hiroshima Math. J.* **33** (2003), 229-251.
- [2] S. Ayadi, An $L^p L^q$ -version of Morgan's theorem for the Dunkl transform. *Math. Sci. Res. J.* 8, No 11 (2004), 318-327.
- [3] S. Ben Farah and K. Mokni, Uncertainty principle and the $L^p L^q$ -version of Morgan's theorem on some groups. *Math. Russian J. of Math. Phys.* **10**, No 3 (2003), 1-16.
- [4] M. Cowling and J.F. Price, Generalisations of Heisenberg's inequality. *Lecture Notes in Math.* **992**, Springer, Berlin (1983), 443-449.
- [5] M. Ebata, On the Cowling-Price theorem for SU(1,1). Hiroshima Math. J. 31 (2001), 409-423.
- [6] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, *Higher Transcendental Ffunctions*, Vol. 1. McGraw-Hill, New-York (1953).
- [7] M. Flensted-Jensen, Spherical functions on a simply connected semisimple Lie group, II: The Paley-Wiener theorem for rank one case. *Math. Ann.* **228** (1977), 65-92.
- [8] L. Gallardo and K. Trimèche, An L^p version of Hardy's theorem for the Dunkl transform. J. Austral. Math. Soc. Ser. A 77, Part 3 (2004), 371-382.
- [9] G.H. Hardy, A theorem concerning Fourier transforms. J. London Math. Soc. 8 (1933), 227-231.

- [10] T. Koornwinder, A new proof of a Paley-Wiener theorem for the Jacobi function. *Ark. Math.* **13** (1975), 145-159.
- [11] G.W. Morgan, A note on Fourier transforms. J. London Math. Soc. 9 (1934), 187-192.
- [12] S.M. Nilkol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Die Grun. Der Math. Wiss. in Einze. Band 205, Springer-Verlag, Berlin - Heidelberg - New York (1975).
- [13] M. Sifi, Central theorem and infinitely divisible probabilities associated with partial differential operators. J. Theo. Probab. 8, No 3 (1995), 475-499.
- [14] K.Trimèche, Opérateurs de permutaions et analyse harmonique associés à des opérateurs aux dérivées partielles. J. Math. Pures et Applic. 70 (1991), 1-73.
- [15] K.Trimèche, Inversion of the Lions transmutations operators using generalized wavelets. *App. Comput. Harm. Anal.* 4 (1997), 97-112.

Received: April 7, 2005

Department of Mathematics Faculty of Sciences of Monastir 5019 Monastir, TUNISIA

 $e ext{-}mail: kamoun.lot fi@planet.tn$