

AN ANALOGUE OF BEURLING-HÖRMANDER'S
 THEOREM FOR THE DUNKL-BESSEL TRANSFORM

Hatem Mejjaoli

Dedicated to Professor Khalifa Trimèche, on the occasion of his 60th anniversary

Abstract

We establish an analogue of Beurling-Hörmander's theorem for the Dunkl-Bessel transform $\mathcal{F}_{D, B}$ on \mathbb{R}_{+}^{d+1}. We deduce an analogue of GelfandShilov, Hardy, Cowling-Price and Morgan theorems on \mathbb{R}_{+}^{d+1} by using the heat kernel associated to the Dunkl-Bessel-Laplace operator.

Mathematics Subject Classification: Primary 35R10, Secondary 44A15 Key Words and Phrases: Dunkl-Bessel transform, Beurling-Hörmander's theorem, Hardy theorem, Morgan theorem, Gelfand-Shilov theorem

\section*{1. Introduction}

There are many theorems known which state that a function and its classical Fourier transform on \mathbb{R} cannot simultaneously be very small at infinity. This principle has several version which were proved by G.H. Hardy [6], G.W. Morgan [11], M.G. Cowling and J.F. Price [4], A. Beurling [1].

The Beurling theorem for the classical Fourier transform on \mathbb{R} which was proved by L. Hörmander [7], says that for any non trivial function f in $L^{2}(\mathbb{R})$, the function $f(x) \mathcal{F}(f)(y)$ is never integrable on \mathbb{R}^{2} with respect to the measure $e^{|x y|} d x d y$. A far reaching generalization of this result has

been recently proved in [2]. In this paper the author proves that a square integrable function f on \mathbb{R}^{d} satisfying for an integer N :

$$
\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{|f(x) \| \mathcal{F}(f)(y)|}{(1+\|x\|+\|y\|)^{N}} e^{\|x\|\| \| y} d x d y<+\infty
$$

has the form $f(x)=P(x) e^{-\beta\|x\|^{2}}$, where P is a polynomial of degree strictly lower than $\frac{N-d}{2}$ and $\beta>0$.

This version has been studied in other situations by many authors in particular L. Bouattour and K. Trimèche [3], L. Kamoun and K. Trimèche [8] and K. Trimèche [13]. There, an analogue of Beurling-Hörmander's theorem has been proved, for the Chébli-Trimèche transform, a Fourier transform associated with partial differential operators and the Dunkl transform.

In this paper we study an analogue of Beurling-Hörmander's theorem for the Dunkl-Bessel transform on \mathbb{R}_{+}^{d+1}.

The contents of the paper is as follows: In Section 2 we recall the Dunkl operators and the Dunkl kernel. We introduce in the third section the Dunkl-Bessel-Laplace operator and define the Dunkl-Bessel transform, the Dunkl-Bessel intertwining operator and its dual, and give their properties. Section 4 is devoted to the heat functions $W_{s, p}^{k, \beta}$ related to the Dunkl-Bessel Laplace operator. These functions are used in the statement of the main result. In Section 5 we give an analogue of Beurling-Hörmander's theorem for the Dunkl-Bessel transform. In the last section, an analogue of Hardy and Morgan theorems is obtained for the Dunkl-Bessel transform. For other proofs of these theorems (see [9], [10]).

2. Dunkl operators and Dunkl kernel

In this section we collect some notations on Dunkl operators and the Dunkl kernel (see [5]).

For $\alpha \in \mathbb{R}^{d} \backslash\{0\}$, let σ_{α} be the reflection in the hyperplane $H_{\alpha} \subset \mathbb{R}^{d}$ orthogonal to α, i.e.

$$
\begin{equation*}
\sigma_{\alpha}(x)=x-2 \frac{\langle\alpha, x\rangle}{\|\alpha\|^{2}} \alpha . \tag{1}
\end{equation*}
$$

A finite set $R \subset \mathbb{R}^{d} \backslash\{0\}$ is called a root system, if $R \cap \mathbb{R}^{d} . \alpha=\{\alpha,-\alpha\}$ and $\sigma_{\alpha} R=R$ for all $\alpha \in R$. For a given root system R the reflection
$\sigma_{\alpha}, \alpha \in R$, generate a finite group $W \subset O(d)$, called the reflection group associated with R. All reflections in W correspond to suitable pairs of roots. For a given $\beta \in \mathbb{R}^{d} \backslash \cup_{\alpha \in R} H_{\alpha}$, we fix the positive subsystem $R_{+}=$ $\{\alpha \in R /\langle\alpha, \beta\rangle>0\}$, then for each $\alpha \in R$ either $\alpha \in R_{+}$or $-\alpha \in R_{+}$.

A function $k: R \longrightarrow \mathbb{C}$ on a root system R is called a multiplicity function, if it is invariant under the action of the associated reflection group W.

Moreover, let ω_{k} denote the weight function

$$
\begin{equation*}
\forall x \in \mathbb{R}^{d}, \omega_{k}(x)=\prod_{\alpha \in R_{+}}|\langle\alpha, x\rangle|^{2 k(\alpha)} . \tag{2}
\end{equation*}
$$

The Dunkl operators $T_{j}, j=1, \ldots, d$, on \mathbb{R}^{d} associated with the finite reflection group W and multiplicity function k are given for a function of class C^{1} by

$$
\begin{equation*}
T_{j} f(x)=\frac{\partial}{\partial x_{j}} f(x)+\sum_{\alpha \in R_{+}} k(\alpha) \alpha_{j} \frac{f(x)-f\left(\sigma_{\alpha}(x)\right)}{\langle\alpha, x\rangle} \tag{3}
\end{equation*}
$$

In the case $k=0$, the $T_{j}, j=1, \ldots, d$, reduce to the corresponding partial derivatives. In this paper, we will assume throughout that $k \geq 0$.

We define the Dunkl-Laplace operator on \mathbb{R}^{d} by

$$
\begin{equation*}
\triangle_{k} f(x)=\sum_{j=1}^{d} T_{j}^{2} f(x)=\triangle_{d} f(x)+2 \sum_{\alpha \in R^{+}} k(\alpha)\left[\frac{\langle\nabla f(x), \alpha\rangle}{\langle\alpha, x\rangle}-\frac{f(x)-f\left(\sigma_{\alpha}(x)\right)}{\langle\alpha, x\rangle^{2}}\right] . \tag{4}
\end{equation*}
$$

For $y \in \mathbb{R}^{d}$, the system

$$
\left\{\begin{aligned}
T_{j} u(x, y) & =y_{j} u(x, y), \quad j=1, \ldots, d \\
u(0, y) & =1
\end{aligned}\right.
$$

admits a unique analytic solution on \mathbb{R}^{d}, which will be denoted $K(x, y)$ and called Dunkl kernel. This kernel has a unique holomorphic extension to $\mathbb{C}^{d} \times \mathbb{C}^{d}$.

The function $K(x, z)$ admits for all $x \in \mathbb{R}^{d}$ and $z \in \mathbb{C}^{d}$ the following Laplace type integral representation

$$
\begin{equation*}
K(x, z)=\int_{\mathbb{R}^{d}} e^{\langle y, z\rangle} d \mu_{x}(y) \tag{5}
\end{equation*}
$$

where μ_{x} is a probability measure on \mathbb{R}^{d}, with support in the closed ball $B(o,\|x\|)$ of center o and radius $\|x\|$.

3. Harmonic analysis associated with the Dunkl-Bessel-Laplace operator

In this section we collect some notations and results on the Dunkl-Bessel Laplace operator, the Dunkl-Bessel intertwining operator and its dual, and the Dunkl-Bessel transform (see [10]).

Notations. We denote by $-\mathbb{R}_{+}^{d+1}=\mathbb{R}^{d} \times[0,+\infty[$.
$-x=\left(x_{1}, \ldots, x_{d}, x_{d+1}\right)=\left(x^{\prime}, x_{d+1}\right) \in \mathbb{R}_{+}^{d+1}$.

- $C_{*}\left(\mathbb{R}^{d+1}\right)\left(\right.$ resp. $\left.C_{*, c}\left(\mathbb{R}^{d+1}\right)\right)$ the space of continuous functions on \mathbb{R}^{d+1} (resp. with compact support), even with respect to the last variable.
- $C_{*}^{p}\left(\mathbb{R}^{d+1}\right)\left(\operatorname{resp} . C_{*, c}^{p}\left(\mathbb{R}^{d+1}\right)\right)$ the space of functions of class C^{p} on \mathbb{R}^{d+1}, (resp. with compact support), even with respect to the last variable . $-\mathcal{E}_{*}\left(\mathbb{R}^{d+1}\right)\left(\right.$ resp. $\left.\quad D_{*}\left(\mathbb{R}^{d+1}\right)\right)$ the space of C^{∞}-functions on \mathbb{R}^{d+1} (resp. with compact support), even with respect to the last variable.

We provide these spaces with the classical topology.

3.1. The Dunkl-Bessel-Laplace operator and

the Dunkl-Bessel intertwining operator

We consider the Dunkl-Bessel-Laplace operator $\triangle_{k, \beta}$ defined by $\left.\forall x=\left(x^{\prime}, x_{d+1}\right) \in \mathbb{R}^{d} \times\right] 0,+\infty[$,

$$
\begin{equation*}
\triangle_{k, \beta} f(x)=\triangle_{k, x^{\prime}} f\left(x^{\prime}, x_{d+1}\right)+\mathcal{L}_{\beta, x_{d+1}} f\left(x^{\prime}, x_{d+1}\right), f \in C_{*}^{2}\left(\mathbb{R}^{d+1}\right) \tag{6}
\end{equation*}
$$

where \triangle_{k} is the Dunkl-Laplace operator on \mathbb{R}^{d}, and \mathcal{L}_{β} the Bessel operator on $] 0,+\infty[$ given by

$$
\mathcal{L}_{\beta}=\frac{d^{2}}{d x_{d+1}^{2}}+\frac{2 \beta+1}{x_{d+1}} \frac{d}{d x_{d+1}}, \quad \beta>-\frac{1}{2} .
$$

For all $x \in \mathbb{R}_{+}^{d+1}$, we define the measure $\zeta_{x}^{k, \beta}$ on $\left.\mathbb{R}^{d} \times\right] 0,+\infty[$ by

$$
\begin{equation*}
d \zeta_{x}^{k, \beta}(y)=\frac{2 \Gamma(\beta+1)}{\sqrt{\pi} \Gamma\left(\beta+\frac{1}{2}\right)} x_{d+1}^{-2 \beta}\left(x_{d+1}^{2}-y_{d+1}^{2}\right)^{\beta-\frac{1}{2}} 1_{] 0, x_{d+1}[}\left(y_{d+1}\right) d \mu_{x^{\prime}}\left(y^{\prime}\right) d y_{d+1} \tag{7}
\end{equation*}
$$

where $\mu_{x^{\prime}}$ is the measure given by (5) and $1_{] 0, x_{d+1}[}$ is the characteristic function of the interval $] 0, x_{d+1}[$.

The Dunkl-Bessel intertwining operator is the operator $\mathcal{R}_{k, \beta}$ defined on $C_{*}\left(\mathbb{R}^{d+1}\right)$ by

$$
\begin{equation*}
\forall x \in \mathbb{R}_{+}^{d+1}, \mathcal{R}_{k, \beta} f(x)=\int_{\mathbb{R}_{+}^{d+1}} f(y) d \zeta_{x}^{k, \beta}(y) . \tag{8}
\end{equation*}
$$

3.2. The dual of the Dunkl-Bessel intertwining operator

The dual of the Dunkl-Bessel intertwining operator $\mathcal{R}_{k, \beta}$ is the operator ${ }^{t} \mathcal{R}_{k, \beta}$ defined on $D_{*}\left(\mathbb{R}^{d+1}\right)$ by: $\forall y=\left(y^{\prime}, y_{d+1}\right) \in \mathbb{R}^{d} \times[0, \infty[$,

$$
\begin{equation*}
{ }^{t} \mathcal{R}_{k, \beta}(f)\left(y^{\prime}, y_{d+1}\right)=\frac{2 \Gamma(\beta+1)}{\sqrt{\pi} \Gamma\left(\beta+\frac{1}{2}\right)} \int_{y_{d+1}}^{\infty}\left(s^{2}-y_{d+1}^{2}\right)^{\beta-\frac{1}{2} t} V_{k} f\left(y^{\prime}, s\right) s d s \tag{9}
\end{equation*}
$$

where ${ }^{t} V_{k}$ is the dual Dunkl intertwining operator defined by K. Trimèche in [12] by

$$
\begin{equation*}
\forall y \in \mathbb{R}^{d},{ }^{t} V_{k}(f)(y)=\int_{\mathbb{R}^{d}} f(x) d \nu_{y}(x), \tag{10}
\end{equation*}
$$

where ν_{y} is a positive measure on \mathbb{R}^{d} with support in the set $\left\{x \in \mathbb{R}^{d},\|x\| \geq\right.$ $\|y\|\}$.

For all $y \in \mathbb{R}_{+}^{d+1}$, we define the measure $\varrho_{y}^{k, \beta}$ on $\left.\mathbb{R}^{d} \times\right] 0,+\infty[$, by

$$
\begin{equation*}
d \varrho_{y}^{k, \beta}(x)=\frac{2 \Gamma(\beta+1)}{\sqrt{\pi} \Gamma\left(\beta+\frac{1}{2}\right)}\left(x_{d+1}^{2}-y_{d+1}^{2}\right)^{\beta-\frac{1}{2}} x_{d+1} 1_{]_{d+1},+\infty}\left[\left(x_{d+1}\right) d \nu_{y^{\prime}}\left(x^{\prime}\right) d x_{d+1}\right. \tag{11}
\end{equation*}
$$

From (9) the operator ${ }^{t} \mathcal{R}_{k, \beta}$ can also be written in the form

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1},{ }^{t} \mathcal{R}_{k, \beta}(f)(y)=\int_{\mathbb{R}_{+}^{d+1}} f(x) d \varrho_{y}^{k, \beta}(x) . \tag{12}
\end{equation*}
$$

Notation. We denote by $L_{k, \beta}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ the space of measurable functions on \mathbb{R}_{+}^{d+1} such that

$$
\begin{aligned}
\|f\|_{k, \beta, p} & =\left(\int_{\mathbb{R}_{+}^{d+1}}|f(x)|^{p} d \mu_{k, \beta}(x) d x\right)^{\frac{1}{p}}<+\infty, \quad \text { if } 1 \leq p<+\infty \\
\|f\|_{k, \beta, \infty} & =\text { ess }_{\sup }^{x \in \mathbb{R}^{d} \mid}|f(x)|<+\infty
\end{aligned}
$$

where $\mu_{k, \beta}$ is the measure on \mathbb{R}_{+}^{d+1} given by

$$
d \mu_{k, \beta}\left(x^{\prime}, x_{d+1}\right)=\omega_{k}\left(x^{\prime}\right) x_{d+1}^{2 \beta+1} d x^{\prime} d x_{d+1} .
$$

Theorem 3.1. Let $\left(\varrho_{y}^{k, \beta}\right)_{y \in \mathbb{R}_{+}^{d+1}}$ be the family of measures defined by (11) and f in $L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. Then for almost all y (with respect to the Lebesgue measure on \mathbb{R}_{+}^{d+1}), f is $\varrho_{y}^{k, \beta}$-integrable, the function

$$
y \mapsto \int_{\mathbb{R}_{+}^{a+1}} f(y) \varrho_{y}^{k, \beta}(x) d y
$$

which will be denoted also by ${ }^{t} \mathcal{R}_{k, \beta}(f)$, is defined almost every where on \mathbb{R}_{+}^{d+1}, and for all bounded function g in $C_{*}\left(\mathbb{R}^{d+1}\right)$ we have the formula

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}}{ }^{t} \mathcal{R}_{k, \beta}(f)(y) g(y) d y=\int_{\mathbb{R}_{+}^{d+1}} f(x) \mathcal{R}_{k, \beta}(g)(x) d \mu_{k, \beta}(x) . \tag{13}
\end{equation*}
$$

Remark 3.2. Let f be in $L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. By taking $g \equiv 1$ in the relation (13) we deduce that

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}}{ }^{t} \mathcal{R}_{k, \beta}(f)(y) d y=\int_{\mathbb{R}_{+}^{d+1}} f(x) d \mu_{k, \beta}(x) . \tag{14}
\end{equation*}
$$

3.3. The Dunkl-Bessel transform

Definition 3.3. The Dunkl-Bessel transform is given for f in $D_{*}\left(\mathbb{R}^{d+1}\right)$ by
$\forall y=\left(y^{\prime}, y_{d+1}\right) \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{D, B}(f)\left(y^{\prime}, y_{d+1}\right)=\int_{\mathbb{R}_{+}^{d+1}} f\left(x^{\prime}, x_{d+1}\right) \Lambda(x, y) d \mu_{k, \beta}(x)$,
where Λ is given by

$$
\begin{equation*}
\Lambda(x, z)=K\left(-i x^{\prime}, z^{\prime}\right) j_{\beta}\left(x_{d+1} z_{d+1}\right), \quad(x, z) \in \mathbb{R}_{+}^{d+1} \times \mathbb{C}^{d+1} \tag{16}
\end{equation*}
$$

From Theorem 3.1 we deduce the following proposition.

Proposition 3.4. For all f in $L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$, we have

$$
\begin{equation*}
\mathcal{F}_{D, B}(f)(y)=\mathcal{F}_{o} \circ{ }^{t} \mathcal{R}_{k, \beta}(f)(y), \quad y \in \mathbb{R}_{+}^{d+1} \tag{17}
\end{equation*}
$$

where \mathcal{F}_{o} is the transform defined by: $\forall y=\left(y^{\prime}, y_{d+1}\right) \in \mathbb{R}^{d} \times[0,+\infty[, f \in$ $C_{*, c}\left(\mathbb{R}^{d+1}\right)$

$$
\mathcal{F}_{o}(f)\left(y^{\prime}, y_{d+1}\right)=\int_{\mathbb{R}_{+}^{d+1}} f\left(x^{\prime}, x_{d+1}\right) e^{-i\left\langle y^{\prime}, x^{\prime}\right\rangle} \cos \left(x_{d+1} y_{d+1}\right) d x^{\prime} d x_{d+1}
$$

4. Heat functions related to the Dunkl-Bessel Laplacian $\triangle_{k, \beta}$

For $r>0, p \in \mathbb{N}$ and $s \in \mathbb{N}^{d}$, we define the heat functions $W_{s, p}^{k, \beta}(r,$. related to the Dunkl-Bessel Laplacian $\triangle_{k, \beta}$ by

$$
\begin{align*}
& \forall y \in \mathbb{R}_{+}^{d+1}, \quad W_{s, p}^{k, \beta}(r, y) \tag{18}\\
= & \frac{i^{|s|}(-1)^{p} c_{k}^{2}}{4^{\gamma+\beta+d}(\Gamma(\beta+1))^{2}} \int_{\mathbb{R}_{+}^{d+1}} x_{1}^{s_{1}} \ldots x_{d}^{s^{d}} x_{d+1}^{2 p} e^{-\left.r| | x\right|^{2}} \Lambda(x, y) d \mu_{k, \beta}(x) .
\end{align*}
$$

These functions satisfy the following properties:
i) $W_{0,0}^{k, \beta}(r, x)=E_{r}^{k, \beta}(x)$ the Gaussian kernel associated to the DunklBessel Laplacian, defined by

$$
\begin{equation*}
\forall x \in \mathbb{R}_{+}^{d+1}, E_{r}^{k, \beta}(x)=\frac{c_{k}^{2}}{4^{\gamma+\beta+d}(\Gamma(\beta+1))^{2}} \int_{\mathbb{R}_{+}^{d+1}} e^{-r\|x\|^{2}} \Lambda(x, y) d \mu_{k, \beta}(x) \tag{19}
\end{equation*}
$$

ii) $W_{s, p}^{k, \beta}(r,$.$) is a C^{\infty}$-function on \mathbb{R}^{d+1}, even with respect to the last variable and we have

$$
W_{s, p}^{k, \beta}(r, x)=T_{x^{\prime}}^{s} \mathcal{L}_{\beta, x_{d+1}}^{p} E_{r}^{k, \beta}(x), x \in \mathbb{R}_{+}^{d+1}
$$

where T^{s} is the operator $T^{s}=T_{1}^{s_{1}} \circ T_{2}^{s_{2}} \circ \ldots T_{d}^{s_{d}}$, with $T_{j}, j=1,2, \ldots, d$, the Dunkl operators.
iii) For all $r>0$, the kernel $E_{r}^{k, \beta}$ solves the generalized heat equation

$$
\left.\frac{\partial}{\partial r} E_{r}^{k, \beta}(x)-\triangle_{k, \beta} E_{r}^{k, \beta}(x)=0, x \in \mathbb{R}^{d} \times\right] 0,+\infty[.
$$

iv) For $p \in I N, s \in \mathbb{N}^{d}$ we have

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{D, B}\left(W_{s, p}^{k, \beta}(r, .)\right)(y)=i^{|s|}(-1)^{p} y_{1}^{s_{1}} \ldots y_{d}^{s_{d}} y_{d+1}^{2 p} e^{-r\|y\|^{2}} \tag{20}
\end{equation*}
$$

Notation. We denote by \mathcal{P}_{m}^{d+1} the set of homogeneous polynomials on \mathbb{R}^{d+1} of degree m even with respect to the last variable.

We state now the following proposition given in [10].
Proposition 4.1. Let ψ be in \mathcal{P}_{m}^{d+1}, for all $\delta>0$, there exists a polynomial $Q \in \mathcal{P}_{m}^{d+1}$ such that

$$
\forall y \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{D, B}\left(\psi e^{-\delta\|x\|^{2}}\right)(y)=Q(y) e^{-\frac{1}{4 \delta}\|y\|^{2}}
$$

5. Beurling-Hörmander's theorem for the Dunkl-Bessel transform

We need the following lemmas for the proof of the main theorem of this section.

Lemma 5.1. Let $N \geq 0$. We consider f in $L_{k, \beta}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ satisfying

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{\left|f(x) \| \mathcal{F}_{D, B}(f)(y)\right|}{(1+\|x\|+\|y\|)^{N}} e^{\|x\|\|y\|} d \mu_{k, \beta}(x) d y<+\infty \tag{21}
\end{equation*}
$$

Then $f \in L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$.

Proof. From the relation (21) and Fubini's theorem we have for almost every $y \in \mathbb{R}_{+}^{d+1}$:

$$
\frac{\left|\mathcal{F}_{D, B}(f)(y)\right|}{(1+\|y\|)^{N}} \int_{\mathbb{R}_{+}^{d+1}} \frac{|f(x)|}{(1+\|x\|)^{N}} e^{\|x \mid\| y \|} d \mu_{k, \beta}(x)<+\infty
$$

As f is not negligible, there exists $y_{0} \in \mathbb{R}_{+}^{d+1}, y_{0} \neq 0$ such that $\mathcal{F}_{D, B}(f)\left(y_{0}\right) \neq$ 0.

Thus

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \frac{|f(x)|}{(1+\|x\|)^{N}} e^{\left\|x \left|\left\|\mid y_{0}\right\|\right.\right.} d \mu_{k, \beta}(x)<+\infty \tag{22}
\end{equation*}
$$

As the function $\frac{e^{\|x\|\| \| y_{0} \|}}{(1+\|x\|)^{N}}$ is greater than 1 for large $\|x\|$, then

$$
\int_{\mathbb{R}_{+}^{d+1}}|f(x)| d \mu_{k, \beta}(x)<+\infty .
$$

Theorem 5.2. Let $N \in \mathbb{N}$ and f in $L_{k, \beta}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ satisfying (21). Then:

- If $N \geq d+2$ we have

$$
f(y)=\sum_{|s|+p<\frac{N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}(r, y), y \in \mathbb{R}_{+}^{d+1},
$$

where $r>0, a_{s, p}^{k, \beta} \in \mathbb{C}$ and $W_{s, p}^{k, \beta}(r,$.$) given by the relation (18).$

- Else $f(y)=0$ a.e. $y \in \mathbb{R}_{+}^{d+1}$.

Proof. From Lemma 5.1 and Theorem 3.1, the function f belongs to $L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$ and the function ${ }^{t} R_{k, \beta}(f)$ is defined almost everywhere on \mathbb{R}_{+}^{d+1}. We shall prove that we have

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{\left.e^{\|x\|\| \| y \|}\right|^{t} R_{k, \beta} f(x) \| \mathcal{F}_{0}\left({ }^{t} R_{k, \beta}\right)(y) \mid}{(1+\|x\|+\|y\|)^{N}} d y d x<+\infty . \tag{23}
\end{equation*}
$$

Take y_{0} as in Lemma 5.1. We write the above integral as a sum of the following integrals

$$
\left.I=\left.\int_{\mathbb{R}_{+}^{d+1}} \int_{\|y\| \leq\left\|y_{0}\right\|} \frac{e^{\|x \mid\| y \|}}{(1+\|x\|+\|y\|)^{N}}\right|^{t} R_{k, \beta} f(x) \| \mathcal{F}_{0}{ }^{t} R_{k, \beta}(f)\right)(y) \mid d y d x
$$

and

$$
\left.J=\left.\int_{\mathbb{R}_{+}^{d+1}} \int_{\|y\| \geq\left\|y_{0}\right\|} \frac{e^{\|x\|\|y\|}}{(1+\|x\|+\|y\|)^{N}}\right|^{t} R_{k, \beta} f(x) \| \mathcal{F}_{0}\left({ }^{t} R_{k, \beta}(f)\right)(y) \right\rvert\, d y d x .
$$

We will prove that I and J are finite, which implies (23).

- As the functions $\left|\mathcal{F}_{D, B}(f)(y)\right|$ is continuous in the compact $\{y \in$ $\left.\mathbb{R}_{+}^{d+1} /\|y\| \leq\left\|y_{0}\right\|\right\}$, so we get

$$
I \leq \text { const } \int_{\mathbb{R}_{+}^{d+1}} \frac{\left.e^{\|x \mid\| y_{0} \|}\right|^{t} R_{k, \beta} f(x) \mid}{(1+\| x| |)^{N}} d x .
$$

Writing the integral of the second member as $I_{1}+I_{2}$ with

$$
I_{1}=\int_{\|x\| \leq \frac{N}{\mid y_{0} \|}} \frac{\left.e^{\|x\|\left\|\mid y_{0}\right\|}\right|^{t} R_{k, \beta} f(x) \mid}{(1+\|x\|)^{N}} d x
$$

and

$$
I_{2}=\int_{\|x\| \geq \frac{N}{\mid y_{0} \|}} \frac{\left.e^{\|x\|\left\|y_{0}\right\|}\right|^{t} R_{k, \beta} f(x) \mid}{(1+\|x\|)^{N}} d x .
$$

Therefore, we have the following results:

- As the function $x \mapsto \frac{e^{\|x\|\left\|y_{0}\right\|}}{(1+\|x\|)^{N}}$ is continuous in the compact $\{x \in$ $\left.\mathbb{R}_{+}^{d+1} /\|x\| \leq \frac{N}{\|y\|^{\prime}}\right\}$, and f is in $L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$ we deduce by using FubiniTonelli's theorem, and the relations (12),(11) that ${ }^{t} R_{k, \beta}(|f|)$ belongs to $L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. Hence I_{1} is finite.
- On the other hand, for $t>\frac{N}{\left\|y_{0}\right\|}$, the function $t \mapsto \frac{e^{t \mid y_{0} \|}}{(1+t)^{N}}$ is increasing, so we obtain by using Fubini-Tonelli's theorem, and (12),(11) and (14), that

$$
I_{2} \leq \int_{\mathbb{R}_{+}^{d+1}} \frac{e^{\|\xi\|\left\|y_{0}\right\|}}{(1+\|\xi\|)^{N}}|f(\xi)| d \mu_{k, \beta}(\xi) .
$$

The inequality (22) assert that I_{2} is finite. This proves that I is finite.

- We suppose $\left\|y_{0}\right\| \leq N$. Let $J=J_{1}+J_{2}+J_{3}$, with

$$
\begin{gathered}
\left.J_{1}=\left.\int_{\|x\| \leq \frac{N}{\left\|y_{0}\right\|}} \int_{\left\|y_{0}\right\| \leq\|y\| \leq N} \frac{e^{\|x \mid\| y \|}}{(1+\|x\|+\|y\|)^{N}}\right|^{t} R_{k, \beta}(f)(x) \| \mathcal{F}_{D, B}(f)(y) \right\rvert\, d y d x, \\
\left.J_{2}=\left.\int_{\|x\| \geq \frac{N}{\left\|y_{0}\right\|}} \int_{\left\|y_{0}\right\| \leq \| y \mid \leq N} \frac{e^{\|x\|\|y\|}}{(1+\|x\|+\|y\|)^{N}}\right|^{t} R_{k, \beta}(f)(x) \| \mathcal{F}_{D, B}(f)(y) \right\rvert\, d y d x, \\
\left.J_{3}=\left.\int_{\mathbb{R}_{+}^{d+1}} \int_{\|y\| \geq N} \frac{e^{|x|\|\mid\| y \|}}{(1+\|x\|+\|y\|)^{N}}\right|^{t} R_{k, \beta}(f)(x) \| \mathcal{F}_{D, B}(f)(y) \right\rvert\, d y d x .
\end{gathered}
$$

$-\quad$ As the function $(x, y) \mapsto \frac{e^{\|x\|\| \| y \|}}{(1+\|x\|+\|y\|)^{N}}\left|\mathcal{F}_{D, B}(f)(y)\right|$ is bounded in the compact $\left\{x \in \mathbb{R}_{+}^{d+1} /\|x\| \leq \frac{N}{\left\|y_{0}\right\|}\right\} \times\left\{\xi \in \mathbb{R}_{+}^{d+1} /\left\|y_{0}\right\| \leq\|\xi\| \leq N\right\}$ and ${ }^{t} R_{k, \beta}(|f|)(x)$ is Lebesgue-integrable on \mathbb{R}_{+}^{d+1}, then J_{1} is finite.

- Let $\lambda>0$. As the function $t \mapsto \frac{e^{\lambda t}}{(1+t+\lambda)^{N}}$ is increasing for $t>\frac{N}{\lambda}$. Thus, for all $(x, y) \in C\left(\xi, y_{0}, N\right)$ we have the inequality

$$
\frac{e^{\|x\|\| \| y \|}}{(1+\|x\|+\|y\|)^{N}} \leq \frac{e^{\|\xi\|\|y\|}}{(1+\|\xi\|+\|y\|)^{N}}
$$

with
$C\left(\xi, y_{0}, N\right)=\left\{(x, y) \in \mathbb{R}_{+}^{d+1} \times \mathbb{R}_{+}^{d+1} / \frac{N}{\|y\|} \leq\|x\| \leq\|\xi\|\right.$ and $\left.\left\|y_{0}\right\| \leq\|y\| \leq N\right\}$.
Therefore, from Fubini-Tonelli's theorem and the relations (12),(11), we get

$$
J_{2} \leq \int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}}\left|f(\xi) \| \mathcal{F}_{D, B}(f)(y)\right| \frac{e^{\|\xi\|\|y\|}}{(1+\|\xi\|+\|y\|)^{N}} d y d \mu_{k, \beta}(\xi) .
$$

Taking account of the condition (21), we deduce that J_{2} is finite.

- For $\|y\|>N$, the function $t \mapsto \frac{e^{t| | y \|}}{(1+t+\|y\|)^{N}}$ is increasing. We deduce, by using Fubini-Tonelli's theorem and the relations (12),(11),(21), that

$$
J_{3} \leq \int_{\mathbb{R}_{+}^{d+1}} \int_{\|y\| \geq N}\left|f(\xi) \| \mathcal{F}_{D, B}(f)(y)\right| \frac{e^{\|\xi\|\|\mid\| \|}}{(1+\|\xi\|+\|y\|)^{N}} d y d \mu_{k, \beta}(\xi)<+\infty
$$

This implies that J is finite.
Finally for $\left\|y_{0}\right\|>N$, we have $J \leq J_{3}<\infty$. This completes the proof of the relation (23).

According to Corollary 3.1, ii) of [2], we conclude that

$$
\forall x \in \mathbb{R}_{+}^{d+1}, \quad{ }^{t} R_{k, \beta} f(x)=P(x) e^{-\delta\|x\|^{2}}
$$

with $\delta>0$ and P a polynomial of degree strictly lower than $\frac{N-d-1}{2}$.
Using this relation and (18), we deduce that

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1}, \quad \mathcal{F}_{D, B}(f)(y)=\mathcal{F}_{0} \circ{ }^{t} R_{k, \beta}(f)(y)=\mathcal{F}_{0}\left(P(x) e^{-\delta\|x\|^{2}}\right)(y) . \tag{24}
\end{equation*}
$$

But

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1}, \quad \mathcal{F}_{0}\left(P(x) e^{-\delta\|x\|^{2}}\right)(y)=Q(y) e^{-\frac{\|y\|^{2}}{4 \delta}}, \tag{25}
\end{equation*}
$$

with Q a polynomial of degree strictly lower than $\frac{N-d-1}{2}$.

Thus from (20) we obtain

$$
\forall y \in \mathbb{R}_{+}^{d+1}, \quad \mathcal{F}_{D, B}(f)(y)=\mathcal{F}_{D, B}\left(\sum_{|s|+p<\frac{N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 \delta}, .\right)\right)(y) .
$$

The injectivity of the transform $\mathcal{F}_{D, B}$ implies

$$
\left.f(x)=\sum_{|s|+p<\frac{N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 \delta}, .\right)\right)(x) \text { a.e., }
$$

and the theorem is proved.

6. Applications

In this section we give analogues of the Gelfand-Shilov, Hardy, CowlingPrice and Morgan theorems for the Dunkl-Bessel transform $\mathcal{F}_{D, B}$.

Theorem 6.1. (Gelfand-Shilov type) Let $N \in \mathbb{N}$ and assume that f in $L_{k, \beta}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ is such that

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{d+1}} \frac{|f(x)| e^{\frac{(2 a)^{p}}{p}\|x\|^{p}}}{(1+\|x\|)^{N}} d \mu_{k, \beta}(x)<+\infty \tag{26}\\
& \int_{\mathbb{R}_{+}^{d+1}} \frac{\left|\mathcal{F}_{D, B}(f)(y)\right| e^{\frac{(2 b b}{q}}\|y\|^{q}}{(1+\|y\|)^{N}} d y<+\infty \tag{27}
\end{align*}
$$

where $1<p, q<+\infty, \frac{1}{p}+\frac{1}{q}=1, a>0, b>0$ and $a b \geq \frac{1}{4}$. Then:

1) If $a b>\frac{1}{4}$, we have $f(x)=0$ a.e.
2) We suppose that $a b=\frac{1}{4}$.
i) If $N<\frac{d}{2}+1,1<p, q<+\infty$, we have $f(x)=0$, a.e. $x \in \mathbb{R}^{d}$.
ii) If $N \geq \frac{d}{2}+1$.

- For the cases: $2 \leq q<+\infty, 1<p<+\infty$,

$$
\begin{aligned}
& 1<q<2,2<p<+\infty \\
& q=2, p=2,
\end{aligned}
$$

we have $f(x)=0$, a.e. $x \in \mathbb{R}^{d}$.

- For the case: $1<q<2,1<p<2$
we have

$$
\begin{equation*}
f(x)=\sum_{|s|+p<\frac{2 N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}(r, x) \text {, a.e. } x \in \mathbb{R}_{+}^{d+1} \tag{28}
\end{equation*}
$$

where $r>0$ and $a_{s, p}^{k, \beta} \in \mathbb{C}$.

- For the case $q=2,1<p<2$

$$
\text { - If } 0<r \leq 2 b^{2}
$$

we have $f(x)=0$ a.e. $x \in \mathbb{R}_{+}^{d+1}$.

$$
\text { - If } r>2 b^{2}
$$

the function f is given by the relation (28).

- For the case $p=2,1<q<2$

$$
\text { - If } r \geq 2 b^{2}
$$

we have $f(x)=0$ a.e. $x \in \mathbb{R}_{+}^{d+1}$.

$$
\text { - If } 0<r<2 b^{2}
$$

the function f is given by the relation (28).
Proof. Using the inequality

$$
4 a b\|x\|\left\|\|y\| \leq \frac{(2 a)^{p}}{p}\right\| x\left\|^{p}+\frac{(2 b)^{q}}{q}\right\| y \|^{q}
$$

we get

$$
\begin{array}{r}
\int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{\left|f(x) \| \mathcal{F}_{D, B}(f)(y)\right|}{(1+\|x| |+\| y| |)^{2 N}} e^{4 a b\|x \mid\| y \|} d \mu_{k, \beta}(x) d y \leq \\
\int_{\mathbb{R}_{+}^{d+1}} \frac{|f(x)| e^{\frac{(2 a)^{p}}{p}\|x\|^{p}}}{(1+\|x\|)^{N}} d \mu_{k, \beta}(x) \int_{\mathbb{R}_{+}^{d+1}} \frac{\left|\mathcal{F}_{D, B}(f)(y)\right| e^{\frac{(2 b)^{q}}{q}\|y\|^{q}}}{(1+\|y\|)^{N}} d y<+\infty \tag{29}
\end{array}
$$

As $a b \geq \frac{1}{4}$, then from (29) we deduce that the condition (22) is satisfied. By using the proof of Theorem 5.2, we obtain, $\forall x \in \mathbb{R}_{+}^{d+1}$,

$$
\begin{equation*}
{ }^{t} R_{k, \beta}(f)(x)=P(x) e^{-\frac{\|x\|^{2}}{4 r}} ; \forall y \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{D, B}(f)(y)=Q(y) e^{-r\|y\|^{2}} \tag{30}
\end{equation*}
$$

where r is a positive constant and P, Q are polynomials of the same degree which is strictly lower than $\frac{2 N-d-1}{2}$.

1) From (29) and the proof of (23) we deduce that

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{\left|{ }^{t} R_{k, \beta}(f)(x)\right|\left|\mathcal{F}_{o}\left({ }^{t} R_{k, \beta}(f)\right)(y)\right|}{(1+\|x\|+\|y\|)^{2 N}} e^{4 a b\|x|\|| | y\|} d x d y<+\infty \tag{31}
\end{equation*}
$$

By replacing in (31) the functions ${ }^{t} R_{k, \beta}(f)(x)$ and $\mathcal{F}_{D, B}(f)(y)$ by their expression given in (30), we get

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{|P(x) \| Q(y)|}{(1+\|x\|+\|y\|)^{2 N}} e^{-\left(\sqrt{r}\|y\|-\frac{1}{2 \sqrt{r}}\|x\|\right)^{2}} e^{(4 a b-1)\|x \mid\| y \|} d x d y<+\infty \tag{32}
\end{equation*}
$$

As $a b>\frac{1}{4}$, there exists $\varepsilon>0$ such that $4 a b-1-\varepsilon>0$. If P is non null, Q is also non null and we have

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{|P(x)||Q(y)|}{(1+\|x\|+\|y\|)^{2 N}} e^{-\left(\sqrt{r}\|y\|-\frac{1}{2 \sqrt{r}}\|x\|\right)^{2}} e^{(4 a b-1)\|x\|\|y\|} d x d y \\
& \geq C \int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} e^{-\left(\sqrt{r}\|y\|-\frac{1}{2 \sqrt{r}}\|x\|\right)^{2}} e^{(4 a b-1-\varepsilon)\|x\|\|y\|} d x d y
\end{aligned}
$$

where C is a positive constant. But the function

$$
e^{-\left(\sqrt{r}\|y\|-\frac{1}{2 \sqrt{r}}\|x\|\right)^{2}} e^{(4 a b-1-\varepsilon)\|x\|\|y\|}
$$

is not integrable, (32) does not hold. Hence $f(x)=0$ a.e.
2)
i) We deduce the result from (29) and Theorem 5.2.
ii) By using (29) the relations (26),(27) can also be written in the form

$$
\int_{\mathbb{R}^{d}} \frac{\left|\mathcal{F}_{D}(f)(y)\right| e^{\frac{(2 b)^{q}}{q}}\|y\|^{q}}{(1+\|y\|)^{N}} d y=\int_{\mathbb{R}^{d}} \frac{|Q(y)| e^{-r\|y\|^{2}} e^{\frac{(2 b)^{q}}{q}}\|y\|^{q}}{(1+\|y\|)^{N}} d y .
$$

and

$$
\int_{\mathbb{R}^{d}} \frac{|f(x)| e^{\frac{(2 a)^{p}}{p}\|x\|^{p}}}{(1+\|x\|)^{N}} \omega_{k}(x) d x=\int_{\mathbb{R}^{d}} \frac{|P(x)| e^{-\frac{\|x\|^{2}}{4 r}} e^{\frac{(2 a)^{p}}{p}\|x\|^{p}}}{(1+\|x\|)^{N}} \omega_{k}(x) d x .
$$

We obtain ii) from Theorem 5.2 and by studying the convergence of these integrals as we have made it in the 1).

Theorem 6.2. (Hardy type) Let $N \in \mathbb{N}$. Assume that f in $L_{k, \beta}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ is such that

$$
\begin{equation*}
|f(x)| \leq M e^{-\frac{1}{4 a}\|x\|^{2}} \text { a.e. } \tag{33}
\end{equation*}
$$

and $\forall y \in \mathbb{R}_{+}^{d+1},\left|\mathcal{F}_{D, B}(f)(y)\right| \leq M\left(1+\left|y_{j}\right|\right)^{N} e^{-b\left|y_{j}\right|^{2}}, j=1, \ldots, d+1$,
for some constants $a>0, b>0$ and $M>0$. Then,
i) If $a b>\frac{1}{4}$, then $f=0$ a.e.
ii) If $a b=\frac{1}{4}$, the function f is of the form $f(x)=\sum_{|s|+p \leq N} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 a}, x\right)$ a.e. where $a_{s, p}^{k, \beta} \in \mathbb{C}$.
iii) If $a b<\frac{1}{4}$, there are infinity many nonzero functions f satisfying the conditions (33).

Proof. The first condition of (33) implies that $f \in L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. So by Theorem 3.1, the function ${ }^{t} R_{k, \beta}(f)$ is defined almost everywhere. By using the relation (17) we deduce that for all $x \in \mathbb{R}_{+}^{d+1}$,

$$
\left|\left.\right|^{t} R_{k, \beta}(f)(x)\right| \leq M_{0} e^{-a|x| \|^{2}}
$$

where M_{0} is a positive constant.
So,

$$
\begin{equation*}
\left|{ }^{t} R_{k, \beta}(f)(x)\right| \leq M_{0}\left(1+\left|x_{j}\right|\right)^{N} e^{-a\left|x_{j}\right|^{2}}, j=1, \ldots, d+1 . \tag{34}
\end{equation*}
$$

On the other hand from (17) and (33) we have for all $y \in \mathbb{R}_{+}^{d+1}$,

$$
\begin{equation*}
\left|\mathcal{F}_{o}\left({ }^{t} R_{k, \beta}\right)(f)(y)\right| \leq M\left(1+\left|y_{j}\right|\right)^{N} e^{-b\left|y_{j}\right|^{2}}, j=1, \ldots, d+1 \tag{35}
\end{equation*}
$$

The relations (34) and (35) show that the conditions of Proposition 3.4 of [2], p.36, are satisfied by the function ${ }^{t} R_{k, \beta}(f)$. Thus we get:
i) If $a b>\frac{1}{4},{ }^{t} R_{k, \beta}(f)=0$ a.e.

Using (17) we deduce

$$
\forall y \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{D, B}(f)(y)=\mathcal{F}_{o} \circ\left({ }^{t} R_{k, \beta}\right)(f)(y)=0 .
$$

Then from Theorem 2.3.1 of [10] we have $f=0$ a.e.
ii) If $a b=\frac{1}{4}$, then ${ }^{t} R_{k, \beta}(f)(x)=P(x) e^{-a\|x\|^{2}}$, where P is a polynomial of degree strictly lower than N. The same proof as of the end of Theorem 5.2 shows that

$$
f(x)=\sum_{|s|+p \leq N} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 a}, x\right) \text { a.e. }
$$

iii) If $a b<\frac{1}{4}$, let $\left.t \in\right] a, \frac{1}{4 b}\left[\right.$ and $f(x)=c e^{-t\|x\|^{2}}$ for some real constant c, these functions satisfy the conditions (33).

Theorem 6.3. (Cowling-Price type) Let $N \in \mathbb{N}$. Assume that f in $L_{k, \beta}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ is such that

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} e^{a\|x \mid\|^{2}}|f(x)| d \mu_{k, \beta}(x)<+\infty \text { and } \int_{\mathbb{R}_{+}^{d+1}} \frac{e^{b\|y\|^{2}}}{(1+\|y\|)^{N}}\left|\mathcal{F}_{D, B}(f)\right| d y<+\infty \tag{36}
\end{equation*}
$$

for some constants $a>0, b>0$. Then,
i) If $a b>\frac{1}{4}$, we have $f=0$ a.e.
ii) If $a b=\frac{1}{4}$, then when $N \geq d+2$ we have
where $a_{\mu, p}^{k, \beta} \in \mathbb{C}$.

$$
f(x)=\sum_{|s|+p<\frac{N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 a}, x\right) \text { a.e. }
$$

iii) If $a b<\frac{1}{4}$, there are infinity many nonzero functions f satisfying the conditions (36).

Proof. From the first condition of (36) we deduce that $f \in L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. So by Theorem 3.1, the function ${ }^{t} R_{k, \beta}(f)$ is defined almost everywhere. By using the relations (12), (14) and (36) we have:

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{d+1}} \frac{\left.\right|^{t} R_{k, \beta}(f)(x) \mid e^{a\|\mid x\|^{2}}}{(1+\|x\|)^{N}} d x & \leq \int_{\mathbb{R}_{+}^{d+1}}{ }^{t} R_{k, \beta}\left(e^{a\|\mid x\|^{2}}|f|\right)(x) d x \\
& \leq \int_{\mathbb{R}_{+}^{d+1}} e^{a\|y\|^{2}}|f(y)| d \mu_{k, \beta}(y)<+\infty
\end{aligned}
$$

So,

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \frac{\left.\right|^{t} R_{k, \beta}(f)(x) \mid e^{a\|x| |\|^{2}}}{(1+\|x\|)^{N}} d x<+\infty \tag{37}
\end{equation*}
$$

On the other hand from (17) and (36) we have:

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \frac{e^{b\|y\|^{2}}}{(1+\|y\|)^{N}}\left|\mathcal{F}_{D, B}(f)\right| d y=\int_{\mathbb{R}_{+}^{d+1}} \frac{e^{b\|y\|^{2}}}{(1+\|y\|)^{N}}\left|\mathcal{F}_{o}\left({ }^{t} R_{k, \beta}\right)(f)(y)\right| d y<+\infty \tag{38}
\end{equation*}
$$

The relations (37) and (38) are the conditions of Proposition 3.2 of [2] p.35, which are satisfied by the function ${ }^{t} R_{k, \beta}(f)$. Thus we get:
i) If $a b>\frac{1}{4},{ }^{t} R_{k, \beta}(f)=0$ a.e.

Using the same proof as of Theorem 6.2, we deduce $f(y)=0$. a.e. $y \in \mathbb{R}_{+}^{d+1}$.
ii) If $a b=\frac{1}{4}$, then ${ }^{t} R_{k, \beta}(f)(x)=P(x) e^{-a\|x\|^{2}}$ where P is a polynomial of degree strictly lower than $\frac{N-d-1}{2}$. The same proof as of the end of Theorem 5.2 shows that

$$
f(x)=\sum_{|s|+p<\frac{N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 a}, x\right) \text { a.e. }
$$

iii) If $a b<\frac{1}{4}$, let $\left.t \in\right] a, \frac{1}{4 b}\left[\right.$ and $f(x)=c e^{-t\|x\|^{2}}$ for some real constant c, these functions satisfy the conditions (36). This completes the proof.

Theorem 6.4. (Morgan type) Let $1<p<2$ and q be the conjugate exponent of p. Assume that f in $L_{k, \beta}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ satisfies
$\int_{\mathbb{R}_{+}^{d+1}} e^{\frac{a^{p}}{p}\|x\|^{p}}|f(x)| d \mu_{k, \beta}(x)<+\infty$ and $\int_{\mathbb{R}_{+}^{d+1}} e^{\frac{q^{q}}{q}\|y\|^{q}}\left|\mathcal{F}_{D, B}(f)(y)\right| d y<+\infty$,
for some constants $a>0, b>0$.
Then if $a b>\left|\cos \left(\frac{p \pi}{2}\right)\right|^{\frac{1}{p}}$, we have $f=0$ a.e.
Proof. The first condition of (39) implies that $f \in L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. So by Theorem 3.1, the function ${ }^{t} R_{k, \beta}(f)$ is defined almost everywhere. By using the relations (12) and (39) we deduce that:

$$
\int_{\mathbb{R}_{+}^{d+1}}\left|{ }^{t} R_{k, \beta}(f)(x)\right| e^{\frac{a^{p}}{p}\|x\|^{p}} d x \leq \int_{\mathbb{R}_{+}^{d+1}} e^{\frac{a^{p}}{p}\|y\|^{p}}|f(y)| d \mu_{k, \beta}(y)<+\infty .
$$

So,

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}}\left|{ }^{t} R_{k, \beta}(f)(x)\right| e^{\frac{a^{p}}{p} \|\left. x\right|^{p}} d x<+\infty . \tag{40}
\end{equation*}
$$

On the other hand, from (17) and (39) we have:

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} e^{\frac{b^{q}}{q}\|y\|^{q}}\left|\mathcal{F}_{D, B}(f)(y)\right| d y=\int_{\mathbb{R}_{+}^{d+1}} e^{\frac{b^{q}}{q}\|y\|^{q}}\left|\mathcal{F}_{o}\left({ }^{t} R_{k, \beta}\right)(f)(y)\right| d y<+\infty \tag{41}
\end{equation*}
$$

The relations (40) and (41) are the conditions of Theorem 1.4, p. 26 of [2], which are satisfied by the function ${ }^{t} R_{k, \beta}(f)$. Thus we deduce that if $a b>$ $\left|\cos \left(\frac{p \pi}{2}\right)\right|^{\frac{1}{p}}$ we have ${ }^{t} R_{k, \beta}(f)=0$ a.e.

Using the same proof as of Theorem 6.2 we obtain $f(y)=0$. a.e. $y \in$ \mathbb{R}_{+}^{d+1}.

Acknowledgement. I thank Professor Khalifa Trimèche for his fruitful discussions and useful suggestions.

References

[1] A. Beurling, In: The Collected Works of Arne Beurling. Birkhäuser, Boston (1989), 1-2.
[2] A. Bonami, B. Demange and P. Jaming, Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19 (2002), 22-35.
[3] L. Bouattour and K. Trimèche, An analogue of Beurling-Hörmander's theorem for the Chébli-Trimèche transform. Global J. of Pure and Appl. Math. 1, No 3 (2005), 342-357.
[4] M. G. Cowling and J. F. Prices, Generalizations of Heisemberg's inequality. In: Lecture Notes in Math. 992, Springer, Berlin (1983), 443-449.
[5] C. F. Dunkl, Differential-difference operators associated to reflection group. Trans. Amer. Math. Soc. 311 (1989), 167-183.
[6] G. H. Hardy, A theorem concerning Fourier transform. J. London Math. Soc. 8 (1933), 227-231.
[7] L. Hörmander, A uniqueness theorem of Beurling for Fourier transform pairs. Ark. För Math. 2, No 2 (1991), 237-240.
[8] L. Kamoun and K. Trimèche, An analogue of Beurling-Hörmander's theorem associated with partial differential operators. Mediterr. J. Math. 2 (2005), 243-258.
[9] H. Mejjaoli and K. Trimèche, An L^{p} - L^{q}-version of Morgan's theorem for the Dunkl-Bessel transform. Mediterr. J. Math. 1, No 1 (2004), 443-480.
[10] H. Mejjaoli and K. Trimèche, An analogue of Hardy's theorem and its L^{p}-version for the Dunkl-Bessel transform. Concrete Mathematica (2004).
[11] G. W. Morgan, A note on Fourier transforms. J. London Math. Soc. 9 (1934), 188-192.
[12] K. Trimèche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual. Integral Transf. and Special Funct. 12, No 4 (2001), 349-374.
[13] K. Trimèche, An analogue of Beurling-Hörmander's theorem for the Dunkl transform. Preprint (2004).

