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Abstract
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1. Introduction

Let A, ,, denote the class of functions f(z) of the form

f(z)=2"+ Z arz®  (p,neN:={1,2,3,...}) (1.1)
k

:p+n
which are analytic and multivalent in the open unit disk U={z€C : |z| <1}
and p(z) be given by

p(z) =2 + stj_(s_l)pzsj_(s_l)p (j2n+p ;neN; m>2). (1.2)
s=1

A function f(z) belonging to A, , is called multivalently starlike of order
o in U, if it satisfies the inequality:
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2f'(2)
Re< ) > >a (ze€l)
for some a (0 < o < p). Also, a function f(z) € A, is said to be multiva-
lently convex of order « in U, if it satisfies the inequality
2f"(z
Re<1—|— ]{’((z))> >a (ze€l)

for some o (0 < a < p). We denote by S, (o) and Kp,(a) the class
of functions f(z) € Ap, which are multivalently starlike of order a and
multivalently convex of order «, respectively. We note that

1) € Kpnle) & L e a)

For functions f(2) belonging to the classes S, ,(a) and K, (), Owa [4] has
shown the following coefficient inequalities.

THEOREM 1.1. If a function f(z) € A,,, satisfies

o0

Y (k—a)|al<p-—a (1.3)

k=p+n
for some o (0 < a < p), then f(z) € S, ().

THEOREM 1.2. If a function f(z) € A,,, satisfies

oo
> k(k—a)|al <p-a (1.4)
k=p+n
for some o (0 < o < p), then f(z) € Kpn(c).
In this paper, we investigate the integral means inequalities for the frac-
tional derivatives and for the fractional integrals of multivalent functions.
We shall make use of the following definitions of fractional calculus (cf.
Owal|6]; see also Srivastava and Owa [7]).

DEFINITION 1. The fractional integral of order A is defined, for a
function f(z), by

- I AR (9]
D = / dg A>0),
T Sy G- =0
where the function f(z) is analytic in a simply-connected region of the
complex z-plane containing the origin and the multiplicity of (z — &)} is

removed by requiring log(z — ) to be real when z — & > 0.
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DEFINITION 2. The fractional derivative of order A is defined, for a
function f (z), by

Ao 1 d [* f(§)
DZ_F(l—A)dz/O (Z_g)Adf (0<A<1),
A

where the function f (z) is constrained, and the multiplicity of (z — &)™ is
removed, as in Definition 1, above.

DEFINITION 3. Under the hypotheses of Definition 2, the fractional
derivative of order n + A is defined, for a function f (z), by
dn

D;:}Hf(z):@pgf(z) (0<A<1;neNy=NUO).

It readily follows from Definitions 1 and 2 that

_ I'k+1)
DR = A A>0 1.5
R U (A>0) (15)
and
rk+1)
D)k = kA <i<1 1.
respectively.

Further, we need the concept of subordination between analytic func-
tions and a subordination theorem of Littlewood [3] in our investigation.

Given two functions f (z) and g (z), which are analytic in U, f (z) is said
to be subordinate to g (z) in U, if there exists an analytic function w (z) in
U with w(0) = 0 and |w (z)| < 1 (z € U) such that f(z) = g(w(z)). We
denote this subordination by

f(z)<g(z) (cf. Duren [1]).

THEOREM 1.3. (Littlewood [3]) If f (z) and g (z) are analytic in U with
f(2) < g(z), then for > Oand z = re®(0 < r < 1),

27 27
2" do < 2)|* de.
/0 ()] def/o 19 (2)]" do

2. Integral means inequalities

First we prove the integral means inequalities for the fractional deriva-
tives.
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THEOREM 2.1. Let f(z) € Apn, p(z) be given by (1.2), p > X, and
suppose that
oo

> (k= N)asa lax|
k=p+n

<§:F(Sj—(3—1>P+1)F(P—/\+1—V)F(n+p+1—/\—6) b, |
=S ZiT(sj—(s—1p-A+1-)(n+p—ANT(p—A+1—0g) 9-=br

2.1)
for A=0o0r1(0<d,v<l)and2<X<n(0<d,v<1), where (k;—Ang
denotes the Pochhammer symbol defined by (k — A 41 = (k — A\)(k — X+
1)...k. Then for z = re® (0 <r < 1),

27 27 r _ 1— 12
[T prese) < [T IREE D)
0 0

T(p—A+1-0) do (p>0).

(2.2)

P r o o f. By means of the fractional derivative formula (1.6) and Defi-
nition 3, we find from (1.1) that

DMOf() = ~ Tlp+1) A 5!1+ Z DI (p—A+1-4) zkp]

T(p—A+1-0) oo Do+ T (k=2 41— 5)"

- Imsz\é {14_ > (k- )\)A+1W¢(l€)akzk1’] ,

where

INUEDY A=0or 1 (0<d<1)
_ = k> .
k) = T 1oa—0) {2§A§n (0<s<1)Fzntp,neN

Since ®(k) is a decreasing function of k, we have

F'n+p—A)
< —
O<ek)sentp) =275
{ A=0or 1

(0<6<1) S
2<A<n (0<6<1)’k—n+p’nGN '
6)

Similarly, by using (1.2),(1.
DX*p(z) =

and Definition 3, we obtain
F(p + 1) Zp—)\—zz
F'p—A+1-v)

Zm: (si—(s—Dp+1)I'p—A+1-v) sG—p)
sj—(s—1)p? :
T(p+ D)I(sj—(s—Lp—A+1—u) 9
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Thus we have

P(p=A+1-v) , 500 T+ s

T(p—A+1-9) M@:F@—A+1—®
m I'(s (s—=p+1DI'(p—A+1-v) sGp)
8 1+pr+ 5]—(s—l)p—)\—kl—l/)bsj*(sfl)pz ‘

For z = re? (0 < r < 1), we must show that

I

o S T(p—A+1-0)
L/« 1+ ) (k= Man ®(k)apz""| do
0 k=p+n F(p—i— 1)
o (57— (s=Dp+ DL (p-A+1-v) NG
< 1 byi (s G2 d6 (u > 0).
_/0 +Z —1)p=A+1-v)I(p+1) ¥ (s-1)p% (n>10)
By applying Theorem 1.3, it suffices to show that
= T(p—A+1-26 -
1+ Z (k= M+ (v Tlp+1) )Q(k)akzk p
k7p+n b
Llsj—(s—1p+1l(p—A+1—-v) G
1 bei—s1p?” 0. (2.3
) +§: L(sj—( 1m—A+1—uW@+¢)”(SUM (2:3)
By setting
— T(p—A+1-6 -
1+ > (k=Man v Tp+1) )é(k)akzk P
k=p+n p

= L= (s=Dp+ DI(p—A+1-v) s(j—p
o ; [(sj—(s—Lp—A+1-v)['(p+ 1)b5j—(5—1)p{w(z)} U-n),

we find that

i) | o T(p—A+1-9)
{w(2)}*07) = k:%;n(k = Mt Tt 1)

1

m  I'(sj—(s—=1)p+1)I'(p—A+1—v
Dse1 ngjf(sflggﬂwl(]i”)l“(wl;bsj*(sfl)p

x ®(k)apz*P
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which readily yields w(0) = 0. Therefore, we have

p—A+1-19)
L(p+1)

s(j— > F
WP < 3 (k= A
k=p+n
k—p 1
x ®(k) |ax]|2]

m  I'(sj—(s—Dp+1)I'(p—A+1—v
SR e e

—A1=5 00
o B(n + p) L1 -
<[] s T(sj—(s—Dp+ )L (p—A+1-v) Ibs; | Z (k= A)xt1 fax]
s=1 T(sj—(s—1)p—A+1—0)T(p+1) |”si—(s—=1)p| k=p+n
T DT A=) &
= |2 ey > (= s oyl

m  I'(sj—(s—1)p+1)I'(p—A+1—v)
Zs:l F(S;*(871;§7A+1(§V)F(p+l) |b3j*(3*1)P‘ k=p+n

<|z" <1

by means of the hypothesis (2.1) of Theorem 2.1.

In light of the last inequality above, we have the subordination (2.3)
which evidently proves Theorem 2.1. ]

REMARK 1. By applying the Hélder inequality to the right hand side
of the inequality (2.2) of Theorem 2.1, we have the following

/0% \F(2)[* db < {/D% \F(z)\“'idé}g {/027r 122ud0}2#
e \F<z>r2cw}g (om)*

ZlffﬁD/\+Vp(Z)'

where 0 < @ < 2 and

F(z) = 'p—A+1-v)

Fp—A+1-9)

This remark is applicable to the following results.

Next we have the following integral means inequalities for the fractional
integrals.

THEOREM 2.2. Let f(z) € Ay, and p(z) given by (1.2) and supposed
that
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> klay

k=p+n
<Z sy— s—1)p+1)F(p+1+l/)F(n+p+1+5)‘ ' |
T(sj—(s—Dp+1+u)(n+plp+1+06) = d-=lp

for § and v > 0. Then, for z = re? (0 < r < 1),

/0 K D f(2)[ db < /0

P r o o f. By virtue of the fractional integral formula (1.5) and the
fractional derivative formula (1.6), replacing § with —§(6 > 0) and v with
—v(v > 0) and putting A = 0 in Theorem 2.1, we complete the proof. [

2 I‘\(p 1 V) 5 122
_ YDV do 0).
( 1 5) z . p(z) (u > )

When § = v, Theorem 2.1 readily yields the following.

COROLLARY 2.1. Let f(z) € Apn, p(z) be given by (1.2), p > A, and
suppose that

[e.o]

> (k= N)aga lax|

k=p+n

- i I(sj—(s—p+DI(n+p+1—X—9)

b..
WSt Dlsi = (s =Dp =X =6+ DT (n+p— ) [bsj~(s-1l

for 0 < A <nand0 <6 <1, where (k — ) 11 denotes the Pochhammer
symbol defined by (k—AN)xy1 = (k=N (k—=A+1)...k.
Then for z = e (0 < r < 1),

/027r |D2*0p(2)|" a0 < /0% D) a0 (w>0).

Also, from Theorem 2.2, when § = v, we have the following;:

COROLLARY 2.2. Let f(z) € Ay, and p(z) be given by (1.2), and sup-
posed that

sy 871p+1)F(n+p+1+5)
< : .
Z k"ak’ Z 8—1)p+1+5) (n+p) ‘ S]*(S*l)p}

k=p+n
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Then for z = re? (0 < r < 1),

[ ot ans [

As the special case A\ = 0, Corollary 2.1 readily yields the following
corollary.

Dp(z)| 4o (u>0).

COROLLARY 2.3. Let f(z) € Ay, and p(z) be given by (1.2), and sup-
posed that

I(sj—(s—Lp+1)I'(n+p+1-90)
k <
Z 2 Z I'(sj—(s—1)p+1—-9)I'(n+p) |
(0<d<1l;j>n+p;neN).
Then for z = re® (0 < r < 1),

/0% ()" v < /02”

Also, from Corollary 2.1, when A = 1, we have the following.

sj ,(8,1)10‘
_p+n

Dip()|"do  (u>0).

COROLLARY 2.4. Let f(z) € Ay, and p(z) be given by (1.2), and sup-
posed that

> I(sj—(s—Dp+1I'(n+p—19)
Z Bk=Dla < Y ¢ |bsj—(s—1)p]
kepin piin L7 = (s =Lp=)l(n+p—1)

(0<d<1;j>n+p;neN).

Then for z = re? (0 < 7 < 1),
2 u 2w w
[ presa| < [ D) e >0
0 0
Also, when p = 1, we have the following corollaries, see [8]:

COROLLARY 2.5. Let f(z) € A, and

p(2) =2+ bysn12 T (jZntl neN; m>=2) (24)
s=1
and supposed that
Z (B = M)t |ak
k=n+1
<§: [(sj—s+2T2-A—v)[(n+2—\—9)
T D(sjms+2=A-)(n+1-ANI2-A-

5) |b8] s+1 ’
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for A =0o0r1(0<dv<1l and2 < X <n(0 < v < 1). Then for
z=re? (0<r<1),

/ K DX p(2)[" d < / "
0 0

COROLLARY 2.6. Let f(z) € A,, and p(z) given by (2.4) and supposed
that

F(Q_)\_V) v—38 mA+v a
F(2—)\—5)Z D ™p(z)| do (1 >0).

Z k’ak’<z —s+2) 24+ v)I'(n+2+9)

|bsj—s+1]
Nt sy—8+2+v)f‘(n+1)f‘(2+5) J
for § and v > 0. Then, for z = re? (0 < r < 1),
2m u 2m F(Q 4 l/) H
Df)| o < [ | moe D ()| do 0).
[P i< [ ea e pe) (> 0)
References

[1] P. L. Duren, Univalent Functions. Springer-Verlag, New York (1983).

[2] H. O. Giiney, S. S. Eker and S. Owa, Integral means of multivalent
functions, Accepted.

[3] J. E. Littlewood, On inequalities in the theory of functions. Proc. Lon-
don Math. Soc. 23 (1925), 481-519.

[4] S. Owa, On a certain classes of p-valent functions with negative coef-
ficients, Simon Stevin 59(1985), 385-402.

[5] T.Sekine, S. Owa and R. Yamakawa, Integral means of certain analytic
functions. General Mathematics, Accepted.

[6] S. Owa, On the distortion theorems: 1. Kyungpook Math. J. 18 (1978),
53-59.

[7] H.M. Srivastava and S. Owa (Editors), Univalent Functions, Fractional
Calculus, and Their Applications. Halsted Press (Ellis Horwood Lim-
ited) Chichester; John Wiley and Sons, New York, Chichester, Bris-
bane, and Toronto (1989).

[8] T. Sekine, S. Owa and K. Tsurumi, Integral Means of Analytic Func-
tions for Fractional Calculus. International Symposium on Analytic
Function Theory, Fractional Calculus and Their Applications.



142 S. S. Eker, H. O. Giiney, Sh. Owa

L2 Department of Mathematics Received: October 8, 2006
Faculty of Science and Arts

University of Dicle

21280 - Diyarbakir, TURKEY

e-mails: ' sevtaps@dicle.edu.tr , ? ozlemg@dicle.edu.tr

3 Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577 - 8502, JAPAN

e-mail : owa@math.kindai.ac.jp



