f

J/ractional Calculus
& £\pplied Ch nalysis

An Irternational Journal for Theory and Applications
VOLUME 9, NUMBER 3 (2006) ISSN 1311-0454

AN ANALOGUE OF BEURLING-HORMANDER'’S
THEOREM FOR THE DUNKL-BESSEL TRANSFORM

Hatem Mejjaoli

Dedicated to Professor Khalifa Triméche,
on the occasion of his 60th anniversary

Abstract

We establish an analogue of Beurling-Hérmander’s theorem for the
Dunkl-Bessel transform Fp g on IRTI. We deduce an analogue of Gelfand-
Shilov, Hardy, Cowling-Price and Morgan theorems on Ri“ by using the
heat kernel associated to the Dunkl-Bessel-Laplace operator.
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1. Introduction

There are many theorems known which state that a function and its
classical Fourier transform on IR cannot simultaneously be very small at
infinity. This principle has several version which were proved by G.H. Hardy
[6], G.W. Morgan [11], M.G. Cowling and J.F. Price [4], A. Beurling [1].

The Beurling theorem for the classical Fourier transform on IR which
was proved by L. Hormander [7], says that for any non trivial function f
in L2(IR), the function f(z)F(f)(y) is never integrable on IR? with respect
to the measure el¥ldzdy. A far reaching generalization of this result has
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been recently proved in [2]. In this paper the author proves that a square
integrable function f on IR? satisfying for an integer N:

// DINFDWLlislivll gy < 400

(L [l[] + [lyID™

has the form f(z) = P(z)e 12" where P is a polynomial of degree strictly
lower than W and 8 > 0.

This version has been studied in other situations by many authors in
particular L. Bouattour and K. Trimeche [3], L. Kamoun and K. Trimeéche [8]
and K. Trimeche [13]. There, an analogue of Beurling-Hérmander’s theorem
has been proved, for the Chébli-Trimeche transform, a Fourier transform
associated with partial differential operators and the Dunkl transform.

In this paper we study an analogue of Beurling-Hérmander’s theorem
for the Dunkl-Bessel transform on ijf_‘H.

The contents of the paper is as follows: In Section 2 we recall the Dunkl
operators and the Dunkl kernel. We introduce in the third section the
Dunkl-Bessel-Laplace operator and define the Dunkl-Bessel transform, the
Dunkl-Bessel intertwining operator and its dual, and give their properties.
Section 4 is devoted to the heat functions Wsk bﬁ related to the Dunkl-Bessel
Laplace operator. These functions are used in the statement of the main
result. In Section 5 we give an analogue of Beurling-Hormander’s theorem
for the Dunkl-Bessel transform. In the last section, an analogue of Hardy
and Morgan theorems is obtained for the Dunkl-Bessel transform. For other
proofs of these theorems (see [9], [10]).

2. Dunkl operators and Dunkl kernel

In this section we collect some notations on Dunkl operators and the
Dunkl kernel (see [5]).

For o € IR™\{0}, let o, be the reflection in the hyperplane H, C IR?

orthogonal to «, i.e.

oa(x) = 33—2<HO:):|3|:2>0¢. (1)

A finite set R C IR™\ {0} is called a root system, if RN R%.a = {a, —a}
and o,R = R for all « € R. For a given root system R the reflection
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Oas € R, generate a finite group W C O(d), called the reflection group
associated with R . All reflections in W correspond to suitable pairs of
roots. For a given # € IR\ Uncp Hy, we fix the positive subsystem R, =
{a € R /{a, ) > 0}, then for each o € R either « € R} or —a € R..

A function £ : R — @ on a root system R is called a multiplicity
function, if it is invariant under the action of the associated reflection group
w.

Moreover, let wy denote the weight function

Vo e R, wi(z) = [] o, z)M. (2)

aERL

The Dunkl operators T, j =1,..., d, on IR? associated with the finite
reflection group W and multiplicity function k are given for a function of
class C! by

— floa(x))

(o, )

T (x) = £jf(w)+ S k(a)ay L2 3)

acR

In the case k = 0, the T}, j = 1, ..., d, reduce to the corresponding partial
derivatives. In this paper, we will assume throughout that & > 0.
We define the Dunkl-Laplace operator on IR? by

d
Difl@) =Y T?f(x) = Daf(@)+2 Y k<a)[<V<fa<w;,a>_f<x> ~ f(oa(@))
Jj=1 )

a€Rt > <Oé, $> ’
(4)

For y € IR?, the system
T]u(a:,y) = y]u(xay)v .7: 177d7

u(0,y) = 1,

admits a unique analytic solution on IR?, which will be denoted K (x,9)
and called Dunkl kernel. This kernel has a unique holomorphic extension
to @4 x @9,

The function K (x,z) admits for all 2 € IR? and z € @@ the following
Laplace type integral representation

K(x,2) = / €2y (1), (5)
Rd

where i, is a probability measure on IRY, with support in the closed ball
B(o, ||x||) of center o and radius ||z||.
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3. Harmonic analysis associated with
the Dunkl-Bessel-Laplace operator

In this section we collect some notations and results on the Dunkl-Bessel
Laplace operator, the Dunkl-Bessel intertwining operator and its dual, and
the Dunkl-Bessel transform (see [10]).

Notations. We denote by
-RUT = R x [0, +ool.

-2 = (21, ey 2g, Tap1) = (2, Tap1) € RO

- Cu(IRT 1Y) (resp. Oy o(IRYTY)) the space of continuous functions on R+
(resp. with compact support), even with respect to the last variable.

- CE(IR* 1) (resp. CE .(IR%*1)) the space of functions of class CP on R4,
(resp. with compact support), even with respect to the last variable .
-E(RATYY (vesp. Dy (IR4F1)) the space of C°°-functions on IR (resp.
with compact support), even with respect to the last variable.

We provide these spaces with the classical topology.

3.1. The Dunkl-Bessel-Laplace operator and
the Dunkl-Bessel intertwining operator

We consider the Dunkl-Bessel-Laplace operator Ay g defined by
Vo = (2/,7411) € RIX]0, +o0],

Dppf (@) = Do F@ 2a41) + Loy f(@ ar1), f€CZRM™), (6)

where A\, is the Dunkl-Laplace operator on IR, and L3 the Bessel operator
on |0, +oo] given by

d? 2 1 d 1
B+ -

Lz = , .
O A, T dan 2

For all # € R, we define the measure (EP on IR?x)0, +00| by

2F(,8 + 1) ) _1

k, — B2 2

¢, /B(y) = NGCE %)derl(derl - yd+1)ﬁ 2 1}07xd+1[(yd+1)dﬂz’ (y/)dydﬂ,
(7)

where 1,/ is the measure given by (5) and 1y, [ is the characteristic
function of the interval 0, zg41].
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The Dunkl-Bessel intertwining operator is the operator Ry g defined on
C., ( Rd—H) by

Vo e R Ry sf(z) = / Fw)dckA(y). (8)

d+1
Ry

3.2. The dual of the Dunkl-Bessel intertwining operator

The dual of the Dunkl-Bessel intertwining operator Ry, g is the operator
“Ry. 5 defined on D, (IR¥1) by: Vy = (v, yar1) € IR? x [0, 00],

2T 1 o0 1
tRk,ﬁ(f)(y/ade) = \/ﬂ((ﬁﬂii)/ (82 — y?lﬂ)ﬁ_i WVi.f(y, s)sds, (9)
2 Yd+1

where 'V}, is the dual Dunkl intertwining operator defined by K. Trimeche
in [12] by

Vye R Wi(f)(y) = (z)dvy (), (10)

f
R4

where v, is a positive measure on IR¢ with support in the set {z € R?, ||z|| >

[lll}-

For all y € Riﬂ, we define the measure QZ’B on IR%x]0, +oo], by

2I'(B+1) _1
k, _ 2 2
doy’(x) = m(xd-i-l_yd—i-l)ﬁ 284111y, 4ool(Tar1)dvy (2))dzay 1,
(11)
From (9) the operator ‘R, 3 can also be written in the form
Vye B Ria(D) = [ f@)de (o). (12

d+1
]RJr

Notation. We denote by L} ﬁ(lRffrl) the space of measurable functions
on IRi'H such that

1 .
fllksy = ( / F(@)Pdug s(x) dz)F < +oo, i1 <p < +oo,

d+1
R-‘r

1 fllkpoo = ess supyepal f(2)] < +o0,
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where ;g is the measure on ]Ri+1 given by

dpk,p(2', wa41) = wk(ﬂﬂ')x?lﬁfldx’dxdﬂ.

THEOREM 3.1. Let (QZ’B)y€Rd+1 be the family of measures defined by
+

(11) and f in Lk’ﬁ(lRfl). Then for almost all y (with respect to the

Lebesgue measure on Ri“), fis gZ’ﬁ -integrable, the function

y— / F)ehP (x)dy,

d+1
IR+

which will be denoted also by 'Ry 5(f), is defined almost every where on
Rfl:“l, and for all bounded function g in Cy(IR%*') we have the formula

/ Riosf) (0)g(y)dy = / F(@) Rioplo)@)dpns(x).  (13)

d+1 d+1
Ry RY

REMARK 3.2. Let f be in L}, ;(IRT™"). By taking g = 1 in the relation
(13) we deduce that

| Reswis= [ 1@ dipto) (14
R R+
3.3. The Dunkl-Bessel transform
DEFINITION 3.3. The Dunkl-Bessel transform is given for f in D, (IR%*!)

by

Vy=(y,yar1) € RT, Fp p(f) (¥ yar1)= / [, zap) Az, y)dug g(x),
R
(15)
where A is given by

Az, 2) = K(—i2',2)js(war124+1), (w,2) € IRffrl x @It (16)

From Theorem 3.1 we deduce the following proposition.



AN ANALOGUE OF BEURLING-HORMANDER’S ... 253

PROPOSITION 3.4. For all f in Lllﬁ,ﬁ(lRﬂer), we have

Fpp(f) W) =Foo "Rys(f)y), ye R, (17)

where F, is the transform defined by: Yy = (v/,yqs+1) € IR x [0, +o0|, f €
C*,c(le—H)

Fol Y yas1) = / F@ a1)e” Y ) cos(x g4 1Yar1)dr'dz gy

d+1
Ry

4. Heat functions related to the Dunkl-Bessel Laplacian A g

For r > 0, p € IN and s € IN%, we define the heat functions Wsk,}gﬁ(r, )
related to the Dunkl-Bessel Laplacian Ay 5 by

vy e RT™, WE(r,y) (18)
jlsl(—1)Pe?
! Cit 1 agigg 2 erllel?p
4A/+5+d(1—x(l8+1))2 / I1 ...Td xd-i—f € (wvy)dluk,ﬁ(x)

d+1
RJr

These functions satisfy the following properties:

i) Wéﬁ ’Oﬁ(r,x) = ERP (z) the Gaussian kernel associated to the Dunkl-
Bessel Laplacian, defined by

2
Ck

d+1 kB —rflz[|?
Vo e R, B (“’)_4v+ﬁ+d(r(ﬂ+1))2 /e Az, y)dpg p(z).

d+1
Ry

(19)
ii) Wslfjf(r, .) is a C*-function on IR, even with respect to the last
variable and we have
k k d+1
st(r,x) = leﬁz’deET’ﬂ(x), e R,
where T is the operator T° = Ty o T5% o ... T}, with T}, j = 1,2,...,d, the
Dunkl operators.
iii) For all » > 0, the kernel Eff ¥ solves the generalized heat equation
0

EEW(:C) — N gEFP () =0, x € RYX]0, +o0].
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iv) For p € IN, s € IN? we have

Yy e R, Fop(WE(r,))(y) =il (—~1)Pyi ydeya 2t e IM7 (20)

Notation. We denote by P&+ the set of homogeneous polynomials on
IR of degree m even with respect to the last variable.

We state now the following proposition given in [10].

PROPOSITION 4.1. Let 1 be in P!, for all § > 0, there exists a poly-
nomial Q € PE! such that

Vye R, Fppy eIy () = Q(y)e 357,

5. Beurling-Hormander’s theorem
for the Dunkl-Bessel transform

We need the following lemmas for the proof of the main theorem of this
section.
LEMMA 5.1. Let N > 0. We consider f in Lz’ﬁ(lRiH) satisfying

2)1FD,) DI iy 00
/JR/,R Tl = e e )ty < oo 21

Then f € L}, 5(RT™).

P r o o f. From the relation (21) and Fubini’s theorem we have for
almost every y € ]Ri“:

Fp.5(f) ()] @ e
¥ U,BAJJAIJT z dp ( )< +00.
A+ 1Y Jnen G+ 2D o
As [ is not negligible, there exists yo € IRT™, yo # 0 such that Fp 5(f)(yo)#
0.

Thus

@ ielilivoll g, () < 400
/I;jlj—l (1 + ||z]])N dpe,p(w) < +00. (22)
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llzlllvoll
e
As the function ————— is greater than 1 for large ||z||, then

(L + [|z|)¥
/d+1 | f(x)|dpr,p(x) < +o0.
R+

THEOREM 5.2. Let N € IN and f in Lz’ﬁ(lRiH) satisfying (21). Then:
e If N > d+ 2 we have

k k d
fyy = > Wil (ry), ye REY,
‘ H_p<N d—1

where r > 0, as)p M@ and W B(r,.) given by the relation (18).
e Else f(y) =0 a.e. yele+ .

P r oo f From Lemma 5.1 and Theorem 3.1, the function f belongs
to L}Cﬂ(lRiﬂ) and the function "Ry g(f) is defined almost everywhere on

Bi“. We shall prove that we have

enxunyn‘t}zkﬁf( )||1Fo(* Ry, 5) (y)|
’ dydz < 400. 23

Take yp as in Lemma 5.1. We write the above integral as a sum of the
following integrals

l[l11yl
- /JR ot T T T B A B )0t

an

ellzllyl] . .
/IRdH /y||>||y0| 1+ ||z]| + HyH)N’ Rk,ﬁf(x)H}—O( Rk,ﬁ(f))(y)’dydx-

We will prove that [ and J are finite, which implies (23).
e As the functions |Fp g(f)(y)| is continuous in the compact {y €
R Ny|| < lyoll}, so we get

llz[lllwoll| t
I < const / € | kﬂ]\{(x)‘
R R G )
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Writing the integral of the second member as I1 + I» with

11:/ ell=llllvoll |t Ry 5 f ()] N
llal|< X (1 + [|z[HV ’

[yoll

and

X (1 [JzIDY

llyoll

[l[[l1yoll |t
e[ A,
[zl =

Therefore, we have the following results:
oIzl 11woll
(1l
R ||2|| < %}, and f is in L,lc’ﬁ(ZRiH) we deduce by using Fubini-
Tonelli’s theorem, and the relations (12),(11) that ‘R g(|f|) belongs to
L}f’ﬁ(]R‘f'l). Hence I is finite.
N . tllyoll
—  On the other hand, for t > Tyoll? the function t — (th)N

ing, so we obtain by using Fubini-Tonelli’s theorem, and (12),(11) and (14),
that

—  As the function z — is continuous in the compact {z €

is increas-

; / ellEllllvoll Ol 5(6)

2 < TIENN Hk,5(§)-

rest (L [[EDY o

The inequality (22) assert that I is finite. This proves that I is finite.
e  We suppose ||yo|| < N. Let J = J; + Jo + J3, with

izl

" |</N | / R = o )

lyoll

ellzllllyll
= [ [ Rup(F) (@)l Fp 5 () (v)dyde,

L+l + [lyIDY
el > X lwoll<llvl <N

ellzllyll
Js= / / ( "Ry, 5(f)(@)||Fp,5(f)(y)|dyd.

L+ [l2l]+ [yl
R |lyli>N

ellzllllyll

AT+ g~ 2wl s bounded

in the compact {z € L/ [fell < p} x {€ € B ol < lll] < V)
and Ry 5(|f|)(x) is Lebesgue-integrable on R4, then Jj is finite.

—  As the function (z,y) —
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— Let A > 0. As the function ¢ — ﬁ is increasing for ¢ > %

Thus, for all (z,y) € C(§,yo, N) we have the inequality

el llelllyl
< )
(L1l + DY~ @+ (€1 + [lyIDY

with

N
C(& yo, N)={(z,y) € lRi“XRi“/m < [J=[[ <[l¢][ and [[yol| <[ly[| < N}

Therefore, from Fubini-Tonelli’s theorem and the relations (12),(11), we
get

elléllyll
RS [ s s FOWPD O i e o)

Taking account of the condition (21), we deduce that J, is finite.
. el .. .
— For||y|| > N, the function ¢ — ATeq~ 18 increasing. We deduce,

by using Fubini-Tonelli’s theorem and the relations (12),(11),(21), that

Ja < r el €Nyl i

This implies that J is finite.

Finally for ||yo|| > N, we have J < J3 < oco. This completes the proof
of the relation (23).

According to Corollary 3.1, ii) of [2], we conclude that

Vo B Rypf(e) = Ple)e?lel

i . . N—d—1
with 6 > 0 and P a polynomial of degree strictly lower than =—F—.

Using this relation and (18), we deduce that

Yy € RYY, Fop(f)(y) = Foo 'Ris(f)(y) = Fo(P(x)e™ ) (y). (24)

But

w2

vy € BEHL Fo(P@)e M0 (y) = Qe (25)

: . . N—d—1
with @ a polynomial of degree strictly lower than =——.
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Thus from (20) we obtain

1
Vye R, Fpp(f)y)=Fos( > (éfwﬁfgg,qu.
shrp< Xogd
The injectivity of the transform Fp p implies
1
fa)y=" > agWii (s ))@) ae.,
shrp< Mgt
and the theorem is proved. n

6. Applications
In this section we give analogues of the Gelfand-Shilov, Hardy, Cowling-
Price and Morgan theorems for the Dunkl-Bessel transform Fp p.

THEOREM 6.1. (Gelfand-Shilov type) Let N € IN and assume that f
in Lzﬁ(Riﬂ) is such that

]ﬂ@k%mmw
- d < +o0, 26
/Riﬂ T+ ey o) < 4o 20)
(2b)1 q
\Fp.s(f)(y)e a W
: dy < +o0, 27
/ngl (+ D™ 1)

Wherel<p,q<+oo,%+ :1,a>0,b>0andab2%. Then:
) =0 a.e.

1) If ab > 1, we have f(
2) We suppose that ab = %.
i) If N < %l+1, 1 < p,q < +o0, we have f(x) =0, a.e. x € IR".
i) f N > ¢ +1.
e For the cases: 2 < g < 400, 1 <p < 400,
1<g<2,2<p<+o0,
q=2,p=2,
we have f(z) =0, a.e. x € IR%.
e For thecase: 1 <¢g<2,1<p<2
we have

8 ql~

fo - Y W) aese B ()

|S|+p<2N72d71
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where r > 0 and a’;;ﬁ ed.
e For thecaseq=2,1<p<?2
SIF0 < r < 207
we have f(z) =0 a.e. x € ZRiH.
- Ifr > 202
the function f is given by the relation (28).
e For thecasep=2,1<¢q<?2
- If r > 2b*
we have f(z) =0 a.e. x € ]Riﬂ.
SIF0 < r < 2b?
the function f is given by the relation (28).

P r o o f. Using the inequality

2a 2b)¢
4abl!ﬂfll\lyll<( i (1P + (208 [yl
p q

we get
FD.BH W) sablaliy
/B /R T+ ll2ll +TIslD> W) <
2a)P
[f@)le » " Fop(f))le s 1"
Aﬁlﬂ+“HV¢dMﬁ@{Aﬁl eI dy < +o0. (29)

As ab > 1, then from (29) we deduce that the condition (22) is satisfied.
By using the proof of Theorem 5.2, we obtain, Vx € ]Rﬁlfl,

2
]|

‘Rip(f)(x) = P(z)e™ 73 Yy € R, Fpp(f)ly) = Qe I, (30)

where r is a positive constant and P, are polynomials of the same degree
which is strictly lower than L‘H
) From (29) and the proof of (23) we deduce that

t t
| "Rie,5 () @) [ Fo("Bre,s(£) W] aanjaliiivll
: avllT drdy < . (31
/R /R 1+qu+uyu>w ‘ wdy < +oo. (31)

By replacing in (31) the functions 'Ry s(f)(z) and Fp p(f)(y) by their
expression given in (30), we get

/ / H@)|e(ﬂM7%Wﬂ@mmmMM@<+m
Rt J R 1+Hw|\+!ly|\) 32)
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As ab > i, there exists € > 0 such that 4ab—1—¢ > 0. If P is non null,
Q is also non null and we have

/ / 2)||Q )] e v 1olD? (aab=1) el 191 gy
R SR 1+H$H+HyH)

—(vr
/1Rd+1 /Rd+1

where C' is a positive constant. But the function

=5 llell)? (dab-1-0) 12yl g gy

o~ (V=57 1121)? (dab—1—e) ][]

is not integrable, (32) does not hold. Hence f(z) =0 a.e.
2)
i) We deduce the result from (29) and Theorem 5.2.
ii) By using (29) the relations (26),(27) can also be written in the form

2b)4
2 0y

Fo(H) e T Qe
/JRd 1+ [lylhN dy = /JRd 1+ [|ly|HN dy.

lall?  Ca)? i p

(2a)P
fle sl _ [ P@le” wme v
/m @+ ) wk(“’“)dz‘/ﬂqd Ay el

We obtain ii) from Theorem 5.2 and by studying the convergence of these
integrals as we have made it in the 1).

and

THEOREM 6.2. (Hardy type) Let N € IN. Assume that f in Li”@(Rfﬁl)
is such that

|f(z)] < Me~wallel ae,
dvy e R, |F < MO4ly:DNe=bwil? 5 =1 d+1
an Y € + | D,B(f>(y)| — ( +‘y]|) € y J = Ly + ’

(33)
for some constants a > 0, b > 0 and M > 0. Then,
i) If ab > i, then f =0 a.e.
1
ii) Ifab = 7, the function f is of the form f(x Z a x)

|s|+p<N
a.e. where aff ed.
iii) If ab < %, there are infinity many nonzero functions f satisfying the
conditions (33).
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P roof. The first condition of (33) implies that f € Li,ﬁ(lRiH). So by
Theorem 3.1, the function ‘R 5(f) is defined almost everywhere. By using
the relation (17) we deduce that for all z € JRiH,

" Re,p(£) ()] < Moe @1,

where My is a positive constant.
So,

'Ry 5(f)()] < Mo(1 + |z;|)Ne=@% j =1, d+1. (34)

On the other hand from (17) and (33) we have for all y € ]Rﬁlr“,

\Fol'Riep) (f) ()| < M(L+ [y )Ne Pl j=1,,d+ 1. (35)

The relations (34) and (35) show that the conditions of Proposition 3.4 of
2], p.36, are satisfied by the function Ry g(f). Thus we get:

i) If ab > 1, 'Ry 5(f) = 0 ae.

Using (17) we deduce

Vye R, Fop(f)y) = Foo (‘Rip)(f)y) = 0.

Then from Theorem 2.3.1 of [10] we have f =0 a.e.

ii) If ab = 1, then 'Ry g(f)(z) = P(z)e~1#I”  where P is a polynomial
of degree strictly lower than N. The same proof as of the end of Theorem
5.2 shows that 1

f(z) = Z afngéff(g,x) a.e.
[s|+p<N
iii) If ab < 1, let ¢ €]a, 5[ and f(z) = ce~tl7I” for some real constant

¢, these functions satisfy the conditions (33). [

THEOREM 6.3. (Cowling-Price type) Let N € IN. Assume that f in
L%ﬁ(IRﬁer) is such that

bllylI?
/ eal‘x||2’f($)’d,ulk,ﬁ(x) < 400 and / W‘f[)73(f)‘dy < 400
Rd+1 Rd+1 y
¢ +

36
for some constants a > 0,b > 0. Then, (36)

i) If ab > 1, we have f = 0 a.e.
if) If ab = %, then when N > d + 2 we have
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1
k k
f($) = Z asjgws,bﬁ(gv .’IJ) a.e.,
. |s|+p< H=g=1
where a;p € @.
iii) If ab < i, there are infinity many nonzero functions f satisfying the

conditions (36).

Proof. From the first condition of (36) we deduce that f € L}Cﬂ(ﬂ%f‘l).
So by Theorem 3.1, the function 'Ry, 5(f) is defined almost everywhere. By
using the relations (12), (14) and (36) we have:

t z)|eallzl? 2
/ “%?QL%N dr < [ Rualel ) ),

R_d‘j’l Ri+1
< /“wwﬂﬂwm%mw<+m.
fRi“
So,
| Re s (f) ()] e?!lI”
g d .
/ (Lt [apy < tee (87)
JRdjl

On the other hand from (17) and (36) we have:

ebllyll? ebllyll? .
/ A Fosldy= / T P Bra) (D w)ldy < +oo.

R4+

d+1
R +

+
(38)
The relations (37) and (38) are the conditions of Proposition 3.2 of [2] p.35,
which are satisfied by the function *Rj, g(f). Thus we get:
i) If ab > §, "R 5(f) = 0 ae.
Using the same proof as of Theorem 6.2, we deduce f(y) = 0. a.e.
d+1
y € IR,
i) If ab = 1, then 'Ry (f)(z) = P(z)e~l17I” where P is a polynomial of

degree strictly lower than Y=9=L  The same proof as of the end of Theorem
5.2 shows that 1
k k
f(z) = Z as;gws,f(@, x) a.e.
|s[+p< ==

iii) If ab < 1, let t €]a, [ and f(z) = ce~t7I* for some real constant
¢, these functions satisfy the conditions (36). This completes the proof. m
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THEOREM 6.4. (Morgan type) Let 1 < p < 2 and g be the conjugate
exponent of p. Assume that f in L? ﬁ(ﬂ%‘fl) satisfies

. w1
/ er ||p‘f(1‘)‘d,u,k’g(l‘) < 400 and / ed ||y||q’]:D’B(f)(y)]dy < 400,
Ri+1 Ri+1

(39)
for some constants a > 0,b > 0.

Then if ab > |cos(%)\%, we have f =0 a.e.

P r o o f. The first condition of (39) implies that f € L,lgﬁ(]RiH). So
by Theorem 3.1 , the function Ry 5(f) is defined almost everywhere. By
using the relations (12) and (39) we deduce that:

LT o
Jrgos R D@1 o< [P0 < e
+

JF
So,
H.p T
/JR " Riejo (f) (@) ]e 7V dr < o0, (40)
+

On the other hand, from (17) and (39) we have:

2yl £ 2yl ot
e () )ldy e | Fo("Rep) (f)(y)ldy < +oc.
R R
+ +

(41)
The relations (40) and (41) are the conditions of Theorem 1.4, p.26 of [2],
which are satisfied by the function ‘Ry, (f). Thus we deduce that if ab >
]cos(%ﬂ)\% we have 'Ry 5(f) = 0 a.e.

Using the same proof as of Theorem 6.2 we obtain f(y) = 0. a.e. y €
Riﬂ. (]
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