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Abstract

In this paper we give the g-analogue of the higher-order Bessel operators
studied by I. Dimovski [3],[4], I. Dimovski and V. Kiryakova [5],[6], M. I.
Klyuchantsev [17], V. Kiryakova [15], [16], A. Fitouhi, N. H. Mahmoud and
S. A. Ould Ahmed Mahmoud [8], and recently by many other authors.

Our objective is twofold. First, using the g-Jackson integral and the
g-derivative, we aim at establishing some properties of this function with
proofs similar to the classical case. Second, our goal is to construct the
associated g-Fourier transform and the g-analogue of the theory of the heat
polynomials introduced by P. C. Rosenbloom and D. V. Widder [22]. For
some value of the vector index, our operator generalizes the ¢-j, Bessel
operator of the second order in [9] and a ¢-Third operator in [12].

Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90
Key Words and Phrases: g-analysis, g-Fourier transform, g-heat equa-
tion, g-Laguerre polynomials, ¢g-heat polynomials

1. Introduction

The Bessel operator of r-order is defined on (0, c0) by

Byu =™ + Lyr=1) 4 Dol @) (1)
€T 1.7”—1
where the coefficients a; depend on the components ay,

k
o> -1+ k=l..r-1 (2)
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and

r—1
= G o (L0 ) o @
i=1
where r is positive integer and a = (a,...,a,_1) a vector having (r — 1)
components with |a] = a; + ... + a,_1.

The higher-order Bessel differential operators, called recently as hyper-
Bessel operators, have been introduced by I. Dimovski [3],[4] and studied by
I. Dimovski and V. Kiryakova [5],[6], M. I. Klyuchantsev [17], V. Kiryakova
[15, Ch. 3], [16], A. Fitouhi, N. H. Mahmoud and S. A. Ould Ahmed
Mahmoud [8], and by many other authors (see references in [15], [16].

When r = 2, we obtain the classical Bessel operator of the second order

2 1
Bou =" + iu', (4)
x
and for r = 3, a1 = —2/3, ag = v — 1/3, we obtain the operator Bsu,

studied in [1] and in [10]

B3 3v d 3vd
Byu— —_ 4224 2@, .. (5)
X i

For A being a complex number, let us now consider the system

Bou(x) = —XNu(x),
u(0) = 1,
ub(0) = 0, k=1,..,r—1.

The use of the Frobenius method leads us to conclude that (6) has a unique
solution which is r-even and given by

o) = 3 () m,H e (M) @

m>0

In this paper we are concerned with the g-analogue of the j, higher-
order Bessel function (6). This choice is motivated in particular by the
context of [8], [9], [12].

The reader will notice that the definition (39) derives from that given
in [8] with minor changes. With the help of the g-integral representation
we establish the g-integral representation of the Mehler and Sonine types.
Moreover, we define the higher-order g-Bessel translation and the higher-
order ¢-Bessel Fourier transform and establish some of their properties.
Finally, we study the higher-order g-Bessel heat equation.
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2. Notation and preliminary results

Let g be a fixed real number 0 < g < 1. We use the following notation:

n—1
(a+0); =[](a+¢b), ifn=0,1,2,.., 00, (7)
j=0
(1+a)*
1 b— 21 if teC 8
( +a’)q (1+qta)207 1 € ) ( )

and put

o Ry = {iqk, ke Z}u{o}, Ryt = {q’f7 ke Z} and (n)y = n(n—l).

Note that for A\ € R, n=0,1,2,

ceey

A
(a5 q9)n = (1—a)(l—aq)..(1—ag"™"), (A= 11 —qq :
. _ (@59 e G @n i (@ On
Ni = (1—q)’ ]! = 1—q) [n]g (g
(A)% = ()‘)nglv % — (—1)k(—n)q nk—(k)2_

(A+n—1)

and then, the ¢g-Binomial formula is:

n

(ab; @n =Y [ Z Lbk(a; Qr(b; Qn-k, With [ Z L _ (@9

(@5 Dn—k( Or

=
Further we denote by D, the ¢-derivative of a function by: )
D, fa) = YD I (10)

Dy f(x) = xn‘g(_n)z)n kizo(—nk [ L L g RO () =0,1,2,....
(1)

DI @)g(@)] = ;) B ] (e D)D) @), n=0.1.2,..., (12)

and define the ¢-shift operators by:

(Agf)(@) = flaz) and  (A7'f)(2) = fl¢ @),
noting that (A;glf)(:v) = f(q %z).
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The ¢-Jackson integrals (introduced by Thomae and Jackson [13]) from
0 to a and from ag to oo are defined by

a o] 00 +o0
| #@)ia= (=03 e’ flag’) and [~ f(0)dst = (1-0)3aq ™ lag™).
0 =0 aq k=0

(13)
Notice that the last series are guaranteed to be convergent, see [9].
We define the Jackson integral in a generic interval [a, b] by [13]:

/abf(x)dq:c = /Obf(a:)dqa; - /Oa fl@)dyz .

This is a special case of the following more general change of variable for-
mula, [14, p 107]. If u(z) = ax?, then

u(b) b
/ = / F(u()) Dy su(x)d s

Using the g-Jackson integrals from 0 to 1, we define the g¢-integral

1 1
/ / f(tl, ...,tn)dqtl...dqtn by:
0 0

1 1
/(; /0 f(tla ...,tn) dqtl---dqtn — (1 _ q)n Z q“+‘"+’” f(qz1+...+2n)’

i1,nnyin=0

(14)
provided the sums converge absolutely.
We present two g—analogues exponential function:
o0 xn
Ey(z) = Zq(")w = (1+QA-qa), (15)
n=0 a:
s n
T 1
eqlx) = = . 16
@) = DG T A goy (16)

Notice that for ¢ € (0, 1) the series expansion of e4(z) has radius of conver-
gence 1/(1 — ¢). On the contrary, the series expansion of E,(x) converges
for every x. Both product expansions (15) and (16) converge for all x.

We define the ¢°-basic hypergeometric series r@bg by

s q™, . g
¢ (
gt

o0

(g — Ty = 5(k)2(a1;Q)Z-~(ar§Q)Z z
gla=1) > 2 G e T
(17)

k
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al

limr¢g< q 7""q

g1l Q... g

Qr

s—r ai, ...Qy
¢ (¢— 1" z) = F [ br b z} . (18)

Here 0 > 0 and r < s + 1, thus the expansion converges for all values of z.

For 6 = 14 s — r, we obtain the classical basic hypergeometric series
r sy [18, p 11,12].

0 n
Note that for § > 0 by e4(z,9) = Z q‘s(”)2 [:c] % this expansion con-
nl,!
n=0 q
verges for all values of z.
The ¢g-gamma function I'y(t), a ¢-analogue of Euler’s gamma function,

was introduced by Thomae and later by Jackson as the infinite product

(1-q)y "
Lyt)= ——1=, t>0. 19
q( ) (1 _q)t_l ) ( )
The g—Beta function defined by the usual formula
Lg(s5)lg(t)
t,s) = <1 20
ﬁq( 78) Fq($+t) ) ( )
has a g—integral representation, which is a g—analogue of Euler’s formula:

1

By(t,s) = /0 (1 - q:v)f;ldqw , t,s>0. (21)

The g-duplication formula holds:

Tretne b A =T o (22)
P el T Il (g™
and r—1 .
()™ 3 TICHE = Il (23)
=1
r—1
We also denote, H(ai + 1) = H(ai +1)7.
=1

3. g-Trigonometric function of r-order

The r — ¢°-cosinus is defined for § > 0 by

TSy 48 - r. (g"=1)ra”
cosy(z, q";6) = o) _y < (qr)l/r’.“’(qr)(r—l)/r q 7—(1+§+m+qT—1)r> (24)

=Y (1) "brm(a, ¢";9), (25)

m2>0

43
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where
T

— ()0(m)2
[rm],! (a") Qrmg

For every A € C, the function cos,(x, ¢";0) is a unique solution of the system
A;;Dgu(x) = —Nu(z),
u(0) = 1,
k _ _
DFu(0) = 0, k=1,.,r—1.

brm(w, 4"58) = (¢°)" ™ (26)

We note 7 — ¢’-sinus of order (r,1) , 1 =1,...,7 — 1 by
rm—4r—|

. T m rim €z
sing(x, ¢58) = Y (=1)"(¢°)""™)?

= [rm +r — 1!

Let p = €™/" and wy, = e2™k=D/7 | =12 ... r. Since

,
m__ )T for integers m divisible by r
kz—:l(wk) { 0 for integers m not divisible by r (28)

and expanding the g-exponential function in series, we obtain

cosy(z, ¢";10) Zeq /iwf% ,0). (29)

When r = 3, 6 = 1, we obtain the result in [12].

DEFINITION 3.1. Let z € R and wy, = ¢2™*=D/7 L =12 ..r a
function f(z) is called r-even, if

flwp) = f@) k=1, (30)
and r-odd of [ order, if
f(@) = whf (), k=1,.m (31)

PROPOSITION 3.1. The functions cos, and sin,; (I = 1,...,r7 — 1) are,
respectively, r-even and r-odd of order |. From (24) and (27) we obtain the
following q-derivative formulas:

Dé cosp(x, ¢";0) = — q_a(r_l) Sinr,l(q(sxa q";0),
Dy cosp(x, ¢";0) = — COSr(qéﬂﬁ q";4,),

D" sing(z, ¢"36) = sing(x, ¢7;6),

Dy~ " sing (2, ¢ 5) = cosy(z, ¢";0).
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PROPOSITION 3.2. The function cos,(x, ¢"; 1) is r-even and satisfies, in
particular

cos, (xt, ;1) = (—1)"g" /2 Dm(cosr(mtq " g 1)). (32)
xrm

PROPOSITION 3.3. Let x € R for n > 1, the function by, (x, ¢";1) veri-
fies the following properties
bo(x, ¢";1) =1, byp(0, ¢";1) =0 and Aq_ngbm(x, q";1) = byn—n)(w, ¢"51).

Furthermore,

’ an(xa qr;(s) ’§’ brn(l‘, qr;l) |S TN d Z 1. (33)

Proof When weput ¢g=e% t>0. The coefficients b.,(z, ¢"; 1)
defined by ( 24) can be written as

n—1r—1 1 1 n—1r—1 it 1t
b 751 = T s =TT e
rn q; _ Tj+1+l 1 — e~ (rj+1+i)t"
j=01i=0 j=0 i=0

Preceding like in [20], we can deduce the result and we have when |z| T oo,
we have
| cos,(x, ¢";6)| < ¢~ 2| cos, ()] < g2l 5> 1, see [9]. [
4. ¢°-product formula
We set now the product formula for ¢’-cosinus function. We note by

P = cos,(z, q";9) cos,(y, q";0).

PrOPOSITION 4.1. Let x and y be complex numbers, with y # 0, we
have:

rk
k Tk T z\Tk s (s rk - rk—s . r
P=Yy" G gm0 (2)™ 37 (1)) [ ; ] A cos, (ya™ 0, 47:6).
k>0 s=0 q

Proof. Fory;é()

r8\(n)2
Z(_l)n [r(((i _) k)]q' (qé)frnkyrn.

k>0 n>0
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Moreover, if we use the previous relation

[Tn]q! rk __ rk_—(rk)s+rink s ()2 rk —rns
=9 =(-1)"¢ :
rtn— k)t Z [ ] !

we obtain that

rk
Z (rk) . rkz s (s rk r—38) ,—8 T
P= k>0( L 1qq)7k[ik]q (5) _0(71) " [ s ]qcosr(qu R

5. The ¢-Bessel operator of r-order

We suppose now that the components of the vector o = (a1, ..., 1),
where «y, is a real number, satisfy oy > —1+ %, k=1,..,r—1and é > 0.

The g-Bessel operator of r-order is defined by:

1 Yo
Bsu=A (o= [ (¢ 2Dy + (ro + 1) ) Dgu). (34)
=1

REMARK 5.1. For r = 2, we obtain the ¢-Bessel operator Bj s of the
second order studied in [9] for § = 1:

Bygu= A (¢ Dju + 4 Dgu) (35)

(2o +1)
x
and for r = 3, a1 = —2/3, ap = v —1/3, we obtain the operator Bs 5 studied

n [12]:
(3 V)q D2 (3 V)

q €z q

Bssu = A;; (¢*" D3u + 4 Dgu). (36)

PROPOSITION 5.1. For A in C, the function j,(Ax,q",0)
X — N (g"—1)" 2"
ja(/\:c,qf‘,5) :O(b?“fl ( (qr)al—l—l"“’(qr)ar,l_;_l qﬁ—M) (37)

is a solution of the g-problem

B, su(zr) = —Au(x)
u(0)
DFu(0)

|
—_

(38)

Il
o
ol
Il
—
5
|
—_
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Furthermore, j,(\z,q",d) has the following representation
ja(Axvqrv(S) = Z(_l)ann,oc(x7 qué))‘rn) (39)
n=0
where ) 50
r\o(n)s .rn \d(n)2 .rn
brn,a(xaqra5) = (q )q'r v q = (q ) ’ s (40)
((r)g)™(1)n [T + 1)n Qrn,onq
and )
_ T Ty (a;+n+1)
rmang = (1 e @H™ 0] ! 4 41
g = (14 ¢+ .. +¢7)™ 1l l;[1 T (o 1) (41)
For § = r, we obtain the ¢g-hypergeometric function g¢,_1.
Let now | a |= a1 + ... + @1 = 9 + ... + a1 With ag =0,
brna(l, ¢":6) < brna(l,q", 1) (q)" §>1, (42)
rn,a\ly qT; < rn,o 7qr, = = ) > 1,
((Mg)™(W)n [T(ci + 1)
the right term can be written by
r—|a|/r\? n=1r=1 . (ai+3)/r _ (r\1+(cit+7) /7
((gr)~laim) (¢") (¢") (43)

Now, by [19], Lemma A.1, [20] and Proposition A.2, we see that the
general terms of product increases to (j+a; +1)71 if ¢ T 1. Using Stirling’s
formula, we find that, for some constant C,

N ((qr)—lozl/r)" o lal/mn e rn+|al
brn,a(L q 75) < ((T)q)rn H(az + 1)n = ¢ ((q ) ) (n(T)Q> (;4)

this inequality generalizes the inequality in [12].

PROPOSITION 5.2. Foro; > —1+ %, i=1,..,r—1,andn=0,1,2..,

r—1
quac,q",a)(a:):((wq) N den(@nd 0, (@

T) a; + 1)
and
n/_1\n(,0\(n)2
{%Dq}”ja(%qrﬁ) = ((éq)”) %jwn(q”‘sw,qrﬁ)-

(46)
By the g-duplication formula of I'; (22), we have in particular

J=1/r—2/r,....—(r—1)r) (T, ", 0) = cos;(z, ¢"; 6). (47)

47
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6. ¢-integral representations

In this section, we give two ¢-integral representations of the ¢-j,, function
(39) involving the g-Jackson integral. We denote by W, the function

r—1 (trq’”' qT)oo . r—1 .
Waltt, tro13q") = i k= [T q ), ili
i1 (g™ T 0 ) i=1

THEOREM 6.1. For a; > —1 + %, i1 =1,...,r — 1, the function j, has
the following q-integral representation of Mehler type

1 1
ja(z,qT,é):C’r,a/ / Wal(ti, . tr1;q") cosp(zty, ...tr1;q", ) dgt..dgty,
0 0
(48)
where
qu (Oél + ].)
)PqT(ai - % +1)

r—1
Cra= ((T)q)r_l (49)
e

2
(=
r

P r o o f. This formula can be proved by expanding cos,(zt,q";d) in a
series of power of ¢ and then there arise ¢-integrals of the form

. (50)

(r)gLgr (0 +m+1)

Based on the g-duplication formula for the I'y function (22), the formula is

proved. [ ]

1 i
/ (1 — qrt;);‘;*?t;—l dgt; =
0

PROPOSITION 6.1. Foro; > -1+ %, i=1,..,r—1,andn=0,1,2..,,

r—1

Dy (a4 1)Tgr (2E)
D" jo(z,q",0)|| < 7 2 r D7 . cos,(z, ¢";0)|], (51
liates )] =TT g it oy | oo 70| 6

in particular
ljal(z,q",0)| < =2 2l (52)
THEOREM 6.2. Fora; > —1+ % i =1,..,r—1andp; > 1, the

function jo+, has the following g-integral representation of Sonine type

1 1
Jatp(z,4",6)=c / / Vo(t, - tra5 ") Ja(zta, . tra, 4" 6) dgty...dgtra,
0 0
(53)
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where
p o _ T 1 az + pz + 1) 54
Cr,a H az + 1) ( )
r— 1 ( Z+1)
.or(a;—— i
Vo(ty, o tro1s ") = [ =gt ¢ 6t (55)
i=1

P r o o f. This formula can be proved by expanding j, in a series of
power of t;, there arise ¢-integrals of the form

i (1=q"t])gr t; dgti = : : )
0 (r qrqr(m‘FO‘z +pi+1)

7. g-Fourier transform

NOTATIONS:  Some g-functional spaces will be used to establish our
result.

We design by &, 4(R) (resp. Eiq(Rq)) the space of r-even functions
defined on R (resp R,) infinitely g-derivative, and by D, 4(R) (resp Dy 4(Ry))
the space of r-even functions defined on R (resp. R,) infinitely g-derivative
with compact support.

In this section we introduce the space L;qé(Rq,Jr, dqx) of functions f
satisfying

/0 |f(x)ja(Az, ¢";0)| dgx < oo, A € R,

DEFINITION 7.1.  The Fourier transform related with B, s of f €
Ll (Ry+, dgx) is the function Fs(f) defined by

a?q
FeIN = [ 10 a0t a0 dt. A€ R, (56)
We define also the Fourier transform JF ;s by
Fop(fIA) = / f(t)cos, (A, ¢";0)dat, A€ Ry. (57)
0

8. g¢-translation and ¢-convolution

In this section we study the generalized translation operator associated
with the operator B, 5. We give the following definition related to Aq_éng.
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DEFINITION 8.1.  The translation operator 7, s, € R (resp Ry)
associated with the r-order derivative operator A_, s Dg is defined for f in
Evq(R) (resp. & ¢(Ry)) and y € R (resp. Ry) by

W) =3 boaly, 4'36) (A D)™ f(a), (58)
n=0

the functions b, (y, ¢";0) are given by (24).

PROPOSITION 8.1. The operators 7, . satisly:
1- the product formula:

cos;(Az, ¢";6). cosr(Ay, ¢";0) = 7, g6 cos,(Ay, ¢";0) = 7, 46 cos, (AT, ¢ 6).

2- For x € R, 7, ;s belong in L(Ex4(R), & 4(R)).
3- The map x — T, .+ is infinitely g-derivative, r-even.

LEMMA 8.1. For f € D, 4(R), n € N, we have:

qf(rn)g ™ ( ) q(rn k)2

-1 pyr\n —
(Aq5 Dq) f(l') - (1_q)rn(q—6n)rnbrn(x’ q; 5) kgo [T?’L — k]q‘[k]q

"f(q ).

Proof. Ford >0, by [21] and relation (11),

™

> (=1f [ L Lq(’”""“)Qf(qkw),

k=0

q—(rn)z

Dozt @) = G g

using the fact that (A;D;)n = ((q‘s)r)_(n)QA;;”Dg”, then we obtain

—(rn)2 s\ry—(n)2 rn rn
g0 st = S S [ ] gz s
k=0 q

this leads to the result. n
REMARK 8.1. We obtain for § > 0
brn (1 é (rn) ™m Tn r rn— —n
o f (@) Z N T S VL [ . } AP (g ).
k=0 q
PROPOSITION 8.2. For f € D, 4(R,) we have:

‘f(],q‘S (th7q‘5f)(A) = COST’()“Ta q3; 5)~F()7q‘s (f)()‘)ﬂ (59)
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the convolution product of two functions f and g of Dy 4(R,) is defined in
D, q(Rq) by:
Frp oa) = [ mpt @t dip = [ F0)m o) dy (60)

and we have:
Fo,q4(f *g5 9)(A) = Fo g5 (f)(A). Fo, 45 (9)(A). (61)

DEFINITION 8.2. We call generalized translation operators associated
with B, s, the operators T¢ RERS R (resp. Ry),defined on &, 4(R) (resp.

g*,q(Rq)) by:

T3 (D) = brnaly a30) Bls (f)(y),  y € R(resp Ry),  (62)
n=0

where the functions b,y o(y, ¢", d) is given by (39).
PROPOSITION 8.3. The operators T¢ & satisfy:
1. For x € R, Tiqg in L(Eq(R),Exq(R)).
2. The map x — T g are infinitely g-derivative and r-even.

3. For all functions f in &, 4(R):
- Tg’qé fly) = T;qéf(x)
- T5 5 () = f(y).

4. For given f in &, 4(R), we put: u(z;y) = T¢ o fy),

then the function w is solution of the Cauchy problem:

Bx,r,éu(xy y) = By,r,éu(x7 y):
(1) q ulz, 0) = f(2); Dgyu(z, 0) =0
DF u(x,0) = 0 ,k=012.r-1

and we have
Tg’ q6.j0!()‘y7 qT7 5) = ja()\l‘, qr’ 5)]a(>\y7 qT’ 6) = T; q5j01(>‘x7 qT7 5) (63)

Now we are able to define the convolution product related to the oper-
ator B, 5.
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DEFINITION 8.3. The convolution product associated with B, s of two
functions f and g in Ds 4(R,) is the function f %, ,s g defined by:

*a. g0 9(Y / @)1y 59(x) dgz = /0 tT; pf(@) g(@)dgz. (64)

9. Higher-order ¢-Bessel heat polynomials

We recall that the function e, (—2"t)jo(22; ¢"; 0) is analytic in z". We
thus have, for t € R and § > 1,

eqr(—2"t)ja(x2; ¢"5 0) = ij:o(—l)”ar;:qpﬁ(x, t,q";9), (65)
then . .
— e t ™,
Pu(z, 14" 9) —kzzo(qr)‘s(” o (m[lz;]qr! Oéro(én7k)’,:q %)
M+ i ) ()6 D (g (ot
(It+qg+..+g )™ & az+1 (g4 4 g )R]

q 9 (1+q+_'+qr—1)rt

arn,avqtnl 5— < (q’r‘)*
r—1

! (@) (g

. (qf'—l)'”(—:cf(qv")")) _

10. Application: g-heat equation

We give an applications of the Fourier transform related with B, ;. We
begin by recalling that

0 Y —n(ag1)— ()2 1
o —ep” NN\ . rag+(r—1) d.r = (q ) (ak + ) Tia .
/0 eq ( Ccx ) (C x )Jf qu' COék+1(1 + q + L+ q7” 1) (ag,+1,9"7)

(67)
where
> I, +1; ")
I{ap+1; ¢" :/ e (—x)x** dyrx and Hypr(op +1) = ——— =2,
( ) 0 q ( ) q q ( ) qu(()ék—Fl)

(68)
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. yrak+(r—1)
We note by dng a, (y) = Trar g D) Ty (i 1)

the fundamental solution Ko, (z,t, ¢";9) by

dqy and we define for § > 1

Koy (z,t,q"50) = /0 eqr (=ty")ja(xy, 4" 0)dng,a (¥),

(_1)n(q§)r(n)2 % (qr)—(ak—i-l)n—(n)zxrnt—n

o qu (ak—l—l) i

- r— « 1 T 9
(t(+q+..+g 1))kt (gt ..t qrfl)rn[n]qT!H#k(ai +1)2
qu(ak-i-l)

(t(1+q+..q"— 1))k

§—1 o (gr)— (e +) (g — 1 r—1
X O¢r_2( ()L, (g r.—z"(q") (q )

q; ( (1+q+“qrfl)'rt ))

For 6 = r, we obtain the basic hypergeometric series.

We consider the g-problem for ¢,z > 0

Br,éu(xa t) = Dq"",tu(xv t)
k — — —
(11) Dju(0,t) = 0, k=1,..,7r—1
uw(wgx,t) = wul(x, t), k=1,..,r—1

TueEoREM 10.1. Let f € L} o (Bg+, dg), the function

(o)
’LL(I', t) = / T;q,;]cak ([If,t, qT’(&)‘) f(y) dqy = (f *a,qé Icak('7 t7 q7'76))(x)’
0
(69)
is a solution of the equation (II) for oy, > —1—1—%,16 =1,.,r=1,t,x € Ry 4.

11. Analytic Cauchy problem related to
the r-order ¢-Bessel operator B, ;

We say that a function u(z,t) in H,([0,a] x [0, o]) if
B, su(z,t) = Dgr s u(z, t). (70)
The diffusion polynomials pS(z,t) satisfy the g-equation (70). Hence we

expect to obtain infinite series expansions u(z,t) = >, <, ampi (2, t, ¢"; 0)
with possible convergence in a strip |t| < o.
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Let 6 > 1, we note

s o0 )(671)(71)2 rn
Raq(t) = Z q"
" oo Mg+ +q¢Hm[[(ei + 1)n

(q’r—l)r71£t7‘

r\1
_ o— (q ) r.
= e (gt ., (gryertt | T That =T )

LEMMA 10.1. Let s >0 and §d > 1

p%(‘ﬂj‘|,|t|,qr,5) s" |t| nmpoo |$‘
< g) Reva(Z17r)-

Qrn,a,q [1]gr!

Proof Wehave

oo n— r xrk
palel fthq"0) _ s" [ n ] <|t|> Eo(qr)i®s L2
Qrn,a,q o [n]qr! =0 k qr S ((T)q)rk H(al + 1)
o n—k
5 ‘$| s" (k n ‘t‘
S a,q(ﬁ) [TL] o Z(q )( )2 [ k :| <S
7 k=0 q
s" th\n s |2l
— 144
[n]gr! ( + S )qr a’q(sl/r)
s" t\nyps |7
S [n]qu (1 + ?) a,q(sl/r))
my—1(k)z |21
since, (a") s gq( |z| )
()g)™* TT(ew + )i i gl/r

LEMMA 10.2. Fort,z > 0,6 >0

(87
po(z,t,q",8) > ﬁt”

P r o o f. Since the coefficients of pS are positive, it follows that

(6
P t0) 2 B0, 0) = S,
qr:
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o0
THEOREM 10.2. If the series Z anpi(xo,to,q", ) converges for ty > 0

n=0

o oo

and xg > 0, the series Z anpi(x0,to,q",9) and Z drna,qnPo—1(z,t,q",0)
n=0 n=0

converge absolutely and locally uniformly in the strip |t| < to and the series

o
Zanpg(wo,to,qr,é) is in Ho(Ry) for [t < to.
n=0
P 1 oo f Wenote by drnag = Qrnaq/r(n-1),a,q Since the general
term of a convergent series must go to zero, lim a,p)(z,t,q",d) = 0. By
n——aoo

rl
Lemma 10.2, it therefore follows that a, = O(%)' Using Lemma
arn)a7q 0
10.1, we get for s >0 and § > 1

o [o.¢]

nly! « T
S s (@t q7,0) < MY Gy ()
n=0 n=1 arn7a7qt0 [n]qr ° B

[e.9]

< MR (DY ()

aN (1/r to

n=0

which converges for s + |t| < tp. Since s > 0 is arbitrary it converges for

(s + |t|) < to, and as before for |t| < to. ]
o

Let f(x) = Z anx" be an entire function of order p, p > 0, and of type

n=0

0 < 0 < 0o. The type is determined by lim sup m |an|ﬁ = o. Therefore,
n—oo €EP
r™m/p
jan] < M (S22 (71)
n

THEOREM 10.3. If f(z) is an entire function of order p with 0 < p <
r/r — 1 and of type 0, 0 < o < 00, then

u(z,t) = anpli(z,t,q",0) (72)
n=0

is in Hq(R) in the strip |t| < 1/(op)™/? and u(x,0) = f(z).
P roof. Using (71) and Lemma 10.1, for s > 0 we obtain

> o , . seap\rn/p Qrna, n ||
D anpf (@ t,7,0) < MY (TE) T (s 4 ) Rl ) (73)
n=0 q

n=0
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r—1
Since, (ﬂ)rn/p Qo (ﬂyn/p r H Ly (0i o+ 1), or for
r el § (

[n]qr! ™ g (o +1)

r(a; +n+1)
Lgr(a; +1)
r—1 -

forn T oo H Fyr(a; +n+1) H a; +n+ 1). Using Stirling’s formula,

=1 =1

r—1
~ [ 7o (e +n+1), by [19, p. 53],
=1

n T oo, WehaveH

we get

1_'r—1

eap\T/P .. TﬁlF et~ Pppl mlp .y
— T ai+n+l) ~ { — — ] (2m) "2 (op)™/P
( ™ ) l_{ ( ’ ) nlf—rrlp+(2ai+r21)p/rn i

1=

for 0 < p < -%5. Thus the series in (73) is dominated by
|x’ > T n
Mt,qRi,q(M)E:O{(UP) /P (s + [t)}"

which converges for (op)%/?(s + [t|) < 1. Since s > 0 is arbitrary, we get

1
absolute and local uniform convergence for [t| < W. Since the order
op

and type of entire function is not changed by taking derivatives, a similar
type argument shows that the derived series ), - andrn,a,qP5—1(7,t,q",6),

also converges absolutely and locally uniformly for || < W. It follows
op
that u(z,t) given by (72) is in H,, in the stated strip. [
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