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Abstract

In the present paper the Cauchy problem for partial inhomogeneous
pseudo-differential equations of fractional order is analyzed. The solvabil-
ity theorem for the Cauchy problem in the space ΨG,2(Rn) of functions
in L2(Rn) whose Fourier transforms are compactly supported in a domain
G ⊆ Rn is proved. The representation of the solution in terms of pseudo-
differential operators is given. The solvability theorem in the Sobolev spaces
Hs

2(Rn), s ∈ R1 is also established.
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1. Introduction

This paper is devoted to the Cauchy problem for time-fractional inho-
mogeneous pseudo-differential equations of fractional order

Dα
∗ u(t, x) = A(Dx)u(t, x) + f(t, x), t > 0, x ∈ Rn, (1)
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u(0, x) = ϕ(x), (2)

where f(t, x) and ϕ(x) are given functions in certain spaces defined later;
Dx = (D1, ..., Dn), Dj = −i ∂

∂xj
, j = 1, ..., n; A(Dx) is a pseudo-

differential operator with a symbol A(ξ), which is a real-analytic function
defined in an open domain G ⊆ Rn, and Dα∗ , 0 < α < 1 is the operator of
fractional differentiation of order α in the Caputo sense (see, for example,
[1, 2, 3])

Dα
∗ g(t) =

1
Γ(1− α)

∫ t

0

g′(τ)
(t− τ)α

dτ, 0 < α < 1, t > 0.

In our analysis we essentially rely on the results of the paper [4], where
the Cauchy problem for fractional order homogeneous pseudo-differential
equations of arbitrary order α > 0 is studied. Note that inhomogeneous
case can not be directly reduced to the homogeneous case. The Duhamel
principle is not applicable as well. Moreover, in that case the solution
of the problem is connected with the construction and estimation of the
corresponding Green’s function.

As it is well-known, initial and boundary value problems for partial
differential equations of fractional order in bounded and unbounded do-
mains are important for the study of non-brownian diffusion and transport
of premices in fractal media. The sphere of applications of fractional order
differential equations has been expanded during the last two decades and in-
cludes such areas as computer tomography [6], finance and macroeconomics
[5], biology [7, 8], hydrodynamics [9], etc.

We note that the Cauchy problem for integer order pseudo-differential
equations with analytic symbols or with symbols having singularities was
studied, for example, by Dubinskij [10], Umarov [11] and Tran Duc Van
[12]. For studying of the Cauchy and more general multi-point value prob-
lems they used some properties of pseudo-differential operators with singular
symbols. These operators were introduced by Dubinskij [10, 13] in the case
of analytic symbols defined in some open domain G. Later on, Umarov [14]
suggested the method of localization of singularities. This method allows to
consider non-analytic symbols, which may have non-integrable or other type
of singularities on the boundary of G or in its exterior. Umarov has found
the solvability conditions of the multi-point problem with general boundary
operators in the case of homogeneous equation. The inhomogeneous case
requires construction and additional estimation of the Green function. This
idea was realized by Saydamatov [15] and Saydamatov, Umarov [16] in the
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case of integer order pseudo-differential equations. In the present paper we
will extend this idea to the fractional differential equations.

Finally, we note that Gorenflo, Luchko and Umarov in their recent
work [4] have studied the Cauchy problem (1), (2) and more general multi-
point boundary value problems in the case of homogeneous partial pseudo-
differential equations of fractional order (i.e. f(t, x) = 0 in (1)). They
essentially used the language of symbols and have applied the method of
localization of singularities of the solution operators, which are pseudo-
differential operators with singular symbols. As the space of initial data
the class ΨG,p(Rn) of entire functions of finite exponential type was taken.
Under certain condition on G the space ΨG,p(Rn) is densely embedded into
the Sobolev spaces Hs

p(Rn), s ∈ R1, 1 < p < ∞. This fact allows to
transfer the obtained results to the Sobolev spaces by means of the closure
of solution operators.

This paper is organized as follows. In Section 2 the pseudo-differential
operators with singular symbols and the space ΨG,p(Rn) introduced in [17],
are defined. In Section 3 solvability theorem for the Cauchy problem (1),
(2) in the space ΨG,p(Rn), p = 2 is proved. In Section 4 the well-posedness
of the Cauchy problem (1), (2) in the Sobolev spaces Hs

2(Rn) is studied. In
Section 5 the Cauchy problem (1), (2) in the case A(Dx) = ∆, where ∆ is
the Laplace operator with the symbol A(ξ) = −|ξ|2, as a fractional model
of sub-diffusion process is considered.

2. Basic spaces of functions and pseudo-differential operators

In this section we formulate some necessary notions and results, obtained
by Gorenflo, Luchko and Umarov [4].

Let G be an open domain in Rn and the system of open sets {gk}∞k=0 be
a locally finite covering of G, i.e.

G =
∞⋃

k=0

gk, gk ⊂⊂ G.

Let any compact set K ⊂ G have a nonempty intersection with finitely
many sets gk. Denote by {θk}∞k=0 a smooth partition of unity of G.

Further, let 1 < p < ∞ and a function f(x) be in Lp(Rn) whose Fourier
transform has a compact support in G. For example, f(x) = x−1 sinx ∈
Lp(R1) for all p ∈ (1;+∞) and its Fourier transform

F [x−1 sinx](y) =
{

1
2 , y ∈ (−1; 1),
0, y ∈ R1\(−1; 1)
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has a compact support in G, where G is an arbitrary interval containing the
segment [−1; 1]. The set of all such functions endowed with the convergence
defined in Definition 2.1 is denoted by ΨG,p(Rn).

Definition 2.1. A sequence of functions fm ∈ ΨG,p(Rn), m = 1, 2, 3, ...
is said to converge to an element f0 ∈ ΨG,p(Rn) iff:

1) there exists a compact set K ⊂ G such that the support supp Ffm ⊂
K for all m ∈ N ;

2) the norm ‖fm−f0‖Lp = (
∫
Rn |fm(x)−f0(x)|pdx )

1
p → 0 for m →∞.

According to the Paley-Wiener-Schwartz theorem, the elements of
ΨG,p(Rn) are entire functions of exponential type which, restricted to Rn,
are in the space Lp(Rn).

The space ΨG,p(Rn) can be represented as an inductive limit of some
spaces. Namely, let

GN =
N⋃

k=1

gk, χN (ξ) =
N∑

k=1

θk(ξ).

Denote by ΨN the set of functions f ∈ Lp(Rn) satisfying the following
conditions:

a) suppFf ⊂ GN ;
b) suppFf ∩ supp θj = ∅ for j > N ;
c) pN (f) = ‖F−1χN Ff‖Lp < ∞.

Here by F−1 we denote the operator inverse to the Fourier transform
F . It is not hard to verify that (see [4])

ΨG,p = ind lim
N→∞

ΨN .

Let A(D) be a pseudo-differential operator with a symbol A(ξ), which
is a real-analytic function in G. Outside of G or on its boundary A(ξ) may
have singularities of arbitrary type. For a function ϕ(x) ∈ ΨG,p(Rn) the
operator A(D) is defined by the formula

A(D) ϕ(x) =
1

(2π)n

∫

Rn

A(ξ)Fϕ(ξ)eixξdξ =
1

(2π)n

∫

G
A(ξ)Fϕ(ξ)eixξdξ.

As shown in [17], [4], the space ΨG,p(Rn) is an invariant with respect
to the action of such pseudo-differential operators and these operators act
continuously. The embedding

ΨG,p(Rn) ⊂ Hs
p(Rn), s ∈ R1, 1 < p < ∞
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is dense if the complement of G in Rn has zero measure. Moreover, if in
addition the symbol A(ξ) for some ` ∈ R1 satisfies the estimate

|A(ξ)| ≤ C(1 + |ξ|2) `
2 , C > 0, ξ ∈ Rn,

then for the operator A(D) : ΨG,2(Rn) → ΨG,2(Rn), corresponding to A(ξ),
there exists a unique continuous closure

A(D) : Hs
2(Rn) → Hs−`

2 (Rn), s ∈ R1.

3. Well-posedness of the Cauchy problem in ΨG,2(Rn)

In this section we prove the well-posedness of the Cauchy problem (1),
(2) in the space ΨG,2(Rn), although the result is true for arbitrary p ∈
(1,∞). We take the particular case p = 2 only for the convenience of
narrative noting the differences in the general case.

First we recall the well-known Duhamel principle for the Cauchy prob-
lem in the case α = 1, Dα∗ ≡ ∂

∂t , i.e.

∂u

∂t
(t, x) = A(Dx)u(t, x) + f(t, x), t > 0, x ∈ Rn, (3)

u(0, x) = ϕ(x), x ∈ Rn. (4)

Namely, the Duhamel principle states that to solve the problem (3), (4),
it is sufficient to consider the homogeneous case. In fact, if U(t, τ, x) is a
solution of the problem

∂U

∂t
= A(Dx)U,

U(0, τ, x) = f(τ, x), 0 < τ < t,

then

u(t, x) =
∫ t

0
U(t− τ, τ, x)dτ

is a solution of the problem

∂u

∂t
= A(Dx)u + f(t, x),

u(0, x) = 0.

Now we consider the Cauchy problem (1), (2). Note that in this case the
Duhamel principle can not be applied directly. The Cauchy problem (1),
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(2) in the homogeneous case (f(t, x) ≡ 0) was studied by Gorenflo, Luchko
and Umarov [4]. They obtained the following representation for the solution

u(t, x) = Eα(tαA(Dx))ϕ(x),

where Eα(tαA(Dx)) is a pseudo-differential operator with the symbol
Eα(tαA(ξ)) and Eα(z) is the Mittag-Leffler function (see [18])

Eα(z) =
∞∑

k=0

zk

Γ(1 + αk)
.

Denote by C(m)[t > 0; ΨG,2(Rn)] and by AC[t > 0; ΨG,2(Rn)] the
space of m times continuously differentiable functions and the space of
absolute continuous functions on (0;+∞) accordingly ranging in the space
ΨG,2(Rn), respectively. It is well-known that there exists D1−α∗ f(t, x),
0 < α < 1, if f(t, x) ∈ AC[t ≥ 0; ΨG,2(Rn)] (see [19]).

Definition 3.1. A function u(t, x)∈C(1)[t >0;ΨG,2(Rn)]∩C[t ≥ 0;
ΨG,2(Rn)] is called a solution of the problem (1), (2) if it satisfies the equa-
tion (1) and the initial condition (2) pointwise.

Theorem 3.2. Let ϕ(x) ∈ ΨG,2(Rn), f(t, x) ∈ AC[t ≥ 0; ΨG,2(Rn)],
D1−α∗ f(t, x) ∈ C[t ≥ 0; ΨG,2(Rn)] and f(0, x) = 0. Then the Cauchy prob-
lem (1), (2) has a unique solution. This solution is given by the representa-
tion

u(t, x) = Eα(tαA(Dx))ϕ(x) +
∫ t

0
Eα((t− τ)αA(Dx))D1−α

∗ f(τ, x)dτ. (5)

P r o o f. It is sufficient to consider the case ϕ(x) = 0 in (2)and to prove
that the function

v(t, x) =
∫ ∞

0
U(t, τ, x)dτ =

∫ t

0
U(t, τ, x)dτ, (6)

where

U(t, τ, x) =
{

Eα((t− τ)αA(Dx))D1−α∗ f(τ, x), t ≥ τ,
0, t < τ,

is a solution of the problem

Dα
∗ v(t, x)−A(Dx)v(t, x) = f(t, x), (7)

v(0, x) = 0. (8)



WELL-POSEDNESS OF THE CAUCHY PROBLEM . . . 7

First we show that the equation

Dα
∗ (

∫ t

0
g(τ, x)dτ) = f(t, x) (9)

has a unique solution g(t, x) = D1−α∗ f(t, x), if f(t, x) ∈ AC[t ≥ 0; ΨG,2(Rn)]
and f(0, x) = 0. In fact, we have

Dα
∗ (

∫ t

0
g(τ, x)dτ) ≡ J1−α ∂

∂t

∫ t

0
g(τ, x)dτ.

In this formula, Jα is the fractional integration operator

Jαy(t) =
1

Γ(α)

∫ t

0
(t− ρ)α−1y(ρ)dρ, 0 < α < 1.

Therefore,

Dα
∗ (

∫ t

0
g(τ, x)dτ) =

1
Γ(1− α)

∫ t

0
(t− ρ)−α ∂

∂ρ
(
∫ ρ

0
g(τ, x)dτ)dρ

=
1

Γ(1− α)

∫ t

0

g(ρ, x)
(t− ρ)α

dρ

and we can rewrite the equation (9) in the form

1
Γ(1− α)

∫ t

0

g(ρ, x)
(t− ρ)α

dρ = f(t, x).

The last equality is an Abel type equation (see [19], [20]) and therefore, it
has a unique solution g(t, x), if f(t, x) ∈ AC[t ≥ 0; ΨG,2(Rn)]. Under the
condition f(0, x) = 0 this solution is represented in the form

g(t, x) =
1

Γ(α)

∫ t

0
(t− ρ)α−1 ∂

∂ρ
f(ρ, x)dρ = Jα(

∂

∂t
f(t, x)) = D1−α

∗ f(t, x).

Further, verify that v(t, x) in (6) satisfies to the equation (7). Indeed,
the function U(t, τ, x) is a solution of the homogeneous problem

Dα
∗U(t, τ, x)−A(Dx)U(t, τ, x) = 0,

U(τ, τ, x) = g(τ, x).
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Here g(t, x) is the solution of the equation (9), i.e. g(t, x) = D1−α∗ f(t, x).
We have

Dα
∗ v(t, x)−A(Dx)v(t, x) = J1−α ∂

∂t
v(t, x)−A(Dx)v(t, x)

=
1

Γ(1− α)

∫ t

0
(t− ρ)−α ∂

∂ρ
v(ρ, x)dρ−A(Dx)

∫ t

0
U(t, τ, x)dτ

=
1

Γ(1− α)

∫ t

0
(t− ρ)−α ∂

∂ρ

∫ ρ

0
U(ρ, τ, x)dτdρ−

∫ t

0
A(Dx)U(t, τ, x)dτ

=
1

Γ(1−α)

∫ t

0
(t−ρ)−α[U(ρ, ρ, x)+

∫ ρ

0

∂

∂ρ
U(ρ, τ, x)dτ ]dρ−

∫ t

0
A(Dx)U(t, τ, x)dτ.

Taking into account that U(ρ, ρ, x) = g(ρ, x) and

1
Γ(1− α)

∫ t

0
(t− ρ)−αg(ρ, x)dρ = Dα

∗ (
∫ t

0
g(τ, x)dτ) = f(t, x),

we obtain
Dα
∗ v(t, x)−A(Dx)v(t, x) = f(t, x)

+
1

Γ(1− α)

∫ t

0
(t− ρ)−α

∫ ρ

0

∂

∂ρ
U(ρ, τ, x)dτdρ −

∫ t

0
A(Dx)U(t, τ, x)dτ.

Further, changing the order of integration we have

Dα
∗ v(t, x)−A(Dx)v(t, x) = f(t, x)

+
∫ t

0

∫ t

τ

1
Γ(1− α)

(t− ρ)−α ∂

∂ρ
U(ρ, τ, x)dρdτ −

∫ t

0
A(Dx)U(t, τ, x)dτ

= f(t, x) +
∫ t

0
[
∫ t

τ

1
Γ(1− α)

(t− ρ)−α ∂

∂ρ
U(ρ, τ, x)dρ−A(Dx)U(t, τ, x)]dτ.

Since U(ρ, τ, x) = 0 for ρ < τ , then

∫ t

τ

1
Γ(1− α)

(t−ρ)−α ∂

∂ρ
U(ρ, τ, x)dρ =

∫ t

0

1
Γ(1− α)

(t−ρ)−α ∂

∂ρ
U(ρ, τ, x)dρ,

and finally we get that

Dα
∗ v(t, x)−A(Dx)v(t, x) = f(t, x)
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+
∫ t

0
[
∫ t

0

1
Γ(1− α)

(t− ρ)−α ∂

∂ρ
U(ρ, τ, x)dρ−A(Dx)U(t, τ, x)]dτ

= f(t, x) +
∫ t

0
[Dα

∗U(t, τ, x)−A(Dx)U(t, τ, x)]dτ = f(t, x).

Further, it is obvious, that the function v(t, x) in (6) satisfies to the initial
condition (8). Consequently, v(t, x) satisfies to the equation (7) and the
condition (8).

Moreover, for a fixed t > 0 making use of the semi-norm of ΨN we have

p2
N

(v(t, x)) = ‖F−1χN Fv‖2
L2

= ‖χN Fv‖2
L2

=
∫

Rn

|χN (ξ)|2 · |
∫ t

0
Eα((t− τ)αA(ξ))FD1−α

∗ f(τ, ξ)dτ |2dξ. (10)

For χN (ξ) there exists a compact set KN ⊂ G such that suppχN (ξ) ⊂ KN .
By using Cauchy-Bunjakowski’s inequality we get the estimate

p2
N

(v(t, x))≤
∫

K
N

|χN (ξ)|2·
∫ t

0
|Eα((t−τ)αA(ξ))|2dτ ·

∫ t

0
|FD1−α

∗ f(τ, ξ)|2dτdξ.

The function
∫ t
0 |Eα((t − τ)αA(ξ))|2dτ is bounded on KN . Consequently,

there exists a constant CN > 0 such that

p2
N

(v(t, x)) ≤ CN

∫

K
N

|χN (ξ)|2 ·
∫ t

0
|FD1−α

∗ f(τ, ξ)|2dτdξ

≤ CN

∫ t

0

∫

Rn

|χN (ξ)|2 · |FD1−α
∗ f(τ, ξ)|2dξdτ

= CN

∫ t

0
‖χN (ξ)FD1−α

∗ f(τ, ξ)‖2
L2

dτ = CN

∫ t

0
p2

N
(D1−α

∗ f(τ, x))dτ.

It follows from the condition D1−α∗ f(t, x) ∈ C[t ≥ 0; ΨG,2(Rn)] that the
function pN (D1−α∗ f(τ, x)) is continuous with respect to τ ∈ (0; t) and for a
fixed t > 0 the estimate

p2
N

(v(t, x)) ≤ CN · t · sup
0<τ<t

p2
N

(D1−α
∗ f(τ, x)) < +∞

holds. Consequently, for every fixed t ∈ (0;+∞) the function v(t, x) in (6)
belongs to the space ΨG,2(Rn). The analogous estimate is valid for ∂

∂tv(t, x).
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Thus v(t, x) ∈ C(1)[t > 0; ΨG,2(Rn)] ∩ C[t ≥ 0; ΨG,2(Rn)]. Therefore this
function is a solution of the problem (7), (8). The uniqueness of a solution
follows from the uniqueness of a solution of the homogeneous Cauchy prob-
lem (1), (2) (see [4]). Finally, we deduce that the function u(t, x) in (5) is
a unique solution of the Cauchy problem (1), (2).

Remark 3.3. An analogous theorem is valid not only for p = 2, but
for all 1 < p < ∞ as well. In the general case, in the estimation (10) it
should be used the theorem on multipliers in Lp(Rn).

Further, consider the equation

A(Dx)u0(x) = −f(0, x), (11)

with a pseudo-differential operator A(Dx) whose symbol A(ξ) is a real-
analytic function in G and has no zeros in G. Formally applying the Fourier
transform, we get the algebraic equation

A(ξ)Fu0(ξ) = −Ff(0, ξ).

Obviously, if f(0, x) ∈ ΨG,2(Rn), then there exists a unique solution of the
equation (11) in the form

u0(x) = − I

A(Dx)
f(0, x),

where I
A(Dx) is the pseudo-differential operator with the symbol 1

A(ξ) . This
solution belongs to the space ΨG,2(Rn), too.

Theorem 3.4. Let A(Dx) be a pseudo-differential operator with a sym-
bol A(ξ) 6= 0, ξ ∈ G and ϕ(x) ∈ ΨG,2(Rn), f(t, x) ∈ AC[t ≥ 0; ΨG,2(Rn)],
D1−α∗ f(t, x) ∈ C[t ≥ 0; ΨG,2(Rn)]. Then there exists a unique solution of
the Cauchy problem (1), (2). This solution is represented in the form

u(t, x) = Eα(tαA(Dx))[ϕ(x) +
I

A(Dx)
f(0, x)]

+
∫ t

0
Eα((t− τ)αA(Dx))D1−α

∗ f(τ, x)dτ − I

A(Dx)
f(0, x). (12)

P r o o f. First we consider the Cauchy problem

Dα
∗ v(t, x) = A(Dx)v(t, x) + f(t, x)− f(0, x), (13)

v(0, x) = ϕ(x) +
I

A(Dx)
f(0, x). (14)
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It follows from Theorem 3.2 that the problem (13), (14) has a unique solu-
tion. This solution is given by the formula

v(t, x) = Eα(tαA(Dx))[ϕ(x) +
I

A(Dx)
f(0, x)]

+
∫ t

0
Eα((t− τ)αA(Dx))D1−α

∗ [f(τ, x)− f(0, x)]dτ

= Eα(tαA(Dx))[ϕ(x)+
I

A(Dx)
f(0, x)]+

∫ t

0
Eα((t−τ)αA(Dx))D1−α

∗ f(τ, x)dτ.

Then it can be easily verified that the function

u(t, x) = v(t, x)− I

A(Dx)
f(0, x)

is a unique solution of the Cauchy problem (1), (2) and for this solution the
representation (12) is valid.

4. Well-posedness of the Cauchy problem (1), (2)
in the Sobolev space Hs

2(Rn)

Let G be a domain whose complement Rn\G has n-dimensional zero
measure. Then the embedding

ΨG,2(Rn) ⊂ Hs
2(Rn), s ∈ R1

is continuous and dense (see [14], [4]).

Theorem 4.1. Suppose that the following conditions are fulfilled:

1)ϕ(x) ∈ Hs
2(Rn), s ∈ R1;

2) for a fixed ` ∈ R1 and T > 0 the estimate

|Eα(tαA(ξ))| ≤ C(1 + |ξ|2) `
2 ,

where C is a positive constant, is valid for all ξ ∈ Rn and t ∈ [0; T ];
3) f(t, x)∈AC[0 ≤ t ≤ T ; Hs

2(Rn)], D1−α∗ f(t, x) ∈ C[0 ≤ t ≤ T ; Hs
2(Rn)];

and f(0, x) = 0. Then there exists a unique solution of the Cauchy problem
(1), (2) in the space

C(1)[0 < t < T ; Hs−`
2 (Rn)] ∩ C[0 ≤ t ≤ T ; Hs−`

2 (Rn)].

Remark 4.2. The conditions 1) and 2) in Theorem 4.1 provide the
solvability of the Cauchy problem (1), (2) in the homogeneous case.
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P r o o f. For ϕ(x) ∈ Hs
2(Rn) there exists a sequence ϕN (x) ∈ ΨG,2(Rn),

N = 1, 2, ... approximating ϕ(x) in the norm of the Sobolev space Hs
2(Rn) .

Analogously for f(t, x), such that f(0, x) = 0, f(t, x) ∈ AC[0 ≤ t ≤ T ;
Hs

2(Rn)] and D1−α∗ f(t, x) ∈ C[0 ≤ t ≤ T ; Hs
2(Rn)], we can choose an

approximating sequence of functions fk(t, x), k = 1, 2, 3, ... satisfying the
conditions

fk(0, x) = 0, fk(t, x) ∈ AC[0 ≤ t ≤ T ; ΨG,2(Rn)],

D1−α
∗ fk(t, x) ∈ C[0 ≤ t ≤ T ; ΨG,2(Rn)].

According to Theorem 3.2, for a fixed N and k there exists a unique solution
of the Cauchy problem (1), (2) (in which ϕ(x) and f(t, x) are replaced by
ϕN and fk(t, x), respectively). This solution is represented in the form

u
N, k

(t, x) = Eα(tαA(Dx))ϕN (x)

+
∫ t

0
Eα((t− τ)αA(Dx))D1−α

∗ fk(τ, x)dτ. (15)

We have
‖u

N,k
(t, x)‖Hs−`

2
≤ ‖Eα(tαA(Dx))ϕN (x)‖Hs−`

2

+ ‖
∫ t

0
Eα((t− τ)αA(Dx))D1−α

∗ fk(τ, x)dτ‖Hs−`
2

= (
∫

Rn

|Eα(tαA(ξ))FϕN (ξ)|2 · (1 + |ξ|2)s−`dξ)
1
2

+(
∫

Rn

|
∫ t

0
Eα((t− τ)αA(ξ))FD1−α

∗ fk(τ, ξ)dτ |2 · (1 + |ξ|2)s−`dξ)
1
2 .

By using the condition 2) and the Cauchy-Bunjakowski inequality, we get

‖u
N,k

(t, x)‖Hs−`
2

≤ (C2

∫

Rn

|FϕN (ξ)|2 · (1 + |ξ|2)sdξ)
1
2

+(
∫

Rn

∫ t

0
|Eα((t− τ)αA(ξ))|2dτ ·

∫ t

0
|FD1−α

∗ fk(τ, ξ)|2dτ · (1 + |ξ|2)s−`dξ)
1
2

≤ C‖ϕN (x)‖Hs
2

+ (C2T

∫

Rn

∫ t

0
|FD1−α

∗ fk(τ, ξ)|2dτ · (1 + |ξ|2)sdξ)
1
2

= C‖ϕN (x)‖Hs
2

+ C(T
∫ t

0
‖D1−α

∗ fk(τ, x)‖2
Hs

2
dτ)

1
2
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≤ C( ‖ϕN (x)‖Hs
2

+ T · sup
0<t<T

‖D1−α
∗ fk(t, x)‖Hs

2
). (16)

This estimate yields the existence of a unique closure of the solution operator
in the representation formula (15). Consequently, the Cauchy problem (1),
(2) has a unique solution in the form

u(t, x) = Eα(tαA(Dx))ϕ(x) +
∫ t

0
Eα((t− τ)αA(Dx))D1−α

∗ f(τ, x)dτ.

Moreover, it follows from the estimate (16) that this solution belongs to the
space

C(1)[0 < t < T ; Hs−`
2 (Rn)] ∩ C[0 ≤ t ≤ T ; Hs−`

2 (Rn)].

Applying Theorem 3.4 we get the following result.

Theorem 4.3. Suppose that the following conditions are fulfilled:

1) the conditions 1) and 2) of Theorem 4.1;
2) A(Dx) is a pseudo-differential operator with a symbol A(ξ) 6= 0,

ξ ∈ G;
3) f(t, x)∈AC[0 ≤ t ≤ T ; Hs

2(Rn)], D1−α∗ f(t, x)∈C[0 ≤ t ≤ T ;Hs
2(Rn)].

Then there exists a unique solution of the Cauchy problem (1), (2) in the
space

C(1)[0 < t < T ; Hs−`
2 (Rn)] ∩ C[0 ≤ t ≤ T ; Hs−`

2 (Rn)].

This solution is given by the formula (12).

5. An example: fractional sub-diffusion

Let us consider the Cauchy problem for the time-fractional equation

Dα
∗ u(t, x) = ∆u(t, x) + f(t, x), t > 0, x ∈ Rn, (17)

u(0, x) = ϕ(x), (18)

where 0 < α < 1 and ∆ is the Laplace operator. The Cauchy problem (17),
(18) is important in the theory of fractional brownian motion and anomalous
transport of premices. In this case the solution operator Eα(tαA(Dx)) has
the symbol Eα(−|ξ|2tα). From the well-known asymptotics at infinity of the
Mittag-Leffler function with a negative argument (see [19, 21]), we have

Eα(−|ξ|2tα) = O
¯
(1 + |ξ| )−2, |ξ| → ∞.
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It follows from this asymptotic formula and Theorem 4.1 that the Cauchy
problem (17), (18) has a unique solution in the space

C(1)[0 < t < T ; Hs+2
2 (Rn)] ∩ C[0 ≤ t ≤ T ; Hs

2(Rn)],

provided the conditions 1) and 3) of Theorem 4.1 are valid. This solution
is given by the formula

u(t, x) = Eα(tα∆)ϕ(x) +
∫ t

0
Eα((t− τ)α∆)D1−α

∗ f(τ, x)dτ.

Moreover, if G = Rn\{0}, then the space ΨG,2(Rn) is dense in ,Hs
2(Rn)

and the symbol A(ξ) = −|ξ|2 has no zeros in G. Therefore, we get the
following result.

Theorem 5.1. Let ϕ(x) ∈ Hs
2(Rn) and f(t, x) ∈ AC[0≤ t≤T ;Hs

2(Rn)],
D1−α∗ f(t, x) ∈ C[0 ≤ t ≤ T ; Hs

2(Rn)]. Then the Cauchy problem (1), (2)
(in which A(Dx) is replaced by 4) has a unique solution in the space
C(1)[0 < t < T ; Hs+2

2 (Rn)] ∩ C[0 ≤ t ≤ T ; Hs
2(Rn)]. This solution is

given by the formula

u(t, x) = Eα(tα∆)[ϕ(x) +
I

∆
f(0, x)]

+
∫ t

0
Eα((t− τ)α∆)D1−α

∗ f(τ, x)dτ − I

∆
f(0, x).

Here I
∆ is the pseudo-differential operator with the symbol − 1

|ξ|2 , ξ ∈ G.

The author is grateful to Professor Sabir Umarov for his valuable advises
and attention to the present work.
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