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Abstract

This paper is devoted to study the g-Hankel transform associated with
the third g-Bessel function called also Hahn-Exton function. We use the g-
approximation of unit for establishing a g-inverse formula of this transform.
Moreover, we establish the related g-Parseval theorem.
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1. Introduction

The j,-Bessel function is defined by:
ja(z) = 2°T(a+ 1)z %Jo(z), z#0; a>—1,

. 1.1
al0) = L -
where J,(.) is the Bessel function of first kind and order « (see [10]):
= (—1)F x o+2k
=S\ =z 1.2
Ja(2) kz_oklr( Fh+1)2 (12)

For A complex, the function x — j,(Ax) is the unique solution of the
following second order singular differential equation:
u + Mul _ _)\2%
x (1.3)
u(0) =1, v/(0) =0,
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and satisfies the following property for A real:
lja(Az)| < 1. (1.4)

The function A — j,(Az) is even and analytic over R.
We recall that, for f € LL([0, oo, a%"*1dz), ie. [y |f(@)la?*1dz <

0
00, the Hankel transform (see [9]) is defined by
1 > ~ 2a+1
H(NW) = oy |, f@ial)e®Hae. (19

In this paper we attempt to study the analogue of the Hankel transform
(1.5) in quantum theory. It is well known that in the literature there are
many q-extensions of the Bessel function rearranged by Ismail [5]. Here
we are concerned with the third g-Bessel function called also Hahn-Exton
function, and studied in details by many authors, in particular by Ismail
[5], Swarttouw [8], Fitouhi [3]. To make this work easily to read, we need
some notations and preliminaries about the quantum theory.

2. Notations and preliminaries

We use the notions and notations used in the g-theory given as in [4].
Let a and ¢ be real numbers, and 0 < ¢ < 1.
The g-shifted factorial is defined by
n—1

(@;iq)o=1;(a;)n=[[(1 —ad®); n=12,.. (2.1)
k=0
and ,
(CL1,"' 7ar§Q)n = H(ak;Q)n- (2'2)
k=1
We recall the g-binomial theorem:
— (5 )n _,  (a21Q)s
190(a; —;q,2) = 2" = : 2.3
( ) nz:% (¢ 9)n (25 @)oo (23)

where ¢ is the g-hypergeometric function in [4].
The g-derivative D, f of a function f on an open interval is given by:
f(z) — f(qz)
D,f(x) =————=, x#0, 2.4
and (D, f)(0) = f(0) provided f'(0) exists.
The g-Jackson integrals from 0 to a and to oo are respectively defined
by:
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/ " @)y = (1 - 0y flad)a™, (2.5)
n=0
00 +oo

/0 f@)dgr = (1-0)S Fla)g" (2.6)

The g-integration by parts is given for suitable functions f and g by:

b b
| t@ D@ = lo(®)1 ™) - 9@)f @) = [ gla)Datla )y,
(2.7)
Some g-functional spaces will be used in this work. We begin by putting

R, = {+¢",k € Z} U {0}, (2.8)

R, . = {+¢", k € Z}, (2.9)
and D, , the space of even functions defined on R, with compact support
€ R,. This space is equipped with the topology of uniform convergence.

Jackson [6] defined the g-analogue of the Gamma function as

Iy(z) = %"(1 —) T, 0<qg<l;2#40,-1,-2,...  (2.10)

The g-Beta function is defined by:

1
. — y—1 (tQ; q)oo X
Bq(z3y) /0 t 7(tq””;q)oodqt , >0;y>0, (2.11)
and we have I ()T (y)
o) — € Y

We recall also the g-analogue of the exponential function, studied in
details in [7]:

0 1— 2\n 3 .
E(;¢°) = (~(1 = ))1:¢%)oc = ) (((12_;2))(;"(" Vg™, zeR. (213)
n—=0 5 n

Note that when % € Z, the function I'y has the following g-integral

representation (see [2]):
oo

Fq(:z:):/o t" L E(—qt; q)d,t. (2.14)
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DEFINITION 2.1. In [3] the authors introduce the q-j, Bessel function:

C1)kghtk=1)

. 2 = q £ 2k
ol(; 1) . 2.1
Jo; q7) = Tgz(ac+ kzor k+1 (a+k+1)(1+q) (2.15)

PROPOSITION 2.2. (see [3]) For A complex, the function j,(A\x;q?) is

the solution of the q-problem
Aq,ay($) + /\2y($) =0,

2.16
(0) = 1. y(0) —0. (210
Here, A, is the g-Bessel operator, defined by
N 1— q2a+1 B
Agof(@) =T A f(z) + mef(q 'z), (2.17)

where A, f(x) = (Dif)(q L),

In ([3]), the authors give the g-integral representation of the q-j, Bessel
function of Mehler type as
3

1
. 1
ja(m;qQ) = (14 q)k(a; q2)/ W (t; q2) cos(zt; q2)dt, a # ~5 -1, —g
0

(2.18)

r
g2(et) and W, being the ¢-binomial function

F2(O¢+ )T2(3) )
Wa(z;6%) = 101(¢" 2°“ —¢52t ) 5l <La>-—g. (219)

with k(a; ¢?) =

Note that the latter g-function tends to (1 — xQ)O‘*% when q— 17.
For f in D, 4, the g-generalized Bessel translation is defined by (see [3]):

+oo qn2 x 2n N
T () = Z (@ 2 ), (y) Z (=" *Ur(n) f(d"y), (2.20)
n=0 ’ ’ k=—n
where the sequence Uy(n) satisfies for all n € N :
Up(n+1) = " U1 (0)+(q+2 T Uk (n) ¢~ 220, (n) if k| < n, (2.21)
Uk(n) =0 if |k| > n.
For all f,g in D, 4 the g-product formula is given by:
T2, ja(y, @) = ja(@, %) jaly, ). (2.22)
Recall also the definition of the g-Bessel convolution, defined for f, g in D, 4
by

—a +00
el AN Ve M X

q

(f *a g) (2) =
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3. g-Hankel transform

In the following we suppose that

log(1 —
Ogl(Q) € Z and denote by L. (R, 2% d,z)
0gq
the space of functions f such that || fl|l . = [5° |f (z) |22 d,r < +oo.

DEFINITION 3.1.  Let f be in LL(R,,2?**"'d,r), the q-Hankel trans-
form is defined as:

Ho o)) = cl(asq) /0 F@iai g g, A€ Rya> 1,
(3.1)

1
and j,(Ax; ¢?) is given by (2.15).

(1+q)°Tp(a+1)
In the following, we give some interesting properties of the g-Hankel

transform (see [3] and [8]) which tends to the classical case when q tends to
1.

where, ¢(a;q) =

PROPOSITION 3.3.
1- Let f and g be two functions in L} (Rg, 2***1d,x). For all complex
A and p in R, we have:

Hao(f + 19)(N) = Hag(F)(A) + 11Ha 4(9) (). (3.2)

2- For f in L} (R, 2***1d,x) and \,a € R, we have:

Hog(F(az)) (V) = =@ Hy (1)), (3.3)

a

3- Let f be in Dy 4
1 9% -
Haq(—Dgf)(A) = 4 2NN Ha1),0 () A7), (3.4)
4- For f and g in L} (Ry, 2?**1d,z),we have:
/0 Hoo(NW)g(w)y**dgy = /O Hog(9) ) f(w)y**dgy.  (3.5)

5- For f in L}, (Rg, 2**"'dyz) and X € Ry, we have:
1
1

(1= q)2(¢; 0o

[Haq(f)(N)] < 1/ llag- (3.6)
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6- For f and g in D, , we have:

Haq (f*a g) = Ha,q(f)'Ha,q(g)v (3.7)
Hog (T f) () = ja(A256%).Hag(f)(A) A € Ry (38)

7- For f in D, 4, we have:
Hoq (Dgaf) (N) = =NHaq (f) (V). (3.9)

Proof.
1- The property (3.2) is a direct consequence of the linearity of the g-Jackson
integrals.
2- Let a = ¢*. The definition of g-Jackson integral (2.5) and sample com-
putation give the result (3.3).
3- For f € D, 4 we have:

1 > ‘
oG D) = eloia) [ Duf(@hia(Nasa?)a™dya,
The g-integration by parts leads to the result. ]

ExXAMPLE 3.4. In this example, we shall compute the g-Hankel trans-
form of the following function (3.10):

f(2) = wau(z; qz)l[o’l} (z) (3.10)
where wq ,, is the g-binomial function given by

2.2, 2
2 (2°q%; q%) 2-2( 2 .2 2(u—
wohu(x;q ) = (562(12(“_0‘);(]0;)00 - ¢)0( (u= a)j_’q y L g (u a))

which tends to (1 — 22)*=*~! when ¢ — 1~ and

. 1, if n>0,
Lpale ):{ 0, if n<O.

So we have:

c(a; Q)ﬁqzl(i—q)oﬁ o+t 1)]-“()\; 2). (3.11)

In fact using the definitions (,,) and (,,) we obtain
H ,q(f)(A) = c(a; )T (a4 1)

y Z (—1)kghE—D A QkZ q2"q2 7*)oo g2nlacthaD)
Pp(k+1)Tpe(a+k+1) 14+¢ (=) ¢?) oo '

Haq(f)(A) =
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The computation is legitimated by the fact that the series
i (_1)qu(k—1) ( Y
= qu(k+1)Pq2(a+k+1) 1+4g¢

+00 n
)2]4:2 (¢*"¢* ¢*)oo g2rlatk+1)
— (¢7q* ;5 ¢%) oo

converges uniformly on every compact.
The g-integral (2.5) and the g-Beta formula (2.11), (2.12) give:

_cglplat+l) o~ (=gt
Hoq(f)(A) = (1+9q) I;)qu(k:Jr DTp(a+k+1)

A 2k_C(Od;q),82(u—Oé,Oé+1), )

X Bpe(a+k+1,u—a)

When u = a + 1, we obtain

H, 4 [1[071] (:C)] N) =cla+1;9)jatr1(N; qz). (3.12)
and u = a + %, we obtain

(22¢%; ¢®)oo T (1)
Huq @f%qqg)ml[o,u(%)] (A) = (1+q)af11“22(a+ )ja+ (A%, (3.13)

(o.¢]
Indeed:  Hayg [1p1)(2)] (A) = e(asq) /0 Lo,y (2)ja(Az; 42 dga

B c(a;q)qu(a+1)§: (—1)kgh=1)
N (1+¢q) — Lpe(k+ 1)L, (a—l—k:—l—l)
)\ nlo
><(71+q —¢’ Zq2 (ath+l)
=0
oz q)lpe(a+1) i —1)kgkt— 1 ( A 2k
N 1+q 2 k+1 2la+k+2)"1+¢

k=0
i) =cla+1; Q)ja+1()‘§q2>a
7475 9" ) oo
and, Ho 4 {(552(1‘(12)1[071] (ac)] ()
[e's) .’E2 2. )
=clasa) [ @05y 0o (A )02 g
o (22443
(— 1)qu(k 1)
1+qa+1z k—l—lI‘z(a—i—k—i—l)

% (L Z q2n(a+k+1 ( + ) )oo
1 +q (¢2q; %)

and with definition of g-Jackson 1ntegral ( .5) and definition (2.12), we
obtain the result. n
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4. Relations between gq-Hankel and g-Laplace transforms

The g-Laplace transform is defined (see [1]) for f on R, and ®p > a > 0
as: 400
£4(f(2))(p) = ; E(—pgz; q) f(z)dgz (4.1)
+o0
which tends to the classical Laplace transform £(f)(p) = / e PYf(x)dx
0

when ¢ — 17.

PROPOSITION 4.1. The g-Hankel and q-Laplace transforms are linked
by the following relation:

Ho g [E(—qpz; ) f(2)] (N) = c(o; @) £4 [2°° T f(2)ja(Az;¢)] (p).  (4.2)

ExXaMPLE 4.2. For every p,a € C such that ®p > a > 0 and a > —%,
we have:

‘ 14+ )T 2(a+ 1) ( a?
£ x2a ax; 2 — ( q 2 204—‘,—1;0; 2; - 7 43
g [%jalaz; ¢*)] (p) e T () 11 ( g ¢ig) (43)

and

. (1 + q)aJrlI‘ 2(0[ + §) CL2

st o B q 2 2043, __

£q [gp ja(ax,q )} (p) - c(a;q)p2a+2rq2(%) 101 ( ; 0; q ap (> . )
4.4

P ro o f. To prove (4.3), we have for Rp > a >0 and a > —3:
+oo

£q [2°%jolaz; ¢%)] (p) = | Blpe q)2**jo(az; ¢*)dgz = T2 (a + 1)
_1)kgh(k=1) a

8 kZ:OFqQ P DTpla kD) T1g

00
)2k/ E(—pqaj;q)x2°‘+2kdqx.
0

To this end we use the following result:

o0
1
/ E(—pqzx; q)2** T d,x = ]qu@a +2k+1)
0
and the g-duplication formula. Hence,
£q [#*jalax; ¢*)] ()

(14 @) Tgela+ ) & (—DFFE DT (a+ b+ 1) fa)\F
= oo q)p?+ T o (4 )kzU Lpe(k+ 1l e(a+ 3) < ) '
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Finally, the use of (2.5), (2.15) and the definition of the g-hypergeometric
series (2.6) to obtain the result.

Similarly, we can prove the example (4.4). So, we deduce the following
results:

Hoq [t E(—qpa;q)] (N) = 1+9) T 2o

p2a+1I‘ ( )

+3) 161 (qm“ 0;¢°; :) (4.5)

(1+q)a+1r ( 3) N a2
Hoq [E(=qpz;9)] ()= P22 (1) 161 (q2 +3;0;q2;pQ> . (4.6)

1n(1+q)

EXAMPLE 4.3. Suppose that € Z, then we have

2
Haq [Ei 2(£}r;r )2’(1 Hi(x )] (N
:(rqu% 2 [2°F(L+ V) jaA1 + 9V ¢*)] (). (47)

It is easy to prove the last relation (4.7) since the hypothesis gives % =
q" € Ry 4 where n and k are integers numbers.
As consequence of (4.7), we have the following result:

1‘2 . B (1 + q)Ol+1 )\2.
Hog | B )| 0 = U0 B- 2, )
which can seen as follows:
LU2 a+1
Hoo | B o) 0= [ s £ [N+ V5 ) )

and

£ [2%a(M1+9)VE; 6%)] (p) —/OOOE(—qu:r;q2)m°‘ja(k(1+Q)\/5; ¢*)dg.

The exchange of the signs sum and g-integral hold via the relation (2.14)
and the definition (2.13) as follows:

£ [2%5a(AN1+ vz ¢%)] (p)

( 1)qu(k 1)
=Lg O‘“Zr NUESY gy

o
)\2]6/ E(—qu:U;qQ)xa+kdq2:L‘
0

_Tela+) i (=DFgHD A2 ) _ Tplat 1)E(—)\2'
pa+1 — qu(k+ 1) D pa+1 D

and finally, we have the result (4.6)



380 M. Haddad

REMARK 4.4. For a >0 and A € Ry, we have:
1 A2

(1+ )t - (a(1+ ) 7). (49)

The previous relation (4.9) can be written as:

Haq [B(=a*(a2)5 )] (V) = =

(1+¢)*Tp(a+1) (- A2
a2a+2(1 _|_q)a+1 (a(l + q))

5:4°)-
(4.10)

The last equality is the g-analogue of the Weber formula [3], we have when
q tends to 17,

/ E(—d? (qa?)Q; ¢*)ja(Az; ¢*)a**H  dyaw =
0

29T 1) —»2
A -

5. Relations between gq-Hankel and g-Mellin transforms

DEFINITION 5.1. (see [2]) Let f be a function on R, we define the
g-Mellin transform of f as:

Mqy(f)(s) = My [f()] (s) = /Ooo £ (t)dgt (5.1)

which tends to the classical Mellin transform M(f)(s) = [;°¢*71f(t)dt
when ¢ tends to 17.

PRrROPOSITION 5.2. The g-Hankel and g-Mellin transforms are related
by:

Hoq [2°72f(2)] (A) = Mg [27* f(2)ja(Az: ¢)] (5)- (5:2)
As a special case of the relation (5.2) we have
Ho,g [2°7272°] (N) = Mg [ja(Az3¢%)] (5) (5-3)
and

) . (14 q) 'Te(a+1)Tpe(5)
My [jaAz;6%)] (s) = qu(%j_ Y w2 (5.4)

’ sosaq e (14 @) 'Tpela+1)lp(3)
Hog 272721 (N) = Ny 2, (5.5)

6. The g-Hankel inversion theorem

In this section we try to give a proof of the q-Hankel inversion theorem,
by the use of the g-analogue of the unit approximation.
To this end, we begin by establishing the following result.
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PROPOSITION 6.1. Let (¢p),N be a sequence of elements in

L}X(Rq,,:EQO‘Jrlalqa:)2 +fatisfying the following conditions when
T (6%

d = dox:
q/ﬁ(.’L’) (1 +q)arq2(a+ 1) CILU
1- For p € N:
+oo
| eaduta) =1 (61)
2- There exists a constant M > 0 such that for all p € N:
“+00
| el < (62)
3- For n > 0: oo
i [ opl@)ldya) = 0. (6.3
p—+oo [,

Then, the sequence (‘Pp)peN is an unity of approximation.

Moreover, for fin LY (R, +,7?**"1d,x), we have

dim[1f <0y~ fly =0. (64)

Proof. Let fe LL(R,2*"ld,x). For all z € R, 4 we have

+oo
fa) = /0 (1) ] (2)dgaly).

Then by using the definition (2.23) we have

+o0
(f *a wp)(@) = f(2) = /0 [To2 (@) = £(@)] ep(y)dgn(y).

Then

+00 “+o0o
1Foaep=Ml < [ [ 1T30@ - 10)] o) dan(w)guta)
and using the Fubini-Tonnelli theorem, we deduce that

+o00
1f *a op — fllLy, < /0 1 Tef = £l 1y, lep(W)ldgn(y)-

Since the map y — Ty f on Ry 4 is continuous, in particular at 0, we have
€
Ve >0,3n> 0|yl <n=||T5,f — fHL}X <51

Then,
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n
IFratrtls < 5ap [ lendanto)+ [ 157 = Fly lon(o)idauo)

n

Therefore by the property (6.2) of the last proposition, we can write
€
I *ap = fllzy < / I35 = Sl oo @) ldapto)
I vaon— Ty < 54 el [ lonldanty)
n
finally by the property (6.3) we deduce
+oo
Ve 030 e Nz g = cllflyy [ lepldan(y) <
n

Vp > po; || *a wp — fliy <e.

N ™

THEOREM 6.2. Let f be in L. (R, 2?*1d,x) such that H, ,(f)belong
in LY (Ry, 2%+ 1dyx), then we have for o > =

1

f(-r) = (1 +q)arq2

+o0o
(a+1)/o Hoq(N)®)jalyz:a®)y**Fldgy.  (6.5)

P r o o f. For the relation (4.8) we can deduce the following result

1 x2
H, E(—
! ( (1+q)

q2a+2
We consider the following functions
Cpk()\) _ (1 + q)a+1k‘2a+2E(*)\2q2k2; q2)

2k2;q2):| ()\):(1+q)a+1k2a+2E(_)\2q2k2;q2)7 k c N.

and )
1 T

= E(— g2

wk(‘r) qga+2 ( (1 +q)2k2’q )

such that
Ho g [Yr] (A) = pr(N).

The sequence (¢), N is an unit of approximation. In fact,

+o00 too
/ or(@)dgp(z) = (1—|—q)/ k2P B(—2?g?k?; ¢*)e* o d
0 ! Tpela+1) Jy a

1 +OOE( 2 2) aq 1
== —xq°;q°)x"dgxr =1,
T(a+1) Jo 4%
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then by Proposition 6.1 we show that fxq@——f in Ll (Ry,z?**ld,x). On
the other hand by the definition of g-convolution (2.23) we have

“+o0o
f o or() = (0 q) /0 T (F) () o (u)y™ gy

400
= c(aq) /0 o (03 4%) Hoag (F) (010 ()02 gy

Finally by using the dominate convergence theorem we have

+oo
i f v on(e) = clon) [ da(ums e Hog (1)@ g

7. The Parseval theorem of the q-Hankel transform

THEOREM 7.1. Let f and g be two functions satisfying the conditions
of Proposition 6.1 and denote by H, 4(f) and H, 4(g) their g-Hankel trans-
forms. Then,

“+oo

+oo
/0 F@a@a* g = [ Ho (@) Hog() @ g, (1)

P r o o f Using the definition of H, 4(g)(z) we have

“+o00

i Heog(f)(@)Hag(9)(2)2** M dgw

+o0 400
= c(a,q) ; Ha,q(f)(fv)ivgo‘“dqw/o 9W)jalyz; @) y** gy

+o0o
= [ sty [ oD @i )
then using the g-inversion theorem (6.5) the result follows immediately. m
EXAMPLE 7.2. Let f(z) = Li0,q] () , a € Ry 4. We have for a > —%:
Hoo(£)(N) = a®*2c(a + 159) jar1(Na; ¢2)

Now, by the use of the Parseval theorem (7.1) we deduce for a,b € Ry
and a > —%,

00 min(a,b)
(a.b)?* 2c(a+1; q)2/ Jort (075 ¢*) jora (az; ¢*) x> * M d e —/ z? g .
0 0

Suppose that 0 < a < b, we can write

(1-q)
(o Lq)2(1 — 272)

[e.9]
/0 Jart1 (023 4") Joes1 (a3 ¢%)a** g = g
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