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Abstract

The well known Duhamel principle allows to reduce the Cauchy prob-
lem for linear inhomogeneous partial differential equations to the Cauchy
problem for corresponding homogeneous equations. In the paper one of
the possible generalizations of the classical Duhamel principle to the time-
fractional pseudo-differential equations is established.
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1. Introduction

The role of the classical ”Duhamel principle”, introduced by Jean-Marie-
Constant Duhamel in 1830th, is well known. The main idea of this famous
principle is to reduce the Cauchy problem for a given linear inhomogeneous
partial differential equation to the Cauchy problem for the corresponding
homogeneous equation, which is more simpler to handle. In this paper
we establish a fractional analog of the Duhamel principle with respect to
the following Cauchy problem for inhomogeneous time-fractional pseudo-
differential equations

Dα
∗ u(t, x) = A(Dx)u(t, x) + f(t, x), t > 0, x ∈ Rn, (1)

∂ku

∂tk
(0, x) = ϕk(x), x ∈ Rn, k = 0, ...,m− 1, (2)
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where α ∈ (m−1,m], m ≥ 1 is an integer; f(t, x) and ϕk(x), k = 0, ...,m−1
are given functions in certain spaces defined later; Dx = (D1, ..., Dn), Dj =
−i ∂

∂xj
, j = 1, ..., n; A(Dx) is a pseudo-differential operator with a symbol

A(ξ) defined in an open domain G ⊆ Rn; and Dα∗ is the operator of fractional
differentiation of order α in the Caputo sense (see, for example, [1, 2, 3])

(Dα
∗ )f(t) =





f(t), α = 0,

1
Γ(1− α)

∫ t

0

f
′
(τ)dτ

(t− τ)α
, 0 < α < 1,

Dα−m∗

(
dm

dtm
f(y)

)
, m ≤ α < m + 1, m = 1, 2, . . . .

(3)

Note that at the same time other generalizations of the Duhamel principle
based on other definitions of fractional derivatives are possible, but in this
paper we do not stop by these possibilities.

In our analysis we essentially relay on the results obtained in the paper
[3], where the Cauchy problem for fractional order homogeneous pseudo-
differential equations of arbitrary order α (α > 0) is studied. Note that
fractional order inhomogeneous equations can not be directly reduced to the
corresponding homogeneous equations and the classical Duhamel principle
is not applicable. To our best knowledge, solution of the Cauchy problem
for general inhomogeneous fractional order pseudo-differential equations re-
quire construction and estimation of the corresponding Green’s function or
combination of the classic Duhamel principle and some integral equations
[4, 5, 9, 8, 6]. The fractional Duhamel principle established in the current
paper can be applied directly to inhomogeneous fractional order equations
reducing them to corresponding homogeneous equations, at least, in the
framework of the Cauchy problem (1), (2).

This paper is organized as follows. In Section 2 we recall some facts
related to the fractional Caputo derivative, the classic Duhamel principle,
and the pseudo-differential operators with constant symbols. In Section 3
we formulate the main result of the present paper, namely the fractional
analog of the Duhamel principle. In this section we also demonstrate some
applications of the obtained principle.

2. Preliminaries

2.1. On some relations related fractional derivatives. It follows
from the definition (3) of the Caputo fractional derivative of order α ∈
(m− 1,m] for a given function f(t), that its m-th derivative f (m)(t) has to
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exist and satisfy certain integrability conditions. We notice that if α = m,
where m ≥ 1 is an integer number, then Dα∗ f(t) = fm(t), which immediately
follows from the definition.

Further, denote by Jγ , γ ≥ 0, the fractional order integration operator

Jγf(t) =
1

Γ(γ)

∫ t

0
(t− τ)γ−1f(τ)dτ,

with J0 = I, I is the identity operator. It is well known [2], that the family
{Jγ , γ ≥ 0} possesses the semi-group property. Namely, Jγ1+γ2 = Jγ1Jγ2 =
Jγ2Jγ1 , γ1 ≥ 0, γ2 ≥ 0. The Caputo derivative can be written in the form
(see [2])

Dα
∗ f(t) = Jm−αf (m)(t), m− 1 < α ≤ m. (4)

We denote by Dγ
+ the fractional derivative of order γ > 0 in the sense of

Riemann-Liuoville, which is defined as

Dγ
+f(t) =

1
Γ(m− γ)

dm

dtm

∫ t

0

f(τ)dτ

(t− τ)γ+1−m
, m− 1 < γ < m,

and D0
+f(t) = f(t) and Dm

+ f(t) = fm(t). Between these two derivatives
there is the following relationship, [2]:

Dα
+f(t) = Dα

∗ f(t) +
m−1∑

k=0

f (k)(0)
Γ(k − α + 1)

tk−α. (5)

We note also that

Jmf (m)(t) = f(t)−
m−1∑

k=0

f (k)(0)
k!

tk. (6)

Lemma 2.1. For all α ∈ (m− 1, m] and β ≥ 0 the relation holds:

Jβ+αf(t) = Jβ+mDm−α
+ f(t). (7)

P r o o f. Obviously, the relationship (7) is fulfilled, if α = m. Let
m− 1 < α < m. Then 0 < m− α < 1. It follows from (5) that

Dm−α
+ f(t) = Dm−α

∗ f(t) +
f(0)tα−m

Γ(1−m + α)
, t > 0. (8)

Taking into account (8) and (4), we have

Jβ+mDm−α
+ f(t) = Jβ+mDm−α

∗ f(t) +
f(0)

Γ(1−m + α)
Jβ+mtα−m

= Jβ+αJf
′
(t) +

f(0)
Γ(α + β + 1)

tα+β.
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Further, using (6) with m = 1, we obtain

Jβ+mDm−α
+ f(t) = Jα+βf(t)− Jα+βf(0) +

f(0)
Γ(α + β + 1)

tα+β.

The last equation immediately implies (7), if we take into account the well
known formula Jγ1 = tγ

Γ(γ+1) , γ > 0.

Corollary 2.2. Assume f(0) = 0. Then for all α ∈ (m − 1,m] and
β ≥ 0 the relation

Jβ+αf(t) = Jβ+mDm−α
∗ f(t) (9)

holds.

P r o o f. We notice that m− α < 1. Now the relation (9) immediately
follows from (7) and (5).

2.2. Basic spaces of functions and pseudo-differential opera-
tors. In this section we briefly recall some necessary notions and facts,
which we use in this paper referring the reader to [3, 10], for details. Let G
be an open domain in Rn and the system of open sets {gk}∞k=0 be a locally
finite covering of G, i.e.

G =
∞⋃

k=0

gk, gk ⊂⊂ G.

Let any compact set K ⊂ G have a nonempty intersection with finitely
many sets gk. Denote by {θk}∞k=0 a smooth partition of unity of G. Further,
let 1 < p < ∞ and a function f(x) be in Lp(Rn) whose Fourier transform
Ff has a compact support in G. The set of all such functions endowed with
the convergence defined in Definition 2.3 is denoted by ΨG,p(Rn).

Definition 2.3. A sequence of functions fm∈ΨG,p(Rn),m=1, 2, 3, ...
is said to converge to an element f0 ∈ ΨG,p(Rn) iff:

1) there exists a compact set K ⊂ G such that the support supp Ffm ⊂
K for all m ∈ N ;

2) the norm ‖fm−f0‖Lp = (
∫
Rn |fm(x)−f0(x)|pdx)

1
p → 0 for m →∞.

According to the Paley-Wiener-Schwartz theorem, the elements of
ΨG,p(Rn) are entire functions of exponential type which, restricted to Rn,
are in the space Lp(Rn).

The space ΨG,p(Rn) can be represented as an inductive limit of some
spaces. Namely, let

GN =
N⋃

k=1

gk, χN (ξ) =
N∑

k=1

θk(ξ).
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Denote by ΨN the set of functions f ∈ Lp(Rn) satisfying the following
conditions:

a) suppFf ⊂ GN ;
b) suppFf ∩ supp θj = ∅ for j > N ;
c) pN (f) = ‖F−1χN Ff‖Lp < ∞.

Here by F−1 we denote the operator inverse to the Fourier transform F . It
is not hard to verify that (see [3])

ΨG,p = ind lim
N→∞

ΨN .

Let A(D) be a pseudo-differential operator with a symbol A(ξ), which
is a real-analytic 1 function in G. Outside of G or on its boundary A(ξ)
may have singularities of arbitrary type. For a function ϕ(x) ∈ ΨG,p(Rn)
the operator A(D) is defined by the formula

A(D) ϕ(x) =
1

(2π)n

∫

Rn

A(ξ)Fϕ(ξ)eixξdξ =
1

(2π)n

∫

G
A(ξ)Fϕ(ξ)eixξdξ.

As shown in [10, 3], the space ΨG,p(Rn) is an invariant with respect
to the action of such pseudo-differential operators and these operators act
continuously.

2.3. The classical Duhamel principle. Recall the classical Duhamel
integral and the Duhamel principle. The Duhamel integral (see, e.g. [13,
14]) is used for representation of a solution of the Cauchy problem for a given
inhomogeneous linear partial differential equation with homogeneous initial
conditions via the solution of the Cauchy problem for the corresponding
homogeneous equation. Consider the Cauchy problem for the second order
inhomogeneous differential equation

∂2u

∂t2
(t, x) = L u(t, x) + f(t, x), t > 0, x ∈ Rn, (10)

with homogeneous initial conditions
u(0, x) = 0,

∂u

∂t
(0, x) = 0, (11)

where L is a linear differential operator with coefficients not depending
on t, and containing the temporal derivatives of order, not higher than 1.
Further, let a sufficiently smooth function v(t, τ, x), t ≥ τ, τ ≥ 0, x ∈ Rn,
be for t > τ a solution of the homogeneous equation

∂2v

∂t2
(t, τ, x) = Lv(t, τ, x),

1This condition can be essentially weakened. See the construction in [11, 12], where
continuous symbols are considered.
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satisfying the following conditions:

v(t, τ, x)|t=τ = 0,
∂v

∂t
(t, τ, x)|t=τ = f(τ, x).

Then a solution of the Cauchy problem (10), (11) is given by means of the
Duhamel integral

u(t, x) =
∫ t

0
v(t, τ, x)dτ.

The formulated statement is known as the ”Duhamel principle”.
An analogous construction is possible in the case of the Cauchy prob-

lem with a homogeneous initial condition for the first order inhomogeneous
partial differential equation

∂u

∂t
(t, x) = M u(t, x) + f(t, x), t > 0, x ∈ Rn,

where M is a linear differential operator containing only spatial derivatives,
and with coefficients not depending on t.

2.4. The Duhamel principle for integer α = m, m ≥ 1. Consider
Cauchy problem (1), (2) in the case of integer α = m ≥ 1, Dα∗ ≡ ∂m

∂tm , i.e.
∂mu

∂tm
(t, x) = A(Dx)u(t, x) + f(t, x), t > 0, x ∈ Rn,

∂ku

∂tk
(0, x) = ϕk(x), x ∈ Rn, k = 0, ..., m− 1.

In this case the Duhamel principle is formulated as follows. Let U(t, τ, x)
be a solution of the Cauchy problem for a homogeneous equation

∂mU

∂tm
= A(Dx)U, 0 < τ < t, (12)

∂kU

∂tk
(t, τ, x)|t=τ = 0, k = 0, ..., m− 2, (13)

∂m−1U

∂tm−1
(t, τ, x)|t=τ = f(τ, x). (14)

Then the function
u(t, x) =

∫ t

0
U(t, τ, x)dτ (15)

is a solution of the Cauchy problem
∂mu

∂tm
−A(Dx)u = f(t, x), (16)

∂ku

∂tk
(0, x) = 0, k = 0, ...,m− 1. (17)

The proof of this statement can be found, for instance in [7]. However,
for the completeness, we reproduce the proof.
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Obviously u(0, x) = 0. Further, for the first order derivative
∂u

∂t
(t, x) = U(t, t, x) +

∫ t

0

∂

∂t
U(t, τ, x)dτ,

it follows from (13) that ∂u
∂t (0, x) = 0. Analogously we calculate ∂ku

∂tk
(0, x) =

0, k = 1, ..., m− 2. Consequently, for the derivative of (m− 1)-th order
∂m−1

∂tm−1
u(t, x) =

∂m−2

∂tm−2
U(t, t, x) +

∫ t

0

∂m−1

∂tm−1
U(t, τ, x)dτ,

we obtain ∂m−1

∂tm−1 u(0, x) = 0. Therefore, the function u(t, x) in (15) satis-
fies the initial conditions (17).

Moreover,
∂mu

∂tm
−A(Dx)u =

∂m

∂tm

∫ t

0
U(t, τ, x)dτ −A(Dx)

∫ t

0
U(t, τ, x)dτ

=
∂m−1

∂tm−1
U(t, t, x) +

∫ t

0

∂m

∂tm
U(t, τ, x)dτ −

∫ t

0
A(Dx)U(t, τ, x)dτ

= f(t, x) +
∫ t

0
[
∂m

∂tm
U(t, τ, x)−A(Dx)U(t, τ, x)]dτ = f(t, x).

Hence, u(t, x) in (15) satisfies the equation (16) as well.

2.5. The representation formula for a solution of the Cauchy
problem for homogeneous fractional order equations. Now we con-
sider the Cauchy problem (1), (2) for arbitrary α > 0. Note that in this
case, the Duhamel principle can not be applied directly. For the Cauchy
problem (1), (2) in the homogeneous case (i.e. f(t, x) ≡ 0 in Equation (1))
the following representation formula for a solution was obtained in [3]:

u(t, x) =
m∑

k=1

Jk−1Eα(tαA(Dx))ϕk−1(x), (18)

where Jk is the k-th order integral operator, Eα(tαA(Dx)) is a pseudo-
differential operator with the symbol Eα(tαA(ξ)) and Eα(z) is the Mittag-
Leffler function (see [15])

Eα(z) =
∞∑

k=0

zk

Γ(1 + αk)
.

3. Main results

3.1. A fractional Duhamel’s principle in the case 0 < α < 1.
Assume 0 < α < 1. First we formulate a formal fractional analog of the
Duhamel principle and then we show how to apply this principle in various
situations.
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Theorem 3.1. Suppose that V (t, τ, x), 0 ≤ τ ≤ t, x ∈ Rn, is a solution
of the Cauchy problem for homogeneous equation

Dα
∗ V (t, τ, x)−A(Dx)V (t, τ, x) = 0, t > τ, x ∈ Rn, (19)

V (τ, τ, x) = D1−α
∗ f(τ, x), x ∈ Rn, (20)

where f(t, x) is a given function satisfying the condition f(0, x) = 0. Then

v(t, x) =
∫ t

0
V (t, τ, x)dτ (21)

is a solution of the inhomogeneous Cauchy problem

Dα
∗ v(t, x)−A(Dx)v(t, x) = f(t, x), (22)

v(0, x) = 0. (23)

P r o o f. Notice that in accordance with (18) a solution of the Cauchy
problem (19),(20) is represented in the form

V (t, τ, x) = Eα((t− τ)αA(Dx))D1−α
∗ f(τ, x). (24)

Further, apply the operator Jα to both sides of Equation (22) and use the
relation JαDα∗ v(t, x) = v(t, x)− v(0, x), to obtain

v(t, x)− JαA(Dx)v(t, x) = Jαf(t, x).

A solution of the last equation can be represented as

v(t, x) =
∞∑

n=0

Jαn+αAn(Dx)f(t, x).

It follows from (9) with β = αn and m = 1 that for arbitrary function g(t)
satisfying the condition g(0) = 0, there holds Jαn+αg(t) = Jαn+1D1−α∗ g(t).
Taking this into account we have

v(t, x) =
∞∑

n=0

Jαn+1An(Dx)D1−α
∗ f(t, x) =

∫ t

0

∞∑

n=0

(t− τ)αnAn(Dx)
Γ(αn + 1)

×D1−α
∗ f(τ, x)dτ =

∫ t

0
Eα((t− τ)αA(Dx))D1−α

∗ f(τ, x)dτ. (25)

Comparing (24) and (25) we arrive at (21).

Remark 3.2.

1. It is well-known that the fractional derivative D1−α∗ f(t), 0 < α < 1
exists a.e., if f(t) ∈ AC[0 ≤ t ≤ T ], where T is a positive finite number
and AC[0, T ] is the class of absolutely continuous functions (see [16]).
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2. The condition f(0, x) = 0 in Theorem 3.1 is not essentially restric-
tive. For arbitrary f(t, x) in the formulation of Theorem the Cauchy
condition (20) has to be replaced by

V (τ, τ, x) = D1−α
+ f(τ, x), x ∈ Rn,

where D1−α
+ is the operator of fractional differentiation of order 1−α

in the Riemann-Liouville sense. The case α = 1 recovers the classical
Duhamel principle. Theorem 3.1 coincides with the classical Duhamel
principle in the set of functions f(t, x) with f(0, x) = 0.

Denote by C(m)[t > 0; ΨG,2(Rn)] and by AC[t > 0; ΨG,2(Rn)] the space
of m-times continuously differentiable functions and the space of absolutely
continuous functions on (0;+∞) with values ranging in the spaceΨG,2(Rn),
respectively.

Theorem 3.3. Let ϕ0(x) ∈ ΨG,2(Rn), f(t, x) ∈ AC[t ≥ 0; ΨG,2(Rn)],
D1−α∗ f(t, x) ∈ C[t ≥ 0; ΨG,2(Rn)] and f(0, x) = 0. Then the Cauchy prob-
lem (1),(2) (with 0 < α < 1) has a unique solution u(t, x) ∈ C(1)[t > 0;
ΨG,2(Rn)] ∩ C[t ≥ 0; ΨG,2(Rn)]. It is is given by the representation

u(t, x) = Eα(tαA(Dx))ϕ0(x) +
∫ t

0
Eα((t− τ)αA(Dx))D1−α

∗ f(τ, x)dτ. (26)

P r o o f. The representation (26) is a simple implication of (18) and
Theorem 3.1. The first term in (26) is studied in [3] in detail. Denote
by v(t, x) the second term in (26). For a fixed t > 0 making use of the
semi-norm of ΨN we have

p2
N

(v(t, x)) = ‖F−1χN Fv‖2
L2

= ‖χN Fv‖2
L2

=
∫

Rn

|χN (ξ)|2 · |
∫ t

0
Eα((t− τ)αA(ξ))FD1−α

∗ f(τ, ξ)dτ |2dξ.

For χN (ξ) there exists a compact set KN ⊂ G such that suppχN (ξ) ⊂ KN .
By using Cauchy-Bunjakowski’s inequality we get the estimate

p2
N

(v(t, x))≤
∫

K
N

|χN (ξ)|2·
∫ t

0
|Eα((t−τ)αA(ξ))|2dτ ·

∫ t

0
|FD1−α

∗ f(τ, ξ)|2dτdξ.

The function
∫ t
0 |Eα((t − τ)αA(ξ))|2dτ is bounded on KN . Consequently,

there exists a constant CN > 0 such that

p2
N

(v(t, x)) ≤ CN

∫

K
N

|χN (ξ)|2 ·
∫ t

0
|FD1−α

∗ f(τ, ξ)|2dτdξ
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≤ CN

∫ t

0

∫

Rn

|χN (ξ)|2 · |FD1−α
∗ f(τ, ξ)|2dξdτ

= CN

∫ t

0
‖χN (ξ)FD1−α

∗ f(τ, ξ)‖2
L2

dτ = CN

∫ t

0
p2

N
(D1−α

∗ f(τ, x))dτ.

It follows from the condition D1−α∗ f(t, x) ∈ C[t ≥ 0; ΨG,2(Rn)] that the
function pN (D1−α∗ f(τ, x)) is continuous with respect to τ ∈ (0; t) and for a
fixed t > 0 and some N1 the estimate

p2
N

(v(t, x)) ≤ CN · t · sup
0<τ<t

p2
N

(D1−α
∗ f(τ, x)) ≤ CN1

· t · sup
0<τ<t

p2
N1

(f(τ, x))

holds. Consequently, for every fixed t ∈ (0; +∞) the function v(t, x) in
(21) belongs to the space ΨG,2(Rn). The analogous estimate is valid for
∂
∂tv(t, x). Thus v(t, x) ∈ C(1)[t > 0; ΨG,2(Rn)] ∩ C[t ≥ 0; ΨG,2(Rn)]. Hence,
u(t, x) ∈ C(1)[t > 0; ΨG,2(Rn)] ∩ C[t ≥ 0; ΨG,2(Rn)], as well. The unique-
ness of a solution follows from the representation formula for a solution of
the homogeneous Cauchy problem.

3.2. A fractional Duhamel’s principle in the case of arbitrary
α > 0. Now we consider the Cauchy problem (1), (2) for arbitrary order
α, m− 1 < α < m ∈ N . Obviously, in this case 0 < m− α < 1.

Theorem 3.4. Assume m ≥ 1, m − 1 < α ≤ m, and V (t, τ, x) is a
solution of the Cauchy problem for the homogeneous equation (19) with the
Cauchy conditions

∂kV

∂tk
(t, τ, x)|t=τ = 0, k = 0, ...,m− 2, (27)

∂m−1V

∂tm−1
(t, τ, x)|t=τ = Dm−α

∗ f(τ, x), (28)

where f(t, x), t > 0, x ∈ Rn, is a given function satisfying the condition
f(0, x) = 0. Then

v(t, x) =
∫ t

0
V (t, τ, x)dτ (21)

is a solution of the Cauchy problem for the inhomogeneous equation (22)
with the homogeneous Cauchy conditions

∂kv

∂tk
(0, x) = 0, k = 0, ..., m− 1. (29)

P r o o f. It follows from the representation formula (18) that
V (t, τ, x) = Jm−1Eα((t− τ)αA(Dx))Dm−α

∗ f(τ, x) (30)
solves the Cauchy problem for Eq. (19) with the initial conditions (27),
(28).
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Further, apply the operator Jα to both sides of the equation (22) and
obtain

v(t, x)−
m−1∑

j=0

tjvj(0, x)
j!

− JαA(Dx)v(t, x) = Jαf(t, x). (31)

Taking into account the conditions (29), we rewrite Eq. (31) in the form

v(t, x)− JαA(Dx)v(t, x) = Jαf(t, x).

A solution of this equation is represented as

v(t, x) =
∞∑

n=0

Jαn+αAn(Dx)f(t, x).

It follows from (9) (with β = αn) that for arbitrary function g(t) satis-
fying the conditions g(0) = 0, there holds Jαn+αg(t) = Jαn+m(Dm−α∗ g(t)).
Taking this into account, we have

v(t, x) =
∞∑

n=0

Jαn+1Jm−1An(Dx)Dm−α
∗ f(t, x)

=
∫ t

0
Jm−1

∞∑

n=0

(t− τ)αnAn(Dx)
Γ(αn + 1)

Dm−α
∗ f(τ, x)dτ

=
∫ t

0
Jm−1Eα((t− τ)αA(Dx))Dm−α

∗ f(τ, x)dτ. (32)

Comparing (30) and (32) we obtain (21), and hence, the proof of the theo-
rem.

Remark 3.5. The condition f(0, x) = 0, we required in the theorem,
is not essential. For arbitrary f(t, x), as a consequence of relationship (7),
the formulation of the fractional Duhamel principle takes the following form.

Theorem 3.6. Assume m ≥ 1, m − 1 < α ≤ m, and V (t, τ, x) is a
solution of the Cauchy problem for the homogeneous equation (19) with the
Cauchy conditions

∂kV

∂tk
(t, τ, x)|t=τ = 0, k = 0, ..., m− 2, (33)

∂m−1V

∂tm−1
(t, τ, x)|t=τ = Dm−α

+ f(τ, x), (34)

where f(t, x), t > 0, x ∈ Rn, is a given function. Then v(t, x) defined in
(21) is a solution of the following Cauchy problem for the inhomogeneous
equation

Dα
∗ v(t, x)−A(Dx)v(t, x) = f(t, x),
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∂kv

∂tk
(0, x) = 0, k = 0, ..., m− 1.

Remark 3.7. Note that when α = m, Theorem 3.6 recovers the known
classical Duhamel principle we mentioned above (see, Subsection 2.4).

Theorem 3.4 and Theorem 3.6 allow to generalize the result of the paper
[6] for arbitrary α > 0.

Definition 3.8. A function u(t, x) ∈ C(m)[t > 0; ΨG,2(Rn)] ∩ C(m−1)

[t ≥ 0; ΨG,2(Rn)] is called a solution of the problem (1), (2), if it satisfies
the equation (1) and the initial conditions (2) pointwise.

Theorem 3.9. Let ϕk(x) ∈ ΨG,2(Rn), k = 0, ..., m − 1, f(t, x) ∈
AC[t ≥ 0; ΨG,2(Rn)], Dm−α∗ f(t, x) ∈ C[t ≥ 0; ΨG,2(Rn)] and f(0, x) = 0.
Then the Cauchy problem (1), (2) has a unique solution. This solution is
given by the representation

u(t, x) =
m∑

k=1

Jk−1Eα(tαA(Dx))ϕk−1(x)

+
∫ t

0
Jm−1Eα((t− τ)αA(Dx))Dm−α

∗ f(τ, x)dτ. (35)

P r o o f. Splitting the Cauchy problem (1),(2) into the Cauchy problem
for the equation (1) with the homogeneous initial conditions and the Cauchy
problem for the homogeneous equation corresponding to (1) with the initial
conditions (2), and applying Theorem 3.4 and representation formula (18),
we obtain (35). The fact that

m∑

k=1

Jk−1Eα(tαA(Dx))ϕk−1(x)

∈ C(m)[t > 0; ΨG,2(Rn)] ∩ C(m−1)[t ≥ 0;ΨG,2(Rn)]
is proved in [3]. Further, since the m− 1-th derivative with respect to t of
the last term in (35) belongs to AC[[0, T ]; ΨG,2(Rn)]2, then the estimation
obtained in the proof of Theorem 3.3 holds in this case as well.

Remark 3.10. If f(t, x) does not vanish at t = 0, then in accordance
with Theorem 3.6, the representation formula (35) takes the form

u(t, x) =
m∑

k=1

Jk−1Eα(tαA(Dx))ϕk−1(x)

+
∫ t

0
Jm−1Eα((t− τ)αA(Dx))Dm−α

+ f(τ, x)dτ.

2T is an arbitrary positive finite number.
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3.3. Examples.

1. Let 0 < α < 1 and f(t, x) be a given function, f(0, x) = 0. Consider
the Cauchy problem

Dα
∗ u(t, x) = ∆u(t, x) + f(t, x), t > 0, x ∈ Rn,

u(0, x) = ϕ0(x).
where ∆ is the Laplace operator. In accordance with the fractional Duhamel
principle (Theorem 3.1) the influence of the external force f(t, x) to the
output can be count as

Dα
∗ V (t, τ, x) = ∆V (t, τ, x), t > τ, x ∈ Rn,

V (τ, τ, x) = D1−α
∗ f(τ, x).

The function V (t, τ, x) = Eα((t − τ)α∆)D1−α∗ f(τ, x) solves this problem.
Hence,

u(t, x) = Eα(tα4)ϕ0(x) +
∫ t

0
Eα((t− τ)α4)D1−α

∗ f(τ, x)dτ.

2. Similarly, if 1 < α < 2, and F (t, x) is a given function, which
describes the outer force, then we deal with the Cauchy problem

Dα
∗ u(t, x) = ∆u(t, x) + F (t, x), t > 0, x ∈ Rn,

u(0, x) = ϕ0(x), ut(0, x) = ϕ1(x).

Again in accordance with the fractional Duhamel principle (Theorem 3.6)
the influence of the external force F (t, x) to the output can be count as

Dα
∗ V (t, τ, x) = ∆V (t, τ, x), t > τ, x ∈ Rn,

V (τ, τ, x) = 0,
∂V

∂t
(τ, τ, x) = D2−α

+ F (τ, x).

The function V (t, τ, x) = JEα((t− τ)α∆)D2−α
+ F (τ, x) solves this problem.

Hence,

u(t, x)=Eα(tα∆)ϕ0(x)+JEα(tα∆)ϕ1(x)+
∫ t

0
JEα((t−τ)α∆)D2−α

+ F (τ, x)dτ.
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