[

J/ractional Calculus
& /r\.pplied Cr nalysis

An Iriternational Journal for Theory and Applications
VOLUME 12, NUMBER 1 (2009) ISSN 1311-0454

ON LIMITING CASE OF THE STEIN-WEISS TYPE
INEQUALITY FOR THE B-RIESZ POTENTIALS *
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Abstract

In this paper we study the Riesz potentials (B-Riesz potentials) gen-
n
erated by the Laplace-Bessel differential operator Ap = 2 420

~— 8mz Ty O’
v > 0, in the weighted Lebesgue spaces Ly, 5 . We esta’i)lilsh an inequal-
ity of Stein-Weiss type for the B-Riesz potentials in the limiting case, and
obtain the boundedness of the B-Riesz potential operator from the space
LP7|$|57'Y to BMO‘CN_)‘,’Y'
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Introduction

The classical Riesz potential is an important technical tool in harmonic
analysis, theory of functions and partial differential equations. The potential
and related topics associated with the Laplace-Bessel differential operator

n
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AB = a2 + l a ’ 0 > 0
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have been the research areas of many mathematicians such as K. Stempak
[11], I. Kipriyanov [8], A.D. Gadjiev and I.A. Aliev [1], A.D. Gadjiev and
V.S. Guliyev [2], E.V. Guliyev [3], V.S. Guliyev [4]-[6] and others.

In this paper we study Riesz potentials (B-Riesz potentials) generated
by the Laplace-Bessel differential operator Ag in weighted Lebesgue spaces.
We establish the inequality of Stein-Weiss type (see [10]) for B-Riesz po-
tentials in the limiting case. We obtain the boundedness of the B-Riesz
potential operator from the spaces L to BMOmf&7 in the limiting
case.

||y

1. Definitions, notation and preliminaries

Let R = {z € R" ; = = (21,...,Zn),2n > 0} and B(z,r) = {y €
RY ¢ |z —y|<r, r>0}, B, = B(0,r), and let CB(:U,T):]RQ‘_\B(JU,T).
For a measurable set A C R%, let |A], = [,zidz, then |B,|, =

w(n,y)r™*7, where (n—1)/21 (y+1)/2)
— € xXr = T ’y
w(n,ﬂy)—/31 nd 2 (n+~v—2)/2)

Denote by TV the generalized shift operator (B-shift operator) acting
according to the law

TV f(z) = C, /O F (@ = o (s ya)g) sin? BB,

where

(Zn, Yn)g = V22 + 92 — 225y, cos f and C, = W = % w(2,7).

We remark that the generalized shift operator T¥ is closely connected
with the Laplace-Bessel differential operator Ap (for example, n = 1 — see
[9], and n > 1 — [8] for details).

Let Ly, (R’) be the space of measurable functions on R’} with finite

norm
1712y = 111y ety = ( L

+
For p = oo the space Lo~ (R ) is defined by means of the usual modification

[l 2oy = fllLoe = €ss sup|f(z)].
z€RY

1/p
!f(w)!”a?%dw> , 1<p<oo.

LEMMA 1. ([2]) Let 0 < o« < n++. Then
| T | 677 — Jy[a 7| < 2Py e T g (1)

for 2|z| < |y|.
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DEFINITION 1. Let 1 < p < co. We denote by WL, (R") the weak
L, ., space defined as the set of locally integrable functions f with the finite
norms

Ifllwr, . =sup rflP(r),
r>0
where f, ,(r) = Haz eRY : [f(x)| > r}‘,y.

Let v be a non-negative and measurable function on R, and L, , (R} )
be the weighted L, ,-space of all measurable functions f on R’} for which

1A Loy = WMLy ) = IV fllL, @) < oo

We denote by WLy, ~(R}) (1 <p < oo) the weighted weak Lebesgue
space which is the class of all measurable functions f : R} — R, for which

||f||WLp,m = ||f”WLp,M(R1) = ||Uf||WLp,7(R1) < 0.

The B — BMO space (see [5]) BMO,(R"), and weighted B — BMO
space, BMO,,~(R" ), are defined as the set of locally integrable functions f
with finite norms

o= _swp 1Bl [ 7$(@) = fo, (@)l < oo,

r>0,z€R+
and

1wy =  sup w(B,)"! /B TV () — f, (2)lydy < oo,

r>0,m€Ri

respectively, where

f5,(x) = | Byt /B TV (2)yldy and w(B,) = / w(z)a]dz.

Consider the B-Riesz potential
Loy f(2) = / TY2|* " f(y)yady, 0<a<n+xy

R+
and the modified B-Riesz potential

Fanf@) = [ (T = e, () S iy
+

For the B-Riesz potential the following Stein-Weiss type theorem was
proved by A.D. Gadjiev and V.S. Guliyev in [2].
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THEOREM A. Let0<o<<n+7,1§p§q<oo,ﬂ<";,7 (B <0, if

p=1), A< (A<0,ifg=00),a>B+A>0 (B+X1>0,ifp=q).
NIf 1<p< afﬁrz/\, then the condition 1—% = O‘;ﬁ_)‘ is necessary and

sufficient for the boundedness of 1oy from Ly, 15 o (R1) to Ly p-x o (RY).

2) If p =1, then the condition 1 —% = o‘%fz_)‘ is necessary and sufficient

for the boundedness of lo from Ly |5 ,(RY}) to WLy ;-1 (RY).

DEFINITION 2. The weight function w belongs to the class A, ~(R7)
for 1 < p < oo, if

sup | 1B, / w(y)yidy
2€RT >0 )
x,r

p—1

_1
< iBaokt [ e | <
B(x,r)
and w belongs to Ay (R"), if there exists a positive constant C' such that
for any x € R} and r > 0

Bla,r)|! / w(y)yldy < C ess sup w(y).
B(x,r) yEB(z,7)

The properties of the class A, ,(R"}) are analogous to those of the Muck-
enhoupt classes. In particular, if w € A, (R%), then w € A, ,(R7) for a
certain sufficiently small € > 0 and w € A, (R}) for any p; > p.

Note that, |z|* € A, (R"), 1 < p < oo, if and only if —”TJW <a< npﬁ
and |z|* € A1 4(R?), if and only if —n —y < a <0.

For the B-maximal function (see [4, 5])

M, f(a) = sup B, 15 [ 77110 iy
r>
B

the following analogue of Muckenhoupt theorem (see [7]) was proved by
E.V. Guliyev in [3].

THEOREM B. 1. If f € Ly4,(R%}), w € Ay, then M, f € WLy ,(R?)
and

||M'YfHWL1,w,’y S Clawa'YHfHLl,w,'y’ (2)

where C' 4~ depends only on w, v and n.
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2. Iff € Lpw,(RY), we Ay, 1 <p<oo, then M,f € Ly, ~(R"}) and

HM’YfHLp,w,’y S CpfwfnyHLwav’Y’ (3)

where Cy, 4, ~ depends only on w, p, v and n.

2. Main result

Our main result is the following Stein-Weiss type theorem for the B-
Riesz potential in the limiting case p = (n + v)/(a — 3 — A). We prove
that the modified B-Riesz potential operator I, is bounded from the space
L, |28, to the weighted B-BMO space BMO\y-» .

THEOREM 1. Let 0 < a <n+vy 1 <p=(n+v)/(a—0-N),

B < (n+~)/p, > p+X>0. Then the operator I, is bounded from
Ly jajp (RY) to BMO gy (RD).

Moreover, for f € Ly 5 ,(R%}) the integral Io - f exists almost every-
where, then Io , € BMO),-x ,(R}) and the following inequality is valid

Manllsaro, . < Clfl
where C' > 0 is independent of f.

Proof Let f €L, ,5,R}), 1 <p=(n+7v)/(a—pB—A). For given
t > 0 we denote

filz) = f@)xBy (2),  falzx) = flz) = fi(@), (4)
where xp,, is the characteristic function of the set Bo;. Then

Lon f(x) = Ioq f1(2) + T q foz) = Fi(z) + Fa(2),

p.lz|8,y”

where
Fi(z) = /B (Ty!w\”’"’” = [yl X, (y)) F(Y)yndy,
2t
Fy(z) = /“B (Tyyx\a*"*” = yl*" Xy, (y)) FWyndy.
2t

Note that the function f; has compact support and thus

a = — / W1 )y
B2t\Bmin{1,2t}

is finite.
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Note also that

Fi(x) —a; = / Tx|* "7 f(y)yndy — / Yy f(y)yndy
Boy B2t\Bmin{1,2t}

4 / Y[ f(y)ydy = / T2 o (y)yiddy = Tao i (2).
B2t\Bmin{1,2t} R%

+

Therefore

@)=l < [ W T A@d= [ e )
+

B(x,2t
Further, for x € By, y € B(x,2t) we have
lyl < |zl + |z —y| < 3t.
Consequently, we have

Fu() — | < / [y |TY (@) iy, (5)

By
if x € Bt.
By Theorem B and inequality (5), for (« — 3 — X\)p = n + v we have

t"W)‘/ |T*Fi(x) — a1] z)dz
By
<o [ ([ el s
By B3
, 1/p
< e ([ 1 () 2 )
By

<ct? </19th (M, (f ()" ngzf/pg C( sz,ﬁp T (M, (f(2)))" ngz> v

1/p
= ( [ 7 (xwlel™) sy zzdz>

R%

1/p
=C (/n |27 (M, (f (x)))" Z%dz> <Clfllc (6)

+

pilelf
Denote

a5 = / W1 f )iy,
Bmax{l,Qt}\BQt
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and estimate |Fh(x) — az| for z € By:

Fy(x) — as] < / F @) | T2l — [y|o==7 |y, Vdy.

Bay

Applying Lemma 1 and Holder’s inequality we get

Fo(z) — aa] < 271+ gl /GB )yl dy
2t

1/p
< grrmatiy ( /. Iylﬂ”lf(y)lpyﬂdy>
t

, 1/p'
([, )
Cg,

—B—1-n— A— A
< Clalte B flly < Clal Tl < ClePIllE,

Note that if |z] < ¢ and |z| < 2¢, then T?|z| < |z| + |2| < 3t. Thus for
(o — B —A)p = Q we obtain

T Fae) — aal < T% | Fo(a) — as] < ClalM I, o - ()
Denote
a=ata= [ T )y,
Bmax{l,Qt}
Finally, from (6) and (7) we have
supt " [ |17 f(a) ~ agvidy < €I,
x,t B; ’ "
Thus,
H 'MfHBMo A
< 2C sup t”"y/\/ Tyfaﬁf(a:) —ayr|yydy < C| fllL B
.t B, p,lz|P,y
Thus Theorem 1 is proved. ]

COROLLARY 1. ([4,5]) Let 0 < a <n++v,1<p=(n++)/a. Then
the operator TOW is bounded from Ly 4(R"}) to BMO. (R ).

Moreover, for f € Ly, (R"}) the integral 1, f exists almost everywhere,
then I, € BMO.(R") and the following inequality is valid

HIa;nyBMOW < CHfHLPﬁ’
where C' > 0 is independent of f.
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