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Abstract

We suggest a fractional differential equation that combines the simple
harmonic oscillations of an LC circuit with the discharging of an RC cir-
cuit. A series solution is obtained for the suggested fractional differential
equation. When the fractional order α = 0, we get the solution for the RC
circuit, and when α = 1, we get the solution for the LC circuit. For arbi-
trary α we get a general solution which shows how the oscillatory behavior
(LC circuit) go over to a decay behavior (RC circuit) as grows from 0 to
1, and vice versa. An explanation of the behavior is proposed based on the
idea of the evolution of a resistive property in the inductor giving a new
value to the inductance that affects the frequency of the oscillator.
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1. Introduction

Fractional calculus is gaining more grounds and is enabling scientists
to see the evolution of one kind of phenomenon into another kind of phe-
nomenon through the evolution of the fractional order of differentiation, α.
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Engheta [1]-[3], and Rousan et al [4], have studied such evolutions in elec-
tromagnetic multipoles and gravity respectively. Kobelev and Romanov [5]
showed that fractional equations give the most complete possible description
of the system memory. On the problem of dynamic systems, there has been a
great deal of work. Yuan and Agrawal [6] presented a numerical scheme to
solve a fractionally damped single degree-of-freedom spring-mass-damper
forced system using Laguerre integral formula and considering derivative
of the order 0.5 in their example. A comparison of numerical methods is
found in Shokooh and Suarez [7]. A numerical method was used by Koh and
Kelly [8] in applying fractional derivatives of order 0.5 in the formulation of
stress-strain relationship of elastomers. Suarez and Shokooh [9] proposed a
closed form solution to the problem using an eigenvector expansion method
with fractional derivative of order 0.5 only. Laplace transform was used by
Bagley and Trovik [10] and[11]. Fourier transform was used by Gaul et al
[12] and [13] with fractional order of 0.5 only. Hartley and Lorenzo [14]
employed the Mittag-Leffler function to study the initialization problem for
a system of linear fractional order differential equations for discrete values
of the fractional order of derivation. Koeller [15] studied creep and relax-
ation functions taking the order of derivation to vary from 0.05 to 0.35 to
show that a continuous transition from solid state to the fluid state occurs
when the memory parameter(order of derivation) varies from zero to one
expressing the results in terms of Mittag-liffler function. Diethelm et al [16]
recently offer a useful discussion and comparison of different numerical so-
lutions for fractional equations. Many useful books on fractional differential
equations [17] applications of fractional calculus [18] and fractional calculus
[19] and [20] have been published.

In this paper the simple harmonic oscillations of the charge can be gen-
erated through an LC circuit (inductor-capacitor circuit). We shall refer to
the angular frequency of this circuit as ω1 = 1/(LC)1/2. The RC circuit
(resistor-capacitor circuit) is used to show the discharging of a capacitor
(decay) with the time constant τ = RC, which we shall take its inverse
and refer to it as ω2 = 1/τ . These two situations are represented by a
well-known second order differential equation for the oscillations and by
a first order differential equation for the decay. We will combine the two
equations in one fractional differential equation of arbitrary order α and we
will present a series solution to this fractional differential equation to get
a better approximation, which can be achieved by increasing the number
of terms in the summation. The discussion of the fractional problem will
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not be thus limited to the fractional order of 0.5, but all values of the frac-
tional order from zero to one will be considered. Our aim in this work is to
unify both these situations (LC and RC) into a single fractional differential
equation and to see the behavior of a new hybrid circuit that depends on
ω1 and ω2, when the order of differentiation is fractional. Fractional driven
LC and RC circuits will be discussed in future work.

2. The fractional LC −RC circuit

The LC circuit is governed by the equation:

d2Q

dt2
+ ω2

1Q = 0, (1)

while the RC circuit is governed by the equation:

dQ

dt
+ ω2Q = 0, (2)

where ω1 and ω2 are as defined in Introduction. We suggest a fractional
differential equation that is dimensionally consistent and that depend on ω1

and ω2 such that:
d1+αQ

dt1+α
+ ω(α)1+αQ = 0, (3)

where 0 < α < 1 and ω(α) = ωα
1 ω1−α

2 , and where ω(α)1+α will make the
two terms of equation (3) of the same dimension. We immediately notice
that when α = 0, eq. (3) goes over to eq. (2) and when α = 1, eq. (3) goes
over to eq. (1). Using Laplace transform applied to eq.(3), we get:

s1+αq(s)−
(

dαQ(t)
dtα

)

t=0

− s

(
dα−1Q(t)

dtα−1

)

t=0

+ ω(α)1+αq(s) = 0, (4)

where q(s) = L[Q(t)], i.e. q(s) is the Laplace transform of Q(t). In eq. (4)
we have the two initial conditions which can take a variety of initial values,
we shall discuss only one case and leave the other cases for further study:

(
dαQ(t)

dtα

)

t=0

= ω(α)Q0 , and
(

dα−1Q(t)
dtα−1

)

t=0

= 0 , (5)

where Q0 is the initial charge at t = 0 in the case of the RC discharge
circuit (α = 0) and ω1Q0 the initial current at t = 0 in the case of the LC
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oscillatory circuit (α = 1). In this case, taking the highest power of s as a
common factor from the denominator and then expanding the denominator
in an alternating geometric series:

s1+αq(s) + ω(α)1+αq(s)− ω(α)αQ0 = 0 and q(s) = Q0
ω(α)α

s1+α + ωα1+α
,

using the inverse Laplace transform of

1/sα+αn+n+1 = L
[
tα+αn+n/Γ[α + αn + n + 1]

]
,

we get

Q(t) = Q0

∞∑

n=0

(−1)n (ωt)α+αn+n

Γ[α + αn + n + 1]
. (6)

We notice that when α = 0, eq. (6) becomes the solution of eq. (2),
and when α = 1, eq. (6) becomes the solution of eq. (1).

3. Results and discussion

With the initial values specified in eq.(5), we have plotted Q(t)/Q0

versus θ = ωt (theta is in radians throughout the paper) for various α’s
from eq. (6). Fig. (1) shows the variation of Q(t)/Q0 versus θ for α=0,
0.3, 0.5, 0.7, and 1. From Figure 1 we notice that at α = 1 the behavior
is purely oscillatory with a fixed period in of value 2π and a first zero
appearing at half period of π, with a peak value of 1, which represents the
solution to eq. (1). As α decreases, the oscillations persist but they do not
repeat themselves with a fixed period, and the peak decays as increases.
If we take the case of α = 0.5, we notice that the first zero appears at
θ = 2.95335 as opposed to θ = 3.14159 for α = 1. Also the higher zeroes
(second, third, fourth) are not multiples of the first zero as in the case of
α = 1. Also the first peak value is no longer 1 as in α = 1, but 0.726 in
α = 0.5. Also the first peak position is at θ = 0.79 rather than θ = π/2
for α = 1. However, in Figure 2 we have plotted the θ position of the
first zero versus α, and we see that when α decreases from the value of
1 the first zero position decreases slightly until a value around α = 0.6 it
reaches its minimum which is 2.93821 not very different from π. However
as α gets smaller beyond 0.6, the first zero position gets larger and towards
α = 0 it will tend to infinity. A general behavior is noticed from Figure
1 as α decreases the first peak position shifts towards θ = 0. Actually the
dependence of the θ position of the first peak position versus α is shown in
Figure 3, where the dependence seem to be linear.
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Figure 1: Q(t)/Q0 vs. θ for various fractional orders α(0,0.3,0.5,0.7,1),
oscillations start to damp as alpha decreases

The first peak value is plotted versus α in Figure 4, we notice at first
its value decreases as α decreases and it reaches its minimum value of 0.7
around α = 0.3. However the first peak value then increases as α further
decreases until we reach a value of 1 at α = 0. This variation of the first
peak value is quite expected because of the initial condition given in eq. (5)
above.

Figure 2: Position of first zero versus the fractional order alpha (α)
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Figure 3: Position of first peak versus the fractional order alpha (α)

Figure 4: Value of the height of the first peak versus the fractional order
alpha (α)

The result of eq. (6), which is plotted in Figure 1, is of no surprise.
Suppose we have an LC circuit with a time-dependent inductance L(t),
while keeping the capacitance C independent of time. The LC circuit in
this case will resemble an RLC circuit where the time derivative of L(t) will
take the place of R and the solution of the ordinary differential equation
obtained from applying Kirchhoff’s loop rule will be both oscillatory and
decaying. However our hybrid LC − RC circuit analyzed using fractional
calculus may solve a certain class of problems in which the inductance L
is dependent on Q(t), [i.e. L(Q(t))]. Inductors of this sort may involve
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inductors that are made of reasonably soft loops that may change shape as
Q(t) changes with time.

In view of the discussion above, we notice that the inductor, as α departs
from the value of 1, starts to develop a resistive behavior and a pseudo-LCR
circuit starts to develop until α becomes zero the circuit becomes an RC
circuit. In this intermediate case, i.e the case of 0 < α < 1, we suppose that
the inductor starts to loose some of its character as an inductor and has
a partial ”memory loss” which grows as α decreases. This loss of memory
becomes stronger until the inductor is no more an inductor and becomes
just a resistor of the wire making it, and the circuit is then an RC circuit
(a capacitor discharges in a resistor).

In this course of deteriorating inductance the inductance in the hybrid
circuit for a particular α behaves like a time dependent inductance in a
regular LC circuit. It is suggested that the above fractional treatment will
fit the analysis of LC circuits that may contain inductance that depends on
the charge flowing through it.

The concept of intermediate stages has been introduced by many authors
([1]-[4], and [21]).

Equation (6), the solution of the fractional differential equation repre-
senting the case discussed above, is assumed to describe the case of the
inductor that develops a resistive character by loosing part of its nature
as an ideal inductor. The LC circuit is then some kind of an LCR circuit
which becomes an RC circuit at the end of the evolution process (α = 0).

4. Conclusion

We were able to show in this work how an LC circuit can evolve into an
RC circuit and correspondingly how a regular oscillatory behavior can also
evolve into a decay behavior where the inductor starts to loose some of its
character as an inductor and develop a resistive behavior in a manner of a
memory loss. Furthermore, as we mentioned in the results and discussion
above, eq. (6) has the potential of being used to describe the behavior
of complex LC circuits in which the inductance depends on the charge
Q, which in turn depends on time. It is worth noticing that the phase
(ωt) rather than t appears as the variable in this equation, which makes
it applicable to various oscillating systems such as mechanical oscillations
among others.
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