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Abstract

We prove equalities in the Banach algebra L'(RT). We apply them to
integral transforms and fractional calculus.
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In the first section, we prove the main results: we consider two different
convolution products in L!'(R*) and give new equalities between them, see
Theorem 1.1, Theorem 1.2 and Corollary 1.3. Moreover these convolution
products are dual in some sense, see Theorem 1.4.

As applications of these formulae, we give new interesting identities
involving integral transforms and fractional calculus. In the case of Laplace
transform, Corollary 2.1 is a direct consequence from results of the first
section, while in the case of the Stieljes transform, Theorem 2.2 is proved
following the same ideas as in the first section. The Riemann-Liouville
integration, Weyl fractional calculus and Doetsch derivative may be defined
using convolution products. The first section is the guideline how to prove
directly new results in the fractional calculus, see for example Proposition
3.1, Proposition 3.3 and Theorem 3.5.

* Partially supported by Project BFEM2001-1793 of the MCYT-DGI and
FEDER and Project E-12/25 of D.G.A.
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1. Convolution products in L'(R™)

Let (L'(R*),+,#) be the Banach algebra with the usual convolution
product given by

:/0 f(t—s)g(s)ds,  f,ge L)®RY), t>0. (1)

The convolution product * is commutative and associative. The norm ||.||1
defined by

1111 = /O FB)ldt,  fe L'(®RY),

holds || f *gll1 < || fll1 |lg]l1- We may consider a second convolution product
in L'(RT): take f,g € L'(R"), we defined f o g € L'(R") by

/ f(s—t)g(s)ds, t>0. (2)

It is easy to prove that || fog|li < ||fll1 g1

ExAMPLES. Let A € C* and ey(s) := e with s > 0. Then e, €
L'(RT) and
1 1
Loae e, aeeen=ome

with A, 4 € CT. The convolution product o is non commutative, ey o e, #
ey 0 ey with A, p € CT, and non associative,

1 1
S PT) RO Wn Ty

EN* €y =

er(eHoeg) = €p = (ereu)oeg,

with A\, p,0 € CT.

We may apply convolution products * and o to some functions when the
expressions (1) and (2) have sense, for example, for a > 0, we consider the
function ju(s) := % with s > 0. Then _

o . . sin(fm) .
Ja *J8 = Ja+5> Ja©Jp = m]aﬂ%
with a4+ 8 < 1 in the second equality.

THEOREM 1.1. Take f,g,h € L*(RT). Then
(a) folgoh)=(fxg)oh=(g*f)oh=go(foh).
(b) (fog)oh=go(fxh)—(gof)*h.
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P roof. (a) We apply the Fubini theorem to obtain

Folgem® = [ hw) [ fs - tatu = s)dsdu = (£ + g hlt)

for t > 0. (b) We use the Fubini theorem and we change variables to get
that

o) u+s
(fog)oh(u)= /0 g(s) /u f(s—t+u)h(t)dtds
o] u+s o] u
= /O g(s)/{J f(s —t+u)h(t)dtds — /0 g(s) /0 f(s —t+u)h(t)dtds

= /0 g(s)(f xh)(u—+ s)ds — / h(t)/ f(s—t+u)g(s)dsdt

:/uoog(x—u)(f*h dw—/ / fr)g(r+t—u)drdt
)= (

=go(f*h)(u)—(go f)*h(u),
for u > 0. [

In the next result, we compare (f og)oh and f* (goh).
THEOREM 1.2. Take f,g,h € L'(R"). Then

(Fog)oh(w) = £+ (gomu) + ") / " gr + 2 — wh(z)dedr
—/0 f(r) /u_r g(r + = — u)h(x)dzdr,

with u > 0.

P r o o f. We apply Fubini theorem, and change variables to obtain

(fog)oh(u) = / gy —w) / " fly — tyh(t)dtdy

—/uoog(y—u) /Oyuf(r)h(y—r)drdy—/o f(r) /OO 9(y —u)h(y—r)dydr

r+u

:/OOO £(r) /uoog(rqt:cu)h(x)dxdr

:/Ouf(r) /uoog(r—l—m—u)h(x)d:r:dr—i—/:o () /:og(r+x—u)h(:v)dxdr.
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In the first summand, we have that

/ou Jr) /uoo 9(r + & — u)h(z)dwdr

= /0 f(r) LT g(r +x —u)h(z)dxdr — /0 f(r) /ur g(r +z —u)h(z)dxdr
= frtgonw— [ 10) [ g+ r =)z
and we conclude the result. [

COROLLARY 1.3. Take f,g,h € L*(RT). Then

go(f*h)(u)=fx(goh)(u)+hx(go f)(u)
+/OO f(r)/oog(r +z— u)h(m)dwdr—/ouf(r)/u g(r + = — u)h(x)dzdr,

T
with u > 0.
P roof. We apply Theorem 1.1 (b) and Theorem 1.2. [
Let L°(R™) the Banach space with the norm || || given by

[ flloc = sup essicr[f(t)] < oo, f€LPRY).
Take f € L°(R") and g € LY(R™) then f x g, fog,go f € L>(R"), and

1F%glloo < W[ flloollgll1, 1feglloe < I flloollgll1, lgofllco < M flloollgll1-

The next results show that the convolution products o and * are dual.

THEOREM 1.4. Take f € L®(R") and g,h € L'(R"). Then

(a) /0 F(t)(g * h)(£)dt = /0 (g0 F)(O)h(t)dt = /0 (ho f)(t)g(t)dt.

(b) /O F(t)(g 0 k) (t)dt = /0 (f % ) (O)h(t)dt = /0 g(t)(f o h)(t)dt.

P roof. (a) We apply the Fubini theorem to obtain

0 t 0 00 00
/0 f(t)/o g(t—s)h(s)dsdt:/o h(s)/s g(t—s)f(t)dtds:/o (gof)(t)h(t)dt.

The part (b) is proven in the same way. ]



CONVOLUTION PRODUCTS IN L}(R") ... 365

2. Integral transforms and convolution equalities

In this section we consider the Laplace transform and the Stieltjes trans-
form. We prove new equalities for both, using results and ideas from the
first section.

2.1. Laplace transform
Given f € L'(R"), the Laplace transform of f, L(f), is defined by

o0 R
= / f(t)e =, z€CH,
0

see, for example [2]. The function £(f) is a holomorphic function on C*,
bounded on C* such that £(f * g) = L(f)L(g) with f,g € L'(RT). More-
over, it is easy to check that

(i) foex=L(f)(Nex,

(ii)) exo f = L(f)(N)e—r —e_x* f,
where ey(s) = e with s > 0 and A\ € C*. The incomplete Laplace
transform of f € LI(R+) , is defined by

/ f(s)e *ds, t>0,

for z € C. Given f,g € L'(R"), we apply the Fubini theorem to obtain
that

(i) L(f 0 g)(2) = LIGL(S, - )(—2))(2), with z € CT,
(ii) (f o L£(9))(t) = L{gL(f))(t), for ¢ =0,

(i) (L(f)og)(t) = /O " F(w)(ew 0 g)(t)du, for t > 0,

COROLLARY 2.1. Given f,h € L}(R™), A € C* and u > 0, then

/ f(rye ™ / e M h(x)dxdr — / f(rye ™ / e M h(x)dadr
* h)(A) + L{f * h,u)(X) = LI )AL R, u)(A) = LA L(F, w)(A)-

P r oo f. We apply the Theorem 1.2 with g = e). ]

2.2. Stieltjes transform
Let Sy be the Schwartz class on [0, 00), i.e., functions which are infinitely
differentiable which verifies
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d’n
sup [t"—f(t)] < oo,
up |1 4 10)

for any m,n € NU{0}. Given @ > 0 and f € S, the generalized Stieltjes
transform of f, S, f, is defined Ol%y o)
x
S = ———dx, >0,
)= [ ey
see definition and properties in [6]. If & = 1, it is obtained the classical
Stieltjes transform. Note that if 0 < o < 1, we have the equality

. 1 < f(s) 1
foja< ) F(Oé) A (S+t)1_a S F(Oé) 1 Oé(f)( )7
with f € S; and ¢t > 0. Following the same lines than in Theorem 1.1 (a)
and Theorem 1.2, we prove the next result.

THEOREM 2.2. Take a > 0 and f,g9 € S+, then
(a) foSalg) =9g08a(f)=38alf*9).

(1) Salf 0 9)(u) = f * Sulg)(u) + /

u

h f(r) /OO g(r+z —u)x” *dxdr

- /0 ") /u i g(r + & — wz~dzdr.

3. Fractional calculi and convolution equalities

In this section, we consider three types of fractional calculi (Riemann-
Liouville, Weyl and Doetsch fractional calculus) and we obtain new equali-
ties to them.

3.1. Riemann-Liouville fractional integration
Take f € L}(R™), the Riemann-Liouville integral of order a > 0 of f is

defined by .
Iof(t) = r(la)/o (t— ) f(s)ds,  t>0.

Note that I7%f = jo * f with a > 0, see for example [5].

ProrosiTION 3.1. Take 1 > o > 0, and f,g € Sy, then

(a) F(la)sl_a(f 0g) = g0 (ITf) — I7(go f).
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(b) T@)go 11 = I;(g o f)w) = £+ Si-agl) + [ i)
X - r4+o—u)z* tdedr — ’ r ' r4+ o —u)x® tdzdr.
|t o=t [T50) [ g2 - wardna

P r o o f. The part (a) is proven in the same way as Theorem 1.1 (b)
with h = j,. The part (b) is similar to Corollary 1.3 with h = j,. [

3.2. Weyl fractional calculus
Given f € S; the Weyl fractional integral of order o > 0, W_*f, is
defined by

Wi (u) =

—_— - — )t U
ol M (Or) >0

see for example [5]. Note W *f = j, o f for a > 0, and check

Oota—l 00 . B 00 .
/0 F(a)(QOf)(t)dtZ/O fI; g(t)dt_/o W F(t)g(t)dt,

with f,g € S; (see Theorem 1.4). We follow the same ideas than in the
Theorem 1.1 to check the next proposition.

ProrosiTION 3.2. Take o > 0, and f,g,h € S4. Then:
(a) foW *h=1I%foh=W_%/foh).

(b) Wi %goh=gol “h— @Sl_a(g) xh, with1 > a > 0.
1
(C) @Sl_a(f) oh = W;a(f * h) — W;af * h, with 1 > o > 0.

As in the case of the Theorem 1.2 and Corollary 1.3, we obtain the
following equalities.

ProprosITION 3.3. Take a > 0, and f,g,h € Sy. Then:
0o a—1

(a) Wi%goh(u) =I%(goh)(u)+ / ;(a) /OO g(r + & —u)h(x)dzdr

u a—1 u
/0 ;(O[)/U_Tg(wm —wh(z)dzdr, with u> 0.

(b) Wi*(foh)(u) = f+ W (u) 4+ hx W f(u)
& ® (p 4 g —qy)¥ L
[T [T *F(a)) h(w)dadr

_ b r b —(T+x_u)a_l x)dxdr, wi U
[ [F e, with uzo
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The Weyl fractional derivative of order « is defined by

Wes) = C(n— a)dt®

/ Ts— el f(s)ds, 120,
t

with n = [a] + 1 ([5]). It is easy to check that if o € N then W¢f =
(—Def@, wotly = wew?f) with o, € R, W = Id and f € 8.
Since W, “(Wg) = g, the following “integrating by parts” formula holds:

/ " F()glt)t = / I F W), 3)
0 0

Also, it is straightforward to prove W¢(f og) = fo W%g for a € R and
fyg € S+. In [4], it is proven that

/ T WegeL(f) (dt = / L)W (1), (4)
0 0

with f,g € S4, a > 0, and

WE(7 200 = s [ Watw [ @ um W p oo
(5)

1 o[> o0 N
T /t Wig(u) /t (z+u—t)* WS f(z)dadu,
with ¢ > 0 in [3].
ProposiTIiON 3.4. Take f,h € S; and a > 0 then
(WEF 0ja) o WEh =W f 5 — WE(f = h);

in the case 0 < a < 1, we have that

1
P roof. It is a consequence of (5) and the Theorem 1.2. [

3.3. Doetsch fractional derivative
G. Doetsch [2] defines the fractional derivative of f as the solution g of
the integral equation

1

— t — ) g(u)du = :
o | =0T ede = 0. t>0
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Let us denote it by D®f. This approach is closer to the Laplace transform
(see [1, p.72]) and the Riemann-Liouville fractional calculus: take f,g €
LY(RT) and a > 0, then the following are equivalent:

(i) Df =g
(ii)) L(g)(s) = s“L(f)(s) for s > 0.
(i) 17°(9) = f.
When f, D*f € L'(RT) with a > 0, then
| swgar= [~ orrowicgoa ges..
0 0

because of I.*D*f = f.

THEOREM 3.5. Take f,g € L*(RT) and a > 0. Then the following are
equivalent:

(i) D*f =g.
(ii)) L(g)(s) = s“L(f)(s) for s > 0.
(iii) 17%(9) = f-
(iv) /0 T ooty = /D T OWES(t)dt for any ¢ € S,

v) /ooo 9(8)(¢ 0 ) (t)dt = /OOO f() (¢ o WY)(t)dt for any ¢, 1) € Sy.

(vi) S1(g) = T'(a+1)Sa+1(f).

Proof. (i)« (ii) < (iii) appear in [1]. (iii) = (iv) is straighforward
using the equality (3). For (iv) = (v), it is enough to use W¢(¢ o ¢) =
¢ o W, For (v) = (ii), take 1) = e;, then ¢ o ¢)(t) = e *'L(s) for any
¢ €84, t,s>0and L(g)(s) = s“L(f)(s) for s > 0. (vi) & (ii) Following
equalities hold

Si(g)(t) = /000 e s /000 g(x)e **duxds,
Fla+1)Sar1(f)(t) = /Ooo e s /000 f(z)e *Fdxds.

and the proof is finished. ]
The next result is a direct consequence of the Theorem 3.5 and (4).
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ProprosITION 3.6. Given f,g € Sy such that D*f, D%g € S, then
| perwcovigwa = [T weroeworg o
P roof. By Theorem 3.5 and (4), it is obtained that

| wiss s = [ eovia o=
0 0

and

| cowewsswa = [ cwogows o
0 0

and the equality is proven by (4). (]
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