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Abstract

This paper is devoted to study the q-Hankel transform associated with
the third q-Bessel function called also Hahn-Exton function. We use the q-
approximation of unit for establishing a q-inverse formula of this transform.
Moreover, we establish the related q-Parseval theorem.
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1. Introduction

The jα-Bessel function is defined by:

jα(x) = 2αΓ(α + 1)x−αJα(x), x 6= 0; α > −1
2 ,

jα(0) = 1,
(1.1)

where Jα(.) is the Bessel function of first kind and order α (see [10]):

Jα(x) =
∞∑

k=0

(−1)k

k!Γ(α + k + 1)
(
x

2
)
α+2k

. (1.2)

For λ complex, the function x 7−→ jα(λx) is the unique solution of the
following second order singular differential equation:

u′′ +
2α + 1

x
u′ = −λ2u,

u(0) = 1 , u′(0) = 0,
(1.3)
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and satisfies the following property for λ real:

|jα(λx)| ≤ 1. (1.4)

The function λ 7−→ jα(λx) is even and analytic over R.
We recall that, for f ∈ L1

α([0, +∞[, x2α+1dx), i.e.
∫ +∞
0 |f(x)|x2α+1dx <

∞, the Hankel transform (see [9]) is defined by

Hα(f)(λ) =
1

2αΓ(α + 1)

∫ ∞

0
f(x)jα(λx)x2α+1dx. (1.5)

In this paper we attempt to study the analogue of the Hankel transform
(1.5) in quantum theory. It is well known that in the literature there are
many q-extensions of the Bessel function rearranged by Ismail [5]. Here
we are concerned with the third q-Bessel function called also Hahn-Exton
function, and studied in details by many authors, in particular by Ismail
[5], Swarttouw [8], Fitouhi [3]. To make this work easily to read, we need
some notations and preliminaries about the quantum theory.

2. Notations and preliminaries

We use the notions and notations used in the q-theory given as in [4].
Let a and q be real numbers, and 0 < q < 1.

The q-shifted factorial is defined by

(a; q)0 = 1; (a; q)n =
n−1∏

k=0

(1− aqk) ; n = 1, 2, ... (2.1)

and

(a1, · · · , ar; q)n =
r∏

k=1

(ak; q)n. (2.2)

We recall the q-binomial theorem:

1φ0(a;−; q, z) =
∞∑

n=0

(a; q)n

(q; q)n
zn =

(az; q)∞
(z; q)∞

, (2.3)

where 1φ0 is the q-hypergeometric function in [4].
The q-derivative Dqf of a function f on an open interval is given by:

Dqf(x) =
f(x)− f(qx)

(1− q)x
, x 6= 0, (2.4)

and (Dqf)(0) = f
′
(0) provided f

′
(0) exists.

The q-Jackson integrals from 0 to a and to ∞ are respectively defined
by:
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∫ a

0
f(x)dqx = (1− q)a

∞∑

n=0

f(aqn)qn, (2.5)

∫ ∞

0
f(x)dqx = (1− q)

+∞∑
−∞

f(qn)qn. (2.6)

The q-integration by parts is given for suitable functions f and g by:

∫ b

a
f(x)Dqg(x)dqx = [g(b)f(q−1b)− g(a)f(a)]−

∫ b

a
g(x)Dqf(q−1x)dqx.

(2.7)
Some q-functional spaces will be used in this work. We begin by putting

Rq = {±qk, k ∈ Z} ∪ {0}, (2.8)

Rq,+ = {+qk, k ∈ Z}, (2.9)
and D∗,q the space of even functions defined on Rq with compact support
∈ Rq. This space is equipped with the topology of uniform convergence.

Jackson [6] defined the q-analogue of the Gamma function as

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x , 0 < q < 1 ; x 6= 0,−1,−2, ... (2.10)

The q-Beta function is defined by:

βq(x; y) =
∫ 1

0
ty−1 (tq; q)∞

(tqx; q)∞
dqt , x > 0 ; y > 0, (2.11)

and we have

βq(x; y) =
Γq(x)Γq(y)
Γq(x + y)

. (2.12)

We recall also the q-analogue of the exponential function, studied in
details in [7]:

E(x; q2) = (−(1− q2)x; q2)∞ =
∞∑

n=0

(1− q2)n

(q2; q2)n
qn(n−1)xn , x ∈ R. (2.13)

Note that when log(1−q)
log q ∈ Z, the function Γq has the following q-integral

representation (see [2]):

Γq(x) =
∫ ∞

0
tx−1E(−qt; q)dqt. (2.14)
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Definition 2.1. In [3] the authors introduce the q-jα Bessel function:

jα(x; q2) = Γq2(α + 1)
∞∑

k=0

(−1)kqk(k−1)

Γq2(k + 1)Γq2(α + k + 1)
(

x

1 + q
)2k. (2.15)

Proposition 2.2. (see [3]) For λ complex, the function jα(λx; q2) is
the solution of the q-problem

∆q,αy(x) + λ2y(x) = 0,
y(0) = 1 , y′(0) = 0.

(2.16)

Here, ∆q,α is the q-Bessel operator, defined by

∆q,αf(x) = q2α+1∆qf(x) +
1− q2α+1

(1− q)q−1x
Dqf(q−1x), (2.17)

where ∆qf(x) = (D2
qf)(q−1x).

In ([3]), the authors give the q-integral representation of the q-jα Bessel
function of Mehler type as

jα(x; q2) = (1 + q)k(α; q2)
∫ 1

0
Wα(t; q2) cos(xt; q2)dt , α 6= −1

2
,−1,−3

2
, ...

(2.18)
with k(α; q2) =

Γq2 (α+1)

Γq2 (α+ 1
2
)Γq2 ( 1

2
)

and Wα being the q-binomial function

Wα(x; q2) = 1ϕ1(q1−2α,−; q2; x2q2α+1) ; |x| < 1, α > −1
2
. (2.19)

Note that the latter q-function tends to (1− x2)α− 1
2 when q→ 1−.

For f in D∗,q, the q-generalized Bessel translation is defined by (see [3]):

Tα
q,x(f)(y) =

+∞∑

n=0

qn2

(q2; q2α+2; q2)n

(
x

y

)2n n∑

k=−n

(−1)n−kUk(n)f(qky), (2.20)

where the sequence Uk(n) satisfies for all n ∈ N :

Uk(n+1) = q2n+1Uk+1(n)+(q+q2α+1)Uk(n)+q−2n+2α+1Uk−1(n) if |k| ≤ n, (2.21)

Uk(n) = 0 if |k| > n.
For all f, g in D∗,q the q-product formula is given by:

Tα
q,xjα(y, q2) = jα(x, q2) jα(y, q2). (2.22)

Recall also the definition of the q-Bessel convolution, defined for f, g in D∗,q
by

(f ?α g) (x) =
(1 + q)−α

Γq2(α + 1)

∫ +∞

0
Tα

q,xf(y)g(y)y2α+1dqy. (2.23)
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3. q-Hankel transform

In the following we suppose that
log(1− q)

log q
∈ Z and denote by L1

α(Rq,+, x2α+1dqx)

the space of functions f such that ‖f‖L1
α

=
∫∞
0 |f(x)|x2α+1dqx < +∞.

Definition 3.1. Let f be in L1
α(Rq, x

2α+1dqx), the q-Hankel trans-
form is defined as:

Hα,q(f)(λ) = c(α; q)
∫ ∞

0
f(x)jα(λx; q2)x2α+1dqx, λ ∈ Rq, α > −1

2
,

(3.1)
where, c(α; q) =

1
(1 + q)αΓq2(α + 1)

and jα(λx; q2) is given by (2.15).

In the following, we give some interesting properties of the q-Hankel
transform (see [3] and [8]) which tends to the classical case when q tends to
1−.

Proposition 3.3.
1- Let f and g be two functions in L1

α(Rq, x
2α+1dqx). For all complex

λ and µ in Rq we have:

Hα,q(f + µg)(λ) = Hα,q(f)(λ) + µHα,q(g)(λ). (3.2)

2- For f in L1
α(Rq, x

2α+1dqx) and λ, a ∈ Rq, we have:

Hα,q(f(ax))(λ) = a−(α+2)Hα,q(f)(
λ

a
). (3.3)

3- Let f be in D∗,q

Hα,q(
1
x

Dqf)(λ) = −q−2α+1H(α−1),q (f) (λq−1). (3.4)

4- For f and g in L1
α(Rq, x

2α+1dqx),we have:

∫ ∞

0
Hα,q(f)(y)g(y)y2α+1dqy =

∫ ∞

0
Hα,q(g)(y)f(y)y2α+1dqy. (3.5)

5- For f in L1
α

(
Rq, x

2α+1dqx
)

and λ ∈ Rq, we have:

|Hα,q(f)(λ)| ≤ 1

(1− q)
1
2 (q; q)∞

‖f‖α,q. (3.6)
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6- For f and g in D∗,q we have:

Hα,q (f ?α g) = Hα,q(f).Hα,q(g), (3.7)

Hα,q

(
Tα

q,xf
)
(λ) = jα(λx; q2).Hα,q(f)(λ) , λ ∈ Rq. (3.8)

7- For f in D∗,q, we have:

Hα,q (∆q,αf) (λ) = −λ2Hα,q (f) (λ). (3.9)

P r o o f.
1- The property (3.2) is a direct consequence of the linearity of the q-Jackson
integrals.
2- Let a = qk. The definition of q-Jackson integral (2.5) and sample com-
putation give the result (3.3).
3- For f ∈ D∗,q we have:

Hα,q(
1
x

Dqf)(λ) = c(α; q)
∫ ∞

0
Dqf(x)jα(λx; q2)x2αdqx.

The q-integration by parts leads to the result.

Example 3.4. In this example, we shall compute the q-Hankel trans-
form of the following function (3.10):

f(x) = wα,u(x; q2)1[0,1](x) (3.10)
where wα,u is the q-binomial function given by

wα,u(x; q2) =
(x2q2; q2)∞

(x2q2(u−α); q2)∞
= 1φ0(q2−2(u−α),−, q2, x2q2(u−α))

which tends to (1− x2)u−α−1 when q → 1− and

1[0,1](q
n) =

{
1, if n ≥ 0,
0, if n < 0.

So we have:

Hα,q(f)(λ) =
c(α; q)βq2(u− α, α + 1)

(1 + q)
ju(λ; q2). (3.11)

In fact using the definitions (,,) and (,,) we obtain
Hα,q(f)(λ) = c(α; q)Γq2(α + 1)

×
∞∑

k=0

(−1)kqk(k−1)

Γq2(k + 1)Γq2(α + k + 1)
(

λ

1 + q
)2k

+∞∑

n=0

(q2nq2; q2)∞
(q2nq2(u−α); q2)∞

q2n(α+k+1).
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The computation is legitimated by the fact that the series
∞∑

k=0

(−1)kqk(k−1)

Γq2(k + 1)Γq2(α + k + 1)
(

λ

1 + q
)2k

+∞∑

n=0

(q2nq2; q2)∞
(q2nq2(u−α); q2)∞

q2n(α+k+1)

converges uniformly on every compact.
The q-integral (2.5) and the q-Beta formula (2.11), (2.12) give:

Hα,q(f)(λ) =
c(α; q)Γq2(α + 1)

(1 + q)

∞∑

k=0

(−1)kqk(k−1)

Γq2(k + 1)Γq2(α + k + 1)

×βq2(α + k + 1, u− α)(
λ

1 + q
)2k =

c(α; q)βq2(u− α, α + 1)
(1 + q)

ju(λ; q2).

When u = α + 1, we obtain

Hα,q

[
1[0,1](x)

]
(λ) = c(α + 1; q)jα+1(λ; q2). (3.12)

and u = α + 1
2 , we obtain

Hα,q

[
(x2q2; q2)∞
(x2q; q2)∞

1[0,1](x)
]

(λ) =
Γq2(1

2)
(1 + q)α+1Γq2(α + 3

2)
jα+ 1

2
(λ; q2). (3.13)

Indeed: Hα,q

[
1[0,1](x)

]
(λ) = c(α; q)

∫ ∞

0
1[0,1](x)jα(λx; q2)x2α+1dqx

=
c(α; q)Γq2(α + 1)

(1 + q)

∞∑

k=0

(−1)kqk(k−1)

Γq2(k + 1)Γq2(α + k + 1)

× (
λ

1 + q
)2k(1− q2)

+∞∑

n=0

q2n(α+k+1)

=
c(α; q)Γq2(α + 1)

(1 + q)

∞∑

k=0

(−1)kqk(k−1)

Γq2(k + 1)Γq2(α + k + 2)
(

λ

1 + q
)2k

= c(α + 1; q)jα+1(λ; q2),

and, Hα,q

[
(x2q2; q2)∞
(x2q; q2)∞

1[0,1](x)
]

(λ)

=c(α; q)
∫ ∞

0

(x2q2; q2)∞
(x2q; q2)∞

1[0,1](x)jα(λx; q2)x2α+1dqx

=
1

(1 + q)α+1

∞∑

k=0

(−1)kqk(k−1)

Γq2(k + 1)Γq2(α + k + 1)

× (
λ

1 + q
)2k(1− q2)

+∞∑

n=0

q2n(α+k+1) (q
2(n+1); q2)∞

(q2n+1q; q2)∞
,

and with definition of q-Jackson integral (2.5) and definition (2.12), we
obtain the result.
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4. Relations between q-Hankel and q-Laplace transforms

The q-Laplace transform is defined (see [1]) for f on Rq and <p > a > 0
as:

£q(f(x))(p) =
∫ +∞

0
E(−pqx; q)f(x)dqx (4.1)

which tends to the classical Laplace transform £(f)(p) =
∫ +∞

0
e−pxf(x)dx

when q → 1−.

Proposition 4.1. The q-Hankel and q-Laplace transforms are linked
by the following relation:

Hα,q [E(−qpx; q)f(x)] (λ) = c(α; q)£q

[
x2α+1f(x)jα(λx; q2)

]
(p). (4.2)

Example 4.2. For every p, a ∈ C such that <p > a > 0 and α > −1
2 ,

we have:

£q

[
x2αjα(ax; q2)

]
(p) =

(1 + q)αΓq2(α + 1
2)

c(α; q)p2α+1Γq2(1
2) 1φ1

(
q2α+1; 0; q2;

a2

p2

)
, (4.3)

and

£q

[
x2α+1jα(ax; q2)

]
(p) =

(1 + q)α+1Γq2(α + 3
2)

c(α; q)p2α+2Γq2(1
2) 1φ1

(
q2α+3; 0; q2;

a2

p2

)
.

(4.4)

P r o o f. To prove (4.3), we have for <p > a > 0 and α > −1
2 :

£q

[
x2αjα(ax; q2)

]
(p) =

∫ +∞

0
E(−pqx; q)x2αjα(ax; q2)dqx = Γq2(α + 1)

×
∞∑

k=0

(−1)kqk(k−1)

Γq2(k + 1)Γq2(α + k + 1)
(

a

1 + q
)2k

∫ ∞

0
E(−pqx; q)x2α+2kdqx.

To this end we use the following result:∫ ∞

0
E(−pqx; q)x2α+2kdqx =

1
p2α+2k+1

Γq(2α + 2k + 1)

and the q-duplication formula. Hence,

£q

[
x2αjα(ax; q2)

]
(p)

=
(1 + q)αΓq2(α + 1

2)
c(α; q)p2α+1Γq2(1

2)

∞∑

k=0

(−1)kqk(k−1)Γq2(α + k + 1
2)

Γq2(k + 1)Γq2(α + 1
2)

(
a2

p2

)k

.
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Finally, the use of (2.5), (2.15) and the definition of the q-hypergeometric
series (2.6) to obtain the result.

Similarly, we can prove the example (4.4). So, we deduce the following
results:

Hα,q

[
x−1E(−qpx; q)

]
(λ)=

(1+q)αΓq2(α+ 1
2)

p2α+1Γq2(1
2) 1φ1

(
q2α+1; 0; q2;

a2

p2

)
(4.5)

Hα,q [E(−qpx; q)] (λ)=
(1+q)α+1Γq2(α+ 3

2)
p2α+2Γq2(1

2) 1φ1

(
q2α+3; 0; q2;

a2

p2

)
. (4.6)

Example 4.3. Suppose that ln(1+q)
ln q ∈ Z, then we have

Hα,q

[
E(−pq2 x2

(1 + q)2
; q2)f(x)

]
(λ)

=
(1 + q)α+1

Γq2(α + 1)
£q2

[
xαf((1 + q)

√
x)jα(λ(1 + q)

√
x; q2)

]
(p). (4.7)

It is easy to prove the last relation (4.7) since the hypothesis gives qk

1+q =
qn ∈ Rq,+ where n and k are integers numbers.

As consequence of (4.7), we have the following result:

Hα,q

[
E(−pq2 x2

(1 + q)2
; q2)

]
(λ) =

(1 + q)α+1

pα+1
E(−λ2

p
; q2), (4.8)

which can seen as follows:

Hα,q

[
E(−pq2 x2

(1+q)2
; q2)

]
(λ)=

(1+q)α+1

Γq2(α+1)
£q2

[
xαjα(λ(1+q)

√
x; q2)

]
(p)

and

£q2

[
xαjα(λ(1+q)

√
x; q2)

]
(p)=

∫ ∞

0
E(−pq2x; q2)xαjα(λ(1+q)

√
x; q2)dq2x.

The exchange of the signs sum and q-integral hold via the relation (2.14)
and the definition (2.13) as follows:

£q2

[
xαjα(λ(1 + q)

√
x; q2)

]
(p)

= Γq2(α + 1)
∞∑

k=0

(−1)kqk(k−1)

Γq2(k + 1)Γq2(α + k + 1)
λ2k

∫ ∞

0
E(−pq2x; q2)xα+kdq2x

=
Γq2(α + 1)

pα+1

∞∑

k=0

(−1)kqk(k−1)

Γq2(k + 1)

(
λ2

p

)k

=
Γq2(α + 1)

pα+1
E(−λ2

p
; q2),

and finally, we have the result (4.6)
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Remark 4.4. For a > 0 and λ ∈ Rq, we have:

Hα,q

[
E(−a2(qx)2; q2)

]
(λ) =

1
a2α+2(1 + q)α+1

E(− λ2

(a(1 + q))2
; q2). (4.9)

The previous relation (4.9) can be written as:
∫ ∞

0

E(−a2(qx)2; q2)jα(λx; q2)x2α+1dqx=
(1 + q)αΓq2(α + 1)
a2α+2(1 + q)α+1

E(− λ2

(a(1 + q))2
; q2).

(4.10)
The last equality is the q-analogue of the Weber formula [3], we have when
q tends to 1−,∫ ∞

0
e−a2x2

jα(λx)x2α+1dx =
2αΓ(α + 1)
(2a2)α+1

e−
λ2

4a2 . (4.11)

5. Relations between q-Hankel and q-Mellin transforms

Definition 5.1. (see [2]) Let f be a function on Rq,+, we define the
q-Mellin transform of f as:

Mq(f)(s) = Mq [f(t)] (s) =
∫ ∞

0
ts−1f(t)dqt (5.1)

which tends to the classical Mellin transform M(f)(s) =
∫∞
0 ts−1f(t)dt

when q tends to 1−.

Proposition 5.2. The q-Hankel and q-Mellin transforms are related
by:

Hα,q

[
xs−2f(x)

]
(λ) = Mq

[
x2αf(x)jα(λx; q2)

]
(s). (5.2)

As a special case of the relation (5.2) we have
Hα,q

[
xs−2−2α

]
(λ) = Mq

[
jα(λx; q2)

]
(s) (5.3)

and

Mq

[
jα(λx; q2)

]
(s) =

(1 + q)s−1Γq2(α + 1)Γq2( s
2)

Γq2(3α
2 − s

2 + 1)
, (5.4)

so,

Hα,q

[
xs−2−2α

]
(λ) =

(1 + q)s−1Γq2(α + 1)Γq2( s
2)

Γq2(3α
2 − s

2 + 1)
. (5.5)

6. The q-Hankel inversion theorem

In this section we try to give a proof of the q-Hankel inversion theorem,
by the use of the q-analogue of the unit approximation.

To this end, we begin by establishing the following result.
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Proposition 6.1. Let (ϕp)p∈N be a sequence of elements in

L1
α(Rq, x

2α+1dqx) satisfying the following conditions when

dqµ(x) =
x2α+1

(1 + q)αΓq2(α + 1)
dqx:

1- For p ∈ N: ∫ +∞

0
ϕp(x)dqµ(x) = 1; (6.1)

2- There exists a constant M > 0 such that for all p ∈ N:∫ +∞

0
|ϕp(x)|dqµ(x) ≤ M ; (6.2)

3- For η > 0:

lim
p−→+∞

∫ +∞

η
|ϕp(x)|dqµ(x) = 0. (6.3)

Then, the sequence (ϕp)p∈N is an unity of approximation.

Moreover, for f in L1
α(Rq,+, x2α+1dqx), we have

lim
p−→+∞ ‖f ∗α ϕp − f‖L1

α
= 0. (6.4)

P r o o f. Let f ∈ L1
α(Rq, x

2α+1dqx). For all x ∈ Rq,+ we have

f(x) =
∫ +∞

0
ϕp(y)f(x)dqµ(y).

Then by using the definition (2.23) we have

(f ∗α ϕp)(x)− f(x) =
∫ +∞

0

[
Tα

q,x(f)(y)− f(x)
]
ϕp(y)dqµ(y).

Then

‖f ∗α ϕp − f‖L1
α
≤

∫ +∞

0

∫ +∞

0

∣∣Tα
q,y(f)(x)− f(x)

∣∣ |ϕp(y)|dqµ(y)dqµ(x)

and using the Fubini-Tonnelli theorem, we deduce that

‖f ∗α ϕp − f‖L1
α
≤

∫ +∞

0

∥∥Tα
q,yf − f

∥∥
L1

α
|ϕp(y)|dqµ(y).

Since the map y 7−→ Tα
q,yf on Rq,+ is continuous, in particular at 0, we have

∀ε > 0,∃η > 0; |y| < η ⇒ ∥∥Tα
q,yf − f

∥∥
L1

α
<

ε

2M
.

Then,
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‖f∗αϕp−f‖L1
α
≤ ε

2M

∫ η

0
|ϕp(y)|dqµ(y)+

∫ +∞

η

∥∥Tα
q,yf − f

∥∥
L1

α
|ϕp(y)|dqµ(y).

Therefore by the property (6.2) of the last proposition, we can write

‖f ∗α ϕp − f‖L1
α
≤ ε

2
+

∫ +∞

η

∥∥Tα
q,yf − f

∥∥
L1

α
|ϕp(y)|dqµ(y)

‖f ∗α ϕp − f‖L1
α
≤ ε

2
+ c ‖f‖L1

α

∫ +∞

η
|ϕp(y)|dqµ(y),

finally by the property (6.3) we deduce

∀ε > 0, ∃p0 ∈ N; ∀p ≥ p0 ⇒ c ‖f‖L1
α

∫ +∞

η
|ϕp(y)|dqµ(y) <

ε

2
∀p ≥ p0; ‖f ∗α ϕp − f‖L1

α
≤ ε.

Theorem 6.2. Let f be in L1
α(Rq, x

2α+1dqx) such that Hα,q(f)belong
in L1

α(Rq, x
2α+1dqx), then we have for α > −1

2 :

f(x) =
1

(1 + q)αΓq2(α+1)

∫ +∞

0
Hα,q(f)(y)jα(yx; q2)y2α+1dqy. (6.5)

P r o o f. For the relation (4.8) we can deduce the following result

Hα,q

[
1

q2α+2
E(− x2

(1+q)2k2
; q2)

]
(λ)=(1+q)α+1k2α+2E(−λ2q2k2; q2), k ∈ N.

We consider the following functions

ϕk(λ) = (1 + q)α+1k2α+2E(−λ2q2k2; q2)

and

ψk(x) =
1

q2α+2
E(− x2

(1 + q)2k2
; q2)

such that

Hα,q [ψk] (λ) = ϕk(λ).

The sequence (ϕk)k∈N is an unit of approximation. In fact,
∫ +∞

0
ϕk(x)dqµ(x) =

(1 + q)
Γq2(α + 1)

∫ +∞

0
k2α+2E(−x2q2k2; q2)x2α+1dqx

=
1

Γq2(α + 1)

∫ +∞

0
E(−xq2; q2)xαdqx = 1,



HANKEL TRANSFORM IN QUANTUM CALCULUS . . . 383

then by Proposition 6.1 we show that f ∗αϕk−−−→k→∞f in L1
α(Rq,x

2α+1dqx). On
the other hand by the definition of q-convolution (2.23) we have

f ∗α ϕk(x) = c(α, q)
∫ +∞

0
Tα

q,x(f)(y)ϕk(y)y2α+1dqy

= c(α, q)
∫ +∞

0
jα(yx; q2)Hα,q(f)(y)ψk(y)y2α+1dqy.

Finally by using the dominate convergence theorem we have

lim
k−→∞

f ∗α ϕk(x) = c(α, q)
∫ +∞

0
jα(yx; q2)Hα,q(f)(y)y2α+1dqy.

7. The Parseval theorem of the q-Hankel transform

Theorem 7.1. Let f and g be two functions satisfying the conditions
of Proposition 6.1 and denote by Hα,q(f) and Hα,q(g) their q-Hankel trans-
forms. Then,

∫ +∞

0
f(x)g(x)x2α+1dqx =

∫ +∞

0
Hα,q(f)(x)Hα,q(g)(x)x2α+1dqx. (7.1)

P r o o f. Using the definition of Hα,q(g)(x) we have
∫ +∞

0
Hα,q(f)(x)Hα,q(g)(x)x2α+1dqx

= c(α, q)
∫ +∞

0
Hα,q(f)(x)x2α+1dqx

∫ +∞

0
g(y)jα(yx; q2)y2α+1dqy

=
∫ +∞

0
g(y)y2α+1dqy

∫ +∞

0
Hα,q(f)(x)jα(yx; q2)x2α+1dqx,

then using the q-inversion theorem (6.5) the result follows immediately.

Example 7.2. Let f(x) = 1[0,a](x) , a ∈ Rq,+. We have for α > −1
2 :

Hα,q(f)(λ) = a2α+2c(α + 1; q)jα+1(λa; q2)

Now, by the use of the Parseval theorem (7.1) we deduce for a, b ∈ Rq,+

and α > −1
2 ,

(a.b)2α+2c(α+1; q)2
∫ ∞

0
jα+1(bx; q2)jα+1(ax; q2)x2α+1dqx=

∫ min(a,b)

0
x2α+1dqx.

Suppose that 0 < a < b, we can write
∫ ∞

0
jα+1(bx; q2)jα+1(ax; q2)x2α+1dqx =

(1− q)
b2α+2c(α + 1; q)2(1− q2α+2)

.
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