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1. Introduction

There are many theorems known which state that a function and its
classical Fourier transform on IR cannot simultaneously be very small at
infinity. This principle has several version which were proved by G.H. Hardy
[6], G.W. Morgan [11], M.G. Cowling and J.F. Price [4], A. Beurling [1].

The Beurling theorem for the classical Fourier transform on IR which
was proved by L. Hörmander [7], says that for any non trivial function f
in L2(IR), the function f(x)F(f)(y) is never integrable on IR2 with respect
to the measure e|xy|dxdy. A far reaching generalization of this result has
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been recently proved in [2]. In this paper the author proves that a square
integrable function f on IRd satisfying for an integer N :

∫

IRd

∫

IRd

|f(x)||F(f)(y)|
(1 + ||x||+ ||y||)N

e||x||||y||dxdy < +∞

has the form f(x) = P (x)e−β||x||2 , where P is a polynomial of degree strictly
lower than N−d

2 and β > 0.
This version has been studied in other situations by many authors in

particular L. Bouattour and K. Trimèche [3], L. Kamoun and K. Trimèche [8]
and K. Trimèche [13]. There, an analogue of Beurling-Hörmander’s theorem
has been proved, for the Chébli-Trimèche transform, a Fourier transform
associated with partial differential operators and the Dunkl transform.

In this paper we study an analogue of Beurling-Hörmander’s theorem
for the Dunkl-Bessel transform on IRd+1

+ .
The contents of the paper is as follows: In Section 2 we recall the Dunkl

operators and the Dunkl kernel. We introduce in the third section the
Dunkl-Bessel-Laplace operator and define the Dunkl-Bessel transform, the
Dunkl-Bessel intertwining operator and its dual, and give their properties.
Section 4 is devoted to the heat functions W k,β

s,p related to the Dunkl-Bessel
Laplace operator. These functions are used in the statement of the main
result. In Section 5 we give an analogue of Beurling-Hörmander’s theorem
for the Dunkl-Bessel transform. In the last section, an analogue of Hardy
and Morgan theorems is obtained for the Dunkl-Bessel transform. For other
proofs of these theorems (see [9], [10]).

2. Dunkl operators and Dunkl kernel

In this section we collect some notations on Dunkl operators and the
Dunkl kernel (see [5]).

For α ∈ IRd\{0}, let σα be the reflection in the hyperplane Hα ⊂ IRd

orthogonal to α, i.e.

σα(x) = x− 2
〈α, x〉
||α||2 α. (1)

A finite set R ⊂ IRd\{0} is called a root system, if R∩ IRd.α = {α,−α}
and σαR = R for all α ∈ R. For a given root system R the reflection
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σα, α ∈ R, generate a finite group W ⊂ O(d), called the reflection group
associated with R . All reflections in W correspond to suitable pairs of
roots. For a given β ∈ IRd\ ∪α∈R Hα, we fix the positive subsystem R+ =
{α ∈ R /〈α, β〉 > 0}, then for each α ∈ R either α ∈ R+ or −α ∈ R+.

A function k : R −→ IC on a root system R is called a multiplicity
function, if it is invariant under the action of the associated reflection group
W .

Moreover, let ωk denote the weight function

∀x ∈ IRd, ωk(x) =
∏

α∈R+

|〈α, x〉|2k(α). (2)

The Dunkl operators Tj , j = 1 , ..., d, on IRd associated with the finite
reflection group W and multiplicity function k are given for a function of
class C1 by

Tjf(x) =
∂

∂xj
f(x) +

∑

α∈R+

k(α)αj
f(x)− f(σα(x))

〈α, x〉 (3)

In the case k = 0, the Tj , j = 1, ..., d, reduce to the corresponding partial
derivatives. In this paper, we will assume throughout that k ≥ 0.

We define the Dunkl-Laplace operator on IRd by

4kf(x) =
d∑

j=1

T 2
j f(x) = 4df(x)+2

∑

α∈R+

k(α)[
〈∇f(x), α〉
〈α, x〉 −f(x)− f(σα(x))

〈α, x〉2 ].

(4)
For y ∈ IRd, the system




Tju(x, y) = yju(x, y), j = 1, ..., d,

u(0, y) = 1,

admits a unique analytic solution on IRd, which will be denoted K(x, y)
and called Dunkl kernel. This kernel has a unique holomorphic extension
to ICd × ICd.

The function K(x, z) admits for all x ∈ IRd and z ∈ ICd the following
Laplace type integral representation

K(x, z) =
∫

IRd

e〈y,z〉dµx(y), (5)

where µx is a probability measure on IRd, with support in the closed ball
B(o, ||x||) of center o and radius ||x||.
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3. Harmonic analysis associated with
the Dunkl-Bessel-Laplace operator

In this section we collect some notations and results on the Dunkl-Bessel
Laplace operator, the Dunkl-Bessel intertwining operator and its dual, and
the Dunkl-Bessel transform (see [10]).

Notations. We denote by
-IRd+1

+ = IRd × [0, +∞[.
- x = (x1, ..., xd, xd+1) = (x′, xd+1) ∈ IRd+1

+ .
- C∗(IRd+1)(resp. C∗,c(IRd+1)) the space of continuous functions on IRd+1

(resp. with compact support), even with respect to the last variable.
- Cp

∗ (IRd+1)(resp. Cp
∗,c(IRd+1)) the space of functions of class Cp on IRd+1,

(resp. with compact support), even with respect to the last variable .
-E∗(IRd+1) (resp. D∗(IRd+1)) the space of C∞-functions on IRd+1 (resp.
with compact support), even with respect to the last variable.

We provide these spaces with the classical topology.

3.1. The Dunkl-Bessel-Laplace operator and
the Dunkl-Bessel intertwining operator

We consider the Dunkl-Bessel-Laplace operator 4k,β defined by
∀x = (x′, xd+1) ∈ IRd×]0,+∞[,

4k,βf(x) = 4k,x′f(x′, xd+1) + Lβ,xd+1
f(x′, xd+1), f ∈ C2

∗ (IR
d+1), (6)

where 4k is the Dunkl-Laplace operator on IRd, and Lβ the Bessel operator
on ]0, +∞[ given by

Lβ =
d2

dx2
d+1

+
2β + 1
xd+1

d

dxd+1
, β > −1

2
.

For all x ∈ IRd+1
+ , we define the measure ζk,β

x on IRd×]0, +∞[ by

dζk,β
x (y) =

2Γ(β + 1)√
πΓ(β + 1

2)
x−2β

d+1 (x2
d+1 − y2

d+1)
β− 1

2 1]0,xd+1[(yd+1)dµx′(y′)dyd+1,

(7)
where µx′ is the measure given by (5) and 1]0,xd+1[ is the characteristic
function of the interval ]0, xd+1[.
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The Dunkl-Bessel intertwining operator is the operator Rk,β defined on
C∗(IRd+1) by

∀x ∈ IRd+1
+ , Rk,βf(x) =

∫

IRd+1
+

f(y)dζk,β
x (y). (8)

3.2. The dual of the Dunkl-Bessel intertwining operator

The dual of the Dunkl-Bessel intertwining operator Rk,β is the operator
tRk,β defined on D∗(IRd+1) by: ∀y = (y′, yd+1) ∈ IRd × [0,∞[,

tRk,β(f)(y′, yd+1) =
2Γ(β + 1)√
πΓ(β + 1

2)

∫ ∞

yd+1

(s2 − y2
d+1)

β− 1
2

tVkf(y′, s)sds, (9)

where tVk is the dual Dunkl intertwining operator defined by K. Trimèche
in [12] by

∀ y ∈ IRd, tVk(f)(y) =
∫

IRd

f(x)dνy(x), (10)

where νy is a positive measure on IRd with support in the set {x ∈ IRd, ||x|| ≥
||y||}.

For all y ∈ IRd+1
+ , we define the measure %k,β

y on IRd×]0, +∞[, by

d%k,β
y (x) =

2Γ(β + 1)√
πΓ(β + 1

2)
(x2

d+1−y2
d+1)

β− 1
2 xd+11]yd+1,+∞[(xd+1)dνy′(x′)dxd+1,

(11)
From (9) the operator tRk,β can also be written in the form

∀ y ∈ IRd+1
+ , tRk,β(f)(y) =

∫

IRd+1
+

f(x)d%k,β
y (x). (12)

Notation. We denote by Lp
k,β(IRd+1

+ ) the space of measurable functions
on IRd+1

+ such that

||f ||k,β,p = (
∫

IRd+1
+

|f(x)|pdµk,β(x) dx)
1
p < +∞, if 1 ≤ p < +∞,

||f ||k,β,∞ = ess supx∈IRd |f(x)| < +∞,
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where µk,β is the measure on IRd+1
+ given by

dµk,β(x′, xd+1) = ωk(x′)x
2β+1
d+1 dx′dxd+1.

Theorem 3.1. Let (%k,β
y )y∈IRd+1

+
be the family of measures defined by

(11) and f in L1
k,β(IRd+1

+ ). Then for almost all y (with respect to the

Lebesgue measure on IRd+1
+ ), f is %k,β

y -integrable, the function

y 7→
∫

IRd+1
+

f(y)%k,β
y (x)dy,

which will be denoted also by tRk,β(f), is defined almost every where on
IRd+1

+ , and for all bounded function g in C∗(IRd+1) we have the formula

∫

IRd+1
+

tRk,β(f)(y)g(y)dy =
∫

IRd+1
+

f(x)Rk,β(g)(x)dµk,β(x). (13)

Remark 3.2. Let f be in L1
k,β(IRd+1

+ ). By taking g ≡ 1 in the relation
(13) we deduce that

∫

IRd+1
+

tRk,β(f)(y)dy =
∫

IRd+1
+

f(x) dµk,β(x). (14)

3.3. The Dunkl-Bessel transform

Definition 3.3. The Dunkl-Bessel transform is given for f in D∗(IRd+1)
by

∀ y=(y′, yd+1) ∈ IRd+1
+ , FD,B(f)(y′, yd+1)=

∫

IRd+1
+

f(x′, xd+1)Λ(x, y)dµk,β(x),

(15)
where Λ is given by

Λ(x, z) = K(−ix′, z′)jβ(xd+1zd+1), (x, z) ∈ IRd+1
+ × ICd+1. (16)

From Theorem 3.1 we deduce the following proposition.
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Proposition 3.4. For all f in L1
k,β(IRd+1

+ ), we have

FD,B(f)(y) = Fo ◦ tRk,β(f)(y), y ∈ IRd+1
+ , (17)

where Fo is the transform defined by: ∀ y = (y′, yd+1) ∈ IRd × [0, +∞[, f ∈
C∗,c(IRd+1)

Fo(f)(y′, yd+1) =
∫

IRd+1
+

f(x′, xd+1)e−i〈y′,x′〉 cos(xd+1yd+1)dx′dxd+1.

4. Heat functions related to the Dunkl-Bessel Laplacian 4k,β

For r > 0, p ∈ IN and s ∈ INd, we define the heat functions W k,β
s,p (r, .)

related to the Dunkl-Bessel Laplacian 4k,β by

∀y ∈ IRd+1
+ , W k,β

s,p (r, y) (18)

=
i|s|(−1)pc2

k

4γ+β+d(Γ(β + 1))2

∫

IRd+1
+

x1
s1 ...xd

sdxd+1
2p e−r||x||2Λ(x, y)dµk,β(x).

These functions satisfy the following properties:

i) W k,β
0,0 (r, x) = Ek,β

r (x) the Gaussian kernel associated to the Dunkl-
Bessel Laplacian, defined by

∀x ∈ IRd+1
+ , Ek,β

r (x) =
c2
k

4γ+β+d(Γ(β + 1))2

∫

IRd+1
+

e−r||x||2Λ(x, y)dµk,β(x).

(19)
ii) W k,β

s,p (r, .) is a C∞-function on IRd+1, even with respect to the last
variable and we have

W k,β
s,p (r, x) = T s

x′Lp
β,xd+1

Ek,β
r (x), x ∈ IRd+1

+ ,

where T s is the operator T s = T s1
1 ◦ T s2

2 ◦ ...T sd
d , with Tj , j = 1, 2, ..., d, the

Dunkl operators.
iii) For all r > 0, the kernel Ek,β

r solves the generalized heat equation

∂

∂r
Ek,β

r (x)−4k,βEk,β
r (x) = 0, x ∈ IRd×]0, +∞[.
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iv) For p ∈ IN , s ∈ INd we have

∀ y ∈ IRd+1
+ , FD,B(W k,β

s,p (r, .))(y) = i|s|(−1)py1
s1 ...yd

sdyd+1
2p e−r||y||2 . (20)

Notation. We denote by Pd+1
m the set of homogeneous polynomials on

IRd+1 of degree m even with respect to the last variable.
We state now the following proposition given in [10].

Proposition 4.1. Let ψ be in Pd+1
m , for all δ > 0, there exists a poly-

nomial Q ∈ Pd+1
m such that

∀ y ∈ IRd+1
+ , FD,B(ψ e−δ||x||2)(y) = Q(y)e−

1
4δ
||y||2 .

5. Beurling-Hörmander’s theorem
for the Dunkl-Bessel transform

We need the following lemmas for the proof of the main theorem of this
section.

Lemma 5.1. Let N ≥ 0. We consider f in L2
k,β(IRd+1

+ ) satisfying

∫

IRd+1
+

∫

IRd+1
+

|f(x)||FD,B(f)(y)|
(1 + ||x||+ ||y||)N

e||x||||y||dµk,β(x)dy < +∞. (21)

Then f ∈ L1
k,β(IRd+1

+ ).

P r o o f. From the relation (21) and Fubini’s theorem we have for
almost every y ∈ IRd+1

+ :

|FD,B(f)(y)|
(1 + ||y||)N

∫

IRd+1
+

|f(x)|
(1 + ||x||)N

e||x||||y||dµk,β(x) < +∞.

As f is not negligible, there exists y0 ∈ IRd+1
+ , y0 6= 0 such that FD,B(f)(y0) 6=

0.

Thus ∫

IRd+1
+

|f(x)|
(1 + ||x||)N

e||x||||y0||dµk,β(x) < +∞. (22)
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As the function
e||x||||y0||

(1 + ||x||)N
is greater than 1 for large ||x||, then

∫

IRd+1
+

|f(x)|dµk,β(x) < +∞.

Theorem 5.2. Let N ∈ IN and f in L2
k,β(IRd+1

+ ) satisfying (21). Then:
• If N ≥ d + 2 we have

f(y) =
∑

|s|+p< N−d−1
2

ak,β
s,p W k,β

s,p (r, y), y ∈ IRd+1
+ ,

where r > 0, ak,β
s,p ∈ IC and W k,β

s,p (r, .) given by the relation (18).
• Else f(y) = 0 a.e. y ∈ IRd+1

+ .

P r o o f. From Lemma 5.1 and Theorem 3.1, the function f belongs
to L1

k,β(IRd+1
+ ) and the function tRk,β(f) is defined almost everywhere on

IRd+1
+ . We shall prove that we have

∫

IRd+1
+

∫

IRd+1
+

e||x||||y|||tRk,βf(x)||F0(tRk,β)(y)|
(1 + ||x||+ ||y||)N

dydx < +∞. (23)

Take y0 as in Lemma 5.1. We write the above integral as a sum of the
following integrals

I =
∫

IRd+1
+

∫

||y||≤||y0||

e||x||||y||

(1 + ||x||+ ||y||)N
|tRk,βf(x)||F0(tRk,β(f))(y)|dydx

and

J =
∫

IRd+1
+

∫

||y||≥||y0||

e||x||||y||

(1 + ||x||+ ||y||)N
|tRk,βf(x)||F0(tRk,β(f))(y)|dydx.

We will prove that I and J are finite, which implies (23).
• As the functions |FD,B(f)(y)| is continuous in the compact {y ∈

IRd+1
+ /||y|| ≤ ||y0||}, so we get

I ≤ const

∫

IRd+1
+

e||x||||y0||| tRk,βf(x)|
(1 + ||x||)N

dx.
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Writing the integral of the second member as I1 + I2 with

I1 =
∫

||x||≤ N
||y0||

e||x||||y0|| |tRk,βf(x)|
(1 + ||x||)N

dx,

and

I2 =
∫

||x||≥ N
||y0||

e||x||||y0|| |tRk,βf(x)|
(1 + ||x||)N

dx.

Therefore, we have the following results:

− As the function x 7→ e||x||||y0||
(1+||x||)N is continuous in the compact {x ∈

IRd+1
+ /||x|| ≤ N

||y0||}, and f is in L1
k,β(IRd+1

+ ) we deduce by using Fubini-
Tonelli’s theorem, and the relations (12),(11) that tRk,β(|f |) belongs to
L1

k,β(IRd+1
+ ). Hence I1 is finite.

− On the other hand, for t > N
||y0|| , the function t 7→ et||y0||

(1+t)N is increas-
ing, so we obtain by using Fubini-Tonelli’s theorem, and (12),(11) and (14),
that

I2 ≤
∫

IRd+1
+

e||ξ||||y0||

(1 + ||ξ||)N
|f(ξ)|dµk,β(ξ).

The inequality (22) assert that I2 is finite. This proves that I is finite.
• We suppose ||y0|| ≤ N. Let J = J1 + J2 + J3, with

J1 =
∫

||x||≤ N
||y0||

∫

||y0||≤||y||≤N

e||x||||y||

(1 + ||x||+ ||y||)N
|tRk,β(f)(x)||FD,B(f)(y)|dydx,

J2 =
∫

||x||≥ N
||y0||

∫

||y0||≤||y||≤N

e||x||||y||

(1 + ||x||+ ||y||)N
|tRk,β(f)(x)||FD,B(f)(y)|dydx,

J3 =
∫

IRd+1
+

∫

||y||≥N

e||x||||y||

(1 + ||x||+ ||y||)N
|tRk,β(f)(x)||FD,B(f)(y)|dydx.

− As the function (x, y) 7→ e||x||||y||

(1 + ||x||+ ||y||)N
|FD,B(f)(y)| is bounded

in the compact {x ∈ IRd+1
+ / ||x|| ≤ N

||y0||} × {ξ ∈ IRd+1
+ / ||y0|| ≤ ||ξ|| ≤ N}

and tRk,β(|f |)(x) is Lebesgue-integrable on IRd+1
+ , then J1 is finite.
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− Let λ > 0. As the function t 7→ eλt

(1+t+λ)N is increasing for t > N
λ .

Thus, for all (x, y) ∈ C(ξ, y0, N) we have the inequality

e||x||||y||

(1 + ||x||+ ||y||)N
≤ e||ξ||||y||

(1 + ||ξ||+ ||y||)N
,

with

C(ξ, y0, N)={(x, y) ∈ IRd+1
+ ×IRd+1

+ /
N

||y|| ≤ ||x||≤||ξ|| and ||y0||≤||y||≤N}.

Therefore, from Fubini-Tonelli’s theorem and the relations (12),(11), we
get

J2 ≤
∫

IRd+1
+

∫

IRd+1
+

|f(ξ)||FD,B(f)(y)| e||ξ||||y||

(1 + ||ξ||+ ||y||)N
dydµk,β(ξ).

Taking account of the condition (21), we deduce that J2 is finite.
− For ||y|| > N , the function t 7→ et||y||

(1+t+||y||)N is increasing. We deduce,
by using Fubini-Tonelli’s theorem and the relations (12),(11),(21), that

J3 ≤
∫

IRd+1
+

∫

||y||≥N
|f(ξ)||FD,B(f)(y)| e||ξ||||y||

(1 + ||ξ||+ ||y||)N
dydµk,β(ξ) < +∞.

This implies that J is finite.
Finally for ||y0|| > N, we have J ≤ J3 < ∞. This completes the proof

of the relation (23).
According to Corollary 3.1, ii) of [2], we conclude that

∀x ∈ IRd+1
+ , tRk,βf(x) = P (x)e−δ||x||2

with δ > 0 and P a polynomial of degree strictly lower than N−d−1
2 .

Using this relation and (18), we deduce that

∀ y ∈ IRd+1
+ , FD,B(f)(y) = F0 ◦ tRk,β(f)(y) = F0(P (x)e−δ||x||2)(y). (24)

But

∀ y ∈ IRd+1
+ , F0(P (x)e−δ||x||2)(y) = Q(y)e−

||y||2
4δ , (25)

with Q a polynomial of degree strictly lower than N−d−1
2 .
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Thus from (20) we obtain

∀ y ∈ IRd+1
+ , FD,B(f)(y) = FD,B(

∑

|s|+p< N−d−1
2

ak,β
s,p W k,β

s,p (
1
4δ

, .))(y).

The injectivity of the transform FD,B implies

f(x) =
∑

|s|+p< N−d−1
2

ak,β
s,p W k,β

s,p (
1
4δ

, .))(x) a.e.,

and the theorem is proved.

6. Applications

In this section we give analogues of the Gelfand-Shilov, Hardy, Cowling-
Price and Morgan theorems for the Dunkl-Bessel transform FD,B.

Theorem 6.1. (Gelfand-Shilov type) Let N ∈ IN and assume that f
in L2

k,β(IRd+1
+ ) is such that

∫

IRd+1
+

|f(x)|e
(2a)p

p
||x||p

(1 + ||x||)N
dµk,β(x) < +∞, (26)

∫

IRd+1
+

|FD,B(f)(y)|e
(2b)q

q
||y||q

(1 + ||y||)N
dy < +∞, (27)

where 1 < p, q < +∞, 1
p + 1

q = 1, a > 0, b > 0 and ab ≥ 1
4 . Then:

1) If ab > 1
4 , we have f(x) = 0 a.e.

2) We suppose that ab = 1
4 .

i) If N < d
2 + 1, 1 < p, q < +∞, we have f(x) = 0, a.e. x ∈ IRd.

ii) If N ≥ d
2 + 1.

• For the cases: 2 ≤ q < +∞, 1 < p < +∞,
1 < q < 2, 2 < p < +∞,
q = 2, p = 2,

we have f(x) = 0, a.e. x ∈ IRd.
• For the case: 1 < q < 2, 1 < p < 2

we have
f(x) =

∑

|s|+p< 2N−d−1
2

ak,β
s,p W k,β

s,p (r, x), a.e. x ∈ IRd+1
+ , (28)
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where r > 0 and ak,β
s,p ∈ IC.

• For the case q = 2, 1 < p < 2
- If 0 < r ≤ 2b2

we have f(x) = 0 a.e. x ∈ IRd+1
+ .

- If r > 2b2

the function f is given by the relation (28).
• For the case p = 2, 1 < q < 2

- If r ≥ 2b2

we have f(x) = 0 a.e. x ∈ IRd+1
+ .

- If 0 < r < 2b2

the function f is given by the relation (28).

P r o o f. Using the inequality

4ab||x||||y|| ≤ (2a)p

p
||x||p +

(2b)q

q
||y||q,

we get
∫

IRd+1
+

∫

IRd+1
+

|f(x)||FD,B(f)(y)|
(1 + ||x||+ ||y||)2N

e4ab||x||||y||dµk,β(x)dy ≤

∫

IRd+1
+

|f(x)|e
(2a)p

p
||x||p

(1 + ||x||)N
dµk,β(x)

∫

IRd+1
+

|FD,B(f)(y)|e
(2b)q

q
||y||q

(1 + ||y||)N
dy < +∞. (29)

As ab ≥ 1
4 , then from (29) we deduce that the condition (22) is satisfied.

By using the proof of Theorem 5.2, we obtain, ∀x ∈ IRd+1
+ ,

tRk,β(f)(x) = P (x)e−
||x||2

4r ; ∀ y ∈ IRd+1
+ , FD,B(f)(y) = Q(y)e−r||y||2 , (30)

where r is a positive constant and P ,Q are polynomials of the same degree
which is strictly lower than 2N−d−1

2 .
1) From (29) and the proof of (23) we deduce that

∫

IRd+1
+

∫

IRd+1
+

| tRk,β(f)(x)||Fo( tRk,β(f))(y)|
(1 + ||x||+ ||y||)2N

e4ab||x||||y||dxdy < +∞. (31)

By replacing in (31) the functions tRk,β(f)(x) and FD,B(f)(y) by their
expression given in (30), we get

∫

IRd

∫

IRd

|P (x)||Q(y)|
(1 + ||x||+ ||y||)2N

e
−(
√

r||y||− 1
2
√

r
||x||)2

e(4ab−1)||x||||y||dxdy < +∞.

(32)
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As ab > 1
4 , there exists ε > 0 such that 4ab− 1− ε > 0. If P is non null,

Q is also non null and we have
∫

IRd+1
+

∫

IRd+1
+

|P (x)||Q(y)|
(1 + ||x||+ ||y||)2N

e
−(
√

r||y||− 1
2
√

r
||x||)2

e(4ab−1)||x||||y||dxdy

≥ C

∫

IRd+1
+

∫

IRd+1
+

e
−(
√

r||y||− 1
2
√

r
||x||)2

e(4ab−1−ε)||x||||y||dxdy,

where C is a positive constant. But the function

e
−(
√

r||y||− 1
2
√

r
||x||)2

e(4ab−1−ε)||x||||y||

is not integrable, (32) does not hold. Hence f(x) = 0 a.e.
2)
i) We deduce the result from (29) and Theorem 5.2.
ii) By using (29) the relations (26),(27) can also be written in the form

∫

IRd

|FD(f)(y)|e
(2b)q

q
||y||q

(1 + ||y||)N
dy =

∫

IRd

|Q(y)|e−r||y||2e
(2b)q

q
||y||q

(1 + ||y||)N
dy.

and
∫

IRd

|f(x)|e
(2a)p

p
||x||p

(1 + ||x||)N
ωk(x)dx =

∫

IRd

|P (x)|e− ||x||
2

4r e
(2a)p

p
||x||p

(1 + ||x||)N
ωk(x)dx.

We obtain ii) from Theorem 5.2 and by studying the convergence of these
integrals as we have made it in the 1).

Theorem 6.2. (Hardy type) Let N ∈ IN . Assume that f in L2
k,β(IRd+1

+ )
is such that

|f(x)| ≤ Me−
1
4a
||x||2a.e.

and ∀y ∈ IRd+1
+ , |FD,B(f)(y)| ≤ M(1+|yj |)Ne−b|yj |2 , j = 1, ..., d+1,

(33)
for some constants a > 0, b > 0 and M > 0. Then,

i) If ab > 1
4 , then f = 0 a.e.

ii) If ab = 1
4 , the function f is of the form f(x) =

∑

|s|+p≤N

ak,β
s,p W k,β

s,p (
1
4a

, x)

a.e. where ak,β
s,p ∈ IC.

iii) If ab < 1
4 , there are infinity many nonzero functions f satisfying the

conditions (33).
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P r o o f. The first condition of (33) implies that f ∈ L1
k,β(IRd+1

+ ). So by
Theorem 3.1, the function tRk,β(f) is defined almost everywhere. By using
the relation (17) we deduce that for all x ∈ IRd+1

+ ,

|tRk,β(f)(x)| ≤ M0e
−a||x||2 ,

where M0 is a positive constant.
So,

|tRk,β(f)(x)| ≤ M0(1 + |xj |)Ne−a|xj |2 , j = 1, ..., d + 1. (34)

On the other hand from (17) and (33) we have for all y ∈ IRd+1
+ ,

|Fo( tRk,β)(f)(y)| ≤ M(1 + |yj |)Ne−b|yj |2 , j = 1, ..., d + 1. (35)

The relations (34) and (35) show that the conditions of Proposition 3.4 of
[2], p.36, are satisfied by the function tRk,β(f). Thus we get:

i) If ab > 1
4 , tRk,β(f) = 0 a.e.

Using (17) we deduce

∀ y ∈ IRd+1
+ , FD,B(f)(y) = Fo ◦ (tRk,β)(f)(y) = 0.

Then from Theorem 2.3.1 of [10] we have f = 0 a.e.
ii) If ab = 1

4 , then tRk,β(f)(x) = P (x)e−a||x||2 , where P is a polynomial
of degree strictly lower than N . The same proof as of the end of Theorem
5.2 shows that

f(x) =
∑

|s|+p≤N

ak,β
s,p W k,β

s,p (
1
4a

, x) a.e.

iii) If ab < 1
4 , let t ∈]a, 1

4b [ and f(x) = ce−t||x||2 for some real constant
c, these functions satisfy the conditions (33).

Theorem 6.3. (Cowling-Price type) Let N ∈ IN . Assume that f in
L2

k,β(IRd+1
+ ) is such that

∫

IRd+1
+

ea||x||2 |f(x)|dµk,β(x) < +∞ and

∫

IRd+1
+

eb||y||2

(1 + ||y||)N
|FD,B(f)|dy < +∞

(36)
for some constants a > 0, b > 0. Then,

i) If ab > 1
4 , we have f = 0 a.e.

ii) If ab = 1
4 , then when N ≥ d + 2 we have
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f(x) =
∑

|s|+p< N−d−1
2

ak,β
s,p W k,β

s,p (
1
4a

, x) a.e.,

where ak,β
µ,p ∈ IC.

iii) If ab < 1
4 , there are infinity many nonzero functions f satisfying the

conditions (36).

P r o o f. From the first condition of (36) we deduce that f ∈ L1
k,β(IRd+1

+ ).
So by Theorem 3.1, the function tRk,β(f) is defined almost everywhere. By
using the relations (12), (14) and (36) we have:

∫

IRd+1
+

|tRk,β(f)(x)|ea||x||2

(1 + ||x||)N
dx ≤

∫

IRd+1
+

tRk,β(ea||x||2 |f |)(x)dx,

≤
∫

IRd+1
+

ea||y||2 |f(y)|dµk,β(y) < +∞.

So, ∫

IRd+1
+

|tRk,β(f)(x)|ea||x||2

(1 + ||x||)N
dx < +∞. (37)

On the other hand from (17) and (36) we have:
∫

IRd+1
+

eb||y||2

(1 + ||y||)N
|FD,B(f)|dy=

∫

IRd+1
+

eb||y||2

(1 + ||y||)N
|Fo(tRk,β)(f)(y)|dy < +∞.

(38)
The relations (37) and (38) are the conditions of Proposition 3.2 of [2] p.35,
which are satisfied by the function tRk,β(f). Thus we get:

i) If ab > 1
4 , tRk,β(f) = 0 a.e.

Using the same proof as of Theorem 6.2, we deduce f(y) = 0. a.e.
y ∈ IRd+1

+ .

ii) If ab = 1
4 , then tRk,β(f)(x) = P (x)e−a||x||2 where P is a polynomial of

degree strictly lower than N−d−1
2 . The same proof as of the end of Theorem

5.2 shows that
f(x) =

∑

|s|+p< N−d−1
2

ak,β
s,p W k,β

s,p (
1
4a

, x) a.e.

iii) If ab < 1
4 , let t ∈]a, 1

4b [ and f(x) = ce−t||x||2 for some real constant
c, these functions satisfy the conditions (36). This completes the proof.
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Theorem 6.4. (Morgan type) Let 1 < p < 2 and q be the conjugate
exponent of p. Assume that f in L2

k,β(IRd+1
+ ) satisfies

∫

IRd+1
+

e
ap

p
||x||p |f(x)|dµk,β(x) < +∞ and

∫

IRd+1
+

e
bq

q
||y||q |FD,B(f)(y)|dy < +∞,

(39)
for some constants a > 0, b > 0.

Then if ab > | cos(pπ
2 )| 1p , we have f = 0 a.e.

P r o o f. The first condition of (39) implies that f ∈ L1
k,β(IRd+1

+ ). So
by Theorem 3.1 , the function tRk,β(f) is defined almost everywhere. By
using the relations (12) and (39) we deduce that:

∫

IRd+1
+

|tRk,β(f)(x)|eap

p
||x||p

dx ≤
∫

IRd+1
+

e
ap

p
||y||p |f(y)|dµk,β(y) < +∞.

So, ∫

IRd+1
+

|tRk,β(f)(x)|eap

p
||x||p

dx < +∞. (40)

On the other hand, from (17) and (39) we have:
∫

IRd+1
+

e
bq

q
||y||q |FD,B(f)(y)|dy =

∫

IRd+1
+

e
bq

q
||y||q |Fo(tRk,β)(f)(y)|dy < +∞.

(41)
The relations (40) and (41) are the conditions of Theorem 1.4, p.26 of [2],
which are satisfied by the function tRk,β(f). Thus we deduce that if ab >

| cos(pπ
2 )| 1p we have tRk,β(f) = 0 a.e.

Using the same proof as of Theorem 6.2 we obtain f(y) = 0. a.e. y ∈
IRd+1

+ .
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[13] K. Trimèche, An analogue of Beurling-Hörmander’s theorem for the
Dunkl transform. Preprint (2004).

Department of Mathematics Received: 25.09.2006
Faculty of Sciences of Tunis
CAMPUS 1060 – Tunis – TUNISIA
e-mail: mejjaoli−hatem@yahoo.fr


