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Abstract

In this paper we study the Riesz potentials (B-Riesz potentials) gen-

erated by the Laplace-Bessel differential operator ∆B =
n∑

k=1

∂2

∂x2
k

+ γ
xn

∂
∂xn

,

γ > 0, in the weighted Lebesgue spaces Lp,|x|β ,γ . We establish an inequal-
ity of Stein-Weiss type for the B-Riesz potentials in the limiting case, and
obtain the boundedness of the B-Riesz potential operator from the space
Lp,|x|β ,γ to BMO|x|−λ,γ .
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Introduction

The classical Riesz potential is an important technical tool in harmonic
analysis, theory of functions and partial differential equations. The potential
and related topics associated with the Laplace-Bessel differential operator

∆B =
n∑

k=1

∂2

∂x2
k

+
γ

xn

∂

∂xn
, γ > 0
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have been the research areas of many mathematicians such as K. Stempak
[11], I. Kipriyanov [8], A.D. Gadjiev and I.A. Aliev [1], A.D. Gadjiev and
V.S. Guliyev [2], E.V. Guliyev [3], V.S. Guliyev [4]-[6] and others.

In this paper we study Riesz potentials (B-Riesz potentials) generated
by the Laplace-Bessel differential operator ∆B in weighted Lebesgue spaces.
We establish the inequality of Stein-Weiss type (see [10]) for B-Riesz po-
tentials in the limiting case. We obtain the boundedness of the B-Riesz
potential operator from the spaces Lp,|x|β ,γ to BMO|x|−λ,γ in the limiting
case.

1. Definitions, notation and preliminaries

Let Rn
+ = {x ∈ Rn ; x = (x1, ..., xn), xn > 0} and B(x, r) = {y ∈

Rn
+ : |x− y| < r, r > 0}, Br ≡ B(0, r), and let

{
B(x, r) = Rn

+ \B(x, r).
For a measurable set A ⊂ Rn

+, let |A|γ =
∫
A xγ

ndx, then |Br|γ =
ω(n, γ)rn+γ , where

ω(n, γ) =
∫

B1

xγ
ndx =

π(n−1)/2Γ ((γ + 1)/2)
2Γ ((n + γ − 2)/2)

.

Denote by T y the generalized shift operator (B-shift operator) acting
according to the law

T yf(x) = Cγ

∫ π

0
f

(
x′ − y′, (xn, yn)β

)
sinγ−1 βdβ,

where

(xn, yn)β =
√

x2
n + y2

n − 2xnyn cosβ and Cγ =
Γ ((γ + 1)/2)√

πΓ (γ/2)
=

2
π

ω(2, γ).

We remark that the generalized shift operator T y is closely connected
with the Laplace-Bessel differential operator ∆B (for example, n = 1 – see
[9], and n > 1 – [8] for details).

Let Lp,γ(Rn
+) be the space of measurable functions on Rn

+ with finite
norm

‖f‖Lp,γ = ‖f‖Lp,γ(Rn
+) =

(∫

Rn
+

|f(x)|pxγ
ndx

)1/p

, 1 ≤ p < ∞.

For p = ∞ the space L∞,γ(Rn
+) is defined by means of the usual modification

‖f‖L∞,γ = ‖f‖L∞ = ess sup
x∈Rn

+

|f(x)|.

Lemma 1. ([2]) Let 0 < α < n + γ. Then∣∣T y|x|α−n−γ − |y|α−n−γ
∣∣ ≤ 2n+γ+1−α|y|α−n−γ−1|x| (1)

for 2|x| ≤ |y|.
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Definition 1. Let 1 ≤ p < ∞. We denote by WLp,γ(Rn
+) the weak

Lp,γ space defined as the set of locally integrable functions f with the finite
norms

‖f‖WLp,γ
= sup

r>0
rf

1/p
∗,γ (r),

where f∗,γ(r) =
∣∣{x ∈ Rn

+ : |f(x)| > r
}∣∣

γ
.

Let v be a non-negative and measurable function on Rn
+, and Lp,v,γ(Rn

+)
be the weighted Lp,γ-space of all measurable functions f on Rn

+ for which

‖f‖Lp,v,γ ≡ ‖f‖Lp,v,γ(Rn
+) = ‖vf‖Lp,γ(Rn

+) < ∞.

We denote by WLp,v,γ(Rn
+) (1 ≤ p < ∞) the weighted weak Lebesgue

space which is the class of all measurable functions f : Rn
+ → R, for which

‖f‖WLp,v,γ ≡ ‖f‖WLp,v,γ(Rn
+) = ‖vf‖WLp,γ(Rn

+) < ∞.

The B − BMO space (see [5]) BMOγ(Rn
+), and weighted B − BMO

space, BMOw,γ(Rn
+), are defined as the set of locally integrable functions f

with finite norms

‖f‖∗,γ = sup
r>0, x∈Rn

+

|Br|−1
γ

∫

Br

|T yf(x)− fBr(x)|yγ
ndy < ∞,

and

‖f‖∗,w,γ = sup
r>0, x∈Rn

+

w(Br)−1

∫

Br

|T yf(x)− fBr(x)|yγ
ndy < ∞,

respectively, where

fBr(x) = |Br|−1
γ

∫

Br

T yf(x)yγ
ndy and w(Br) =

∫

Br

w(x)xγ
ndx.

Consider the B-Riesz potential

Iα,γf(x) =
∫

Rn
+

T y|x|α−n−γf(y)yγ
ndy, 0 < α < n + γ

and the modified B-Riesz potential

Ĩα,γf(x) =
∫

Rn
+

(
T y|x|α−n−γ − |y|α−n−γχ {B1

(y)
)

f(y)yγ
ndy.

For the B-Riesz potential the following Stein-Weiss type theorem was
proved by A.D. Gadjiev and V.S. Guliyev in [2].
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Theorem A. Let 0 < α < n + γ, 1 ≤ p ≤ q < ∞, β < n+γ
p′ (β ≤ 0, if

p = 1), λ < n+γ
q (λ ≤ 0, if q = ∞), α ≥ β + λ ≥ 0 (β + λ > 0, if p = q).

1) If 1 < p < n+γ
α−β−λ , then the condition 1

p− 1
q = α−β−λ

n+γ is necessary and
sufficient for the boundedness of Iα,γ from Lp,|x|β ,γ(Rn

+) to Lq,|x|−λ,γ(Rn
+).

2) If p = 1, then the condition 1− 1
q = α−β−λ

n+γ is necessary and sufficient
for the boundedness of Iα,γ from L1,|x|β ,γ(Rn

+) to WLq,|x|−λ,γ(Rn
+).

Definition 2. The weight function w belongs to the class Ap,γ(Rn
+)

for 1 < p < ∞, if

sup
x∈Rn

+,r>0


|B(x, r)|−1

γ

∫

B(x,r)

w(y)yγ
ndy




×


|B(x, r)|−1

γ

∫

B(x,r)

w
− 1

p−1 (y)yγ
ndy




p−1

< ∞,

and w belongs to A1,γ(Rn
+), if there exists a positive constant C such that

for any x ∈ Rn
+ and r > 0

|B(x, r)|−1
γ

∫

B(x,r)
w(y)yγ

ndy ≤ C ess sup
y∈B(x,r)

w(y).

The properties of the class Ap,γ(Rn
+) are analogous to those of the Muck-

enhoupt classes. In particular, if w ∈ Ap,γ(Rn
+), then w ∈ Ap−ε,γ(Rn

+) for a
certain sufficiently small ε > 0 and w ∈ Ap1,γ(Rn

+) for any p1 > p.
Note that, |x|α ∈ Ap,γ(Rn

+), 1 < p < ∞, if and only if −n+γ
p < α < n+γ

p′
and |x|α ∈ A1,γ(Rn

+), if and only if −n− γ < α ≤ 0.
For the B-maximal function (see [4, 5])

Mγf(x) = sup
r>0

|Br|−1
γ

∫

Br

T y|f(x)| yγ
ndy

the following analogue of Muckenhoupt theorem (see [7]) was proved by
E.V. Guliyev in [3].

Theorem B. 1. If f ∈ L1,w,γ(Rn
+), w ∈ A1,γ , then Mγf ∈ WL1,w,γ(Rn

+)
and

‖Mγf‖WL1,w,γ ≤ C1,w,γ‖f‖L1,w,γ , (2)

where C1,w,γ depends only on w, γ and n.
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2. If f ∈ Lp,w,γ(Rn
+), w ∈ Ap,γ , 1 < p < ∞, then Mγf ∈ Lp,w,γ(Rn

+) and

‖Mγf‖Lp,w,γ ≤ Cp,w,γ‖f‖Lp,w,γ , (3)

where Cp,w,γ depends only on w, p, γ and n.

2. Main result

Our main result is the following Stein-Weiss type theorem for the B-
Riesz potential in the limiting case p = (n + γ)/(α − β − λ). We prove
that the modified B-Riesz potential operator Ĩα is bounded from the space
Lp,|x|β ,γ to the weighted B-BMO space BMO|x|−λ,γ .

Theorem 1. Let 0 < α < n + γ, 1 < p = (n + γ)/(α − β − λ),
β < (n + γ)/p′, α ≥ β + λ ≥ 0. Then the operator Ĩα,γ is bounded from
Lp,|x|β ,γ(Rn

+) to BMO|x|−λ,γ(Rn
+).

Moreover, for f ∈ Lp,|x|β ,γ(Rn
+) the integral Iα,γf exists almost every-

where, then Iα,γ ∈ BMO|x|−λ,γ(Rn
+) and the following inequality is valid

‖Iα,γf‖BMO|x|−λ,γ
≤ C‖f‖L

p,|x|β,γ
,

where C > 0 is independent of f .

P r o o f. Let f ∈ Lp,|x|β ,γ(Rn
+), 1 < p = (n + γ)/(α− β − λ). For given

t > 0 we denote

f1(x) = f(x)χB2t(x), f2(x) = f(x)− f1(x), (4)

where χB2t is the characteristic function of the set B2t. Then

Ĩα,γf(x) = Ĩα,γf1(x) + Ĩα,γf2(x) = F1(x) + F2(x),

where

F1(x) =
∫

B2t

(
T y|x|α−n−γ − |y|α−n−γχ {

B1
(y)

)
f(y)yγ

ndy,

F2(x) =
∫

{
B2t

(
T y|x|α−n−γ − |y|α−n−γχ {B1

(y)
)

f(y)yγ
ndy.

Note that the function f1 has compact support and thus

a1 = −
∫

B2t\Bmin{1,2t}
|y|α−n−γf(y)yγ

ndy

is finite.
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Note also that

F1(x)− a1 =
∫

B2t

T y|x|α−n−γf(y)yγ
ndy −

∫

B2t\Bmin{1,2t}
|y|α−n−γf(y)yγ

ndy

+
∫

B2t\Bmin{1,2t}
|y|α−n−γf(y)yγ

ndy =
∫

Rn
+

T y|x|α−n−γf1(y)yγ
ndy = Iα,γf1(x).

Therefore

|F1(x)−a1| ≤
∫

Rn
+

|y|α−n−γ |T yf1(x)| yγ
ndy=

∫

B(x,2t)
|y|α−n−γ |T yf(x)| yγ

ndy.

Further, for x ∈ Bt, y ∈ B(x, 2t) we have

|y| ≤ |x|+ |x− y| < 3t.

Consequently, we have

|F1(x)− a1| ≤
∫

B3t

|y|α−n−γ |T yf(x)| yγ
ndy, (5)

if x ∈ Bt.
By Theorem B and inequality (5), for (α− β − λ)p = n + γ we have

t−n−γ−λ

∫

Bt

|T zF1(x)− a1| zγ
ndz

≤ Ct−n−γ−λ

∫

Bt

T z

(∫

B3t

|y|α−n−γT y|f(x)|yγ
ndy

)
zγ
ndz

≤ Ctα−n−γ−λ · t(n+γ)/p′
(∫

Bt

T z (Mγ(f(x)))p zγ
ndz

)1/p

≤Ctβ
(∫

Bt

T z (Mγ(f(x)))p zγ
ndz

)1/p

≤ C

(∫

Bt

|z|βp T z (Mγ(f(x)))p zγ
ndz

)1/p

= C

(∫

Rn
+

T z
(
χBt |x|βp

)
(Mγ(f(x)))p zγ

ndz

)1/p

= C

(∫

Rn
+

|z|βp (Mγ(f(x)))p zγ
ndz

)1/p

≤ C‖f‖L
p,|x|β,γ

. (6)

Denote

a2 =
∫

Bmax{1,2t}\B2t

|y|α−n−γf(y)yγ
ndy,
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and estimate |F2(x)− a2| for x ∈ Bt:

|F2(x)− a2| ≤
∫

{B2t

|f(y)| ∣∣T y|x|α−n−γ − |y|α−n−γ
∣∣ yn

γdy.

Applying Lemma 1 and Hölder’s inequality we get

|F2(x)− a2| ≤ 2n+γ−α+1|x|
∫

{B2t

|f(y)||y|α−n−γ−1yn
γdy

≤ 2n+γ−α+1|x|
(∫

{
Bt

|y|βp|f(y)|pyn
γdy

)1/p

×
(∫

{Bt

|y|(−β+α−n−γ−1)p′yn
γdy

)1/p′

≤ C|x|tα−β−1−n−γ/p‖f‖L
p,|x|β,γ

≤ C|x|tλ−1‖f‖L
p,|x|β,γ

≤ C|x|λ‖f‖L
p,|x|β,γ

.

Note that if |x| ≤ t and |z| ≤ 2t, then T z|x| ≤ |x| + |z| ≤ 3t. Thus for
(α− β − λ)p = Q we obtain

|T zF2(x)− a2| ≤ T z |F2(x)− a2| ≤ C|x|λ‖f‖L
p,|x|β,γ

. (7)

Denote
af = a1 + a2 =

∫

Bmax{1,2t}
|y|α−n−γf(y)yγ

ndy.

Finally, from (6) and (7) we have

sup
x,t

t−n−γ−λ

∫

Bt

∣∣∣T y Ĩα,γf(x)− af

∣∣∣ yγ
ndy ≤ C‖f‖L

p,|x|β,γ
.

Thus,
∥∥∥Ĩα,γf

∥∥∥
BMO|x|−λ,γ

≤ 2C sup
x,t

t−n−γ−λ

∫

Bt

∣∣∣T y Ĩα,γf(x)− af

∣∣∣ yγ
ndy ≤ C‖f‖L

p,|x|β,γ
.

Thus Theorem 1 is proved.

Corollary 1. ([4, 5]) Let 0 < α < n + γ, 1 < p = (n + γ)/α. Then
the operator Ĩα,γ is bounded from Lp,γ(Rn

+) to BMOγ(Rn
+).

Moreover, for f ∈ Lp,γ(Rn
+) the integral Iα,γf exists almost everywhere,

then Iα,γ ∈ BMOγ(Rn
+) and the following inequality is valid

‖Iα,γf‖BMOγ ≤ C‖f‖Lp,γ ,

where C > 0 is independent of f .
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