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Abstract
In the process of constructing empirical mathematical models of physi-

cal phenomena using the fractional calculus, investigators are usually faced
with the choice of which definition of the fractional derivative to use, the
Riemann-Liouville definition or the Caputo definition. This investigation
presents the case that, with some minimal restrictions, the two definitions
produce completely equivalent mathematical models of the linear viscoelas-
tic phenomenon.
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1. Introduction
When modeling linear viscoelastic materials using fractional order deriva-

tives, one must choose between the classical Riemann-Liouville definition [1],
and the now recognized Caputo definition [2]. This investigation establishes
that, with some restrictions, the two definitions are equivalent models for
linear viscoelastic materials. The Riemann-Liouville derivative is the first
derivative of 1− β order integral of the function of the time ε(t):

1The author will be always grateful to Michele Caputo, an honored mentor and friend.
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Dβ
RL[ε(t)] :=

1
Γ(1− β)

d

dt

t∫

0

ε(t− τ)
τβ

dτ . (1)

Here ε(t) represents the one-dimensional, time-dependent strain in the ma-
terial.

Note that the β-order derivative operator (1) is subscripted by ”RL” to
denote the Riemann-Liouville definition.

Using the Leibnitz rule to differentiate the integral, breaks this definition
into two parts: a singular term containing the initial strain and an integral
term:

Dβ
RL[ε(t)] =

1
Γ(1− β)

t∫

0

ε̇(t− τ)
τβ

dτ +
ε(0)

Γ(1− β)tβ
. (2)

The integral term is the 1 − β order integral of the strain rate. This
integral is the Caputo definition, subscripted by ”C”, for the fractional order
derivative of the function ε(t):

Dβ
C [ε(t)] :=

1
Γ(1− β)

t∫

0

ε̇(t− τ)
τβ

dτ . (3)

Thus the difference between the two definitions is a singular term that con-
tains the initial value of the function ε(t),

Dβ
RL[ε(t)] = Dβ

C [ε(t)] +
ε(0)

Γ(1− β)tβ
. (4)

This relationship between the two definitions is one of the essential fea-
tures that leads to their equivalence in the modeling of linear viscoelastic
materials.

2. The viscoelastic models

A four-parameters viscoelastic model, relating one dimensional stress
σ(t) to one dimensional strain ε(t) is constructed using the Riemann-Liouville
definition. Based on two restrictions, this model is shown to be equivalent to
a similar four-parameters viscoelastic model based on the Caputo definition.

The four parameters are the glassy modulus E0, the rubbery modulus
E∞, the time-temperature equivalence parameter α, and the order of the
derivatives β. Here the orders of differentiation on stress and strain are the
same. This feature is a consequence of the thermodynamic considerations
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that ensure the real and imaginary parts of this model’s complex modulus,
given in (11) below, are positive for all positive frequencies of motion [3],

σ(t) + αβDβ
RL[σ(t)] = E∞ε(t) + E0α

βDβ
RL[ε(t)]. (5)

It will be demonstrated that this Riemann-Liouville (RL) model, subject
to one more restriction, is equivalent to a model of the same mathematical
structure using Caputo (C) derivatives.

The Leibnitz rule is applied again, as in (2) above, to separate the
singular and integral terms in the Riemann-Liouville derivative. The result
is:

σ(t) + αβ

{
Dβ

C [σ(t)] +
σ(0)

Γ(1− β)tβ

}

= E∞ε(t) + E0α
β

{
Dβ

C [ε(t)] +
ε(0)

Γ(1− β)tβ

}
. (6)

Notice that if the initial stress σ(0) is equal to the glassy modulus E0

multiplied by the initial strain ε(0):

σ(0) = E0 ε(0), (7)

then the singular terms on both sides of (6) add out. The result (8) is
the original viscoelastic model (5), where the Riemann-Liouville derivatives
have been replaced by Caputo derivatives:

σ(t) + αβDβ
C [σ(t)] = E∞ + E0α

βDβ
C [ε(t)]. (8)

In this case, the Caputo derivative and the Riemann-Liouville derivative
produce equivalent mathematical descriptions of a linear viscoelastic mate-
rial.

This equivalence can also be seen in the frequency domain. Taking the
Laplace transform

L[ε(t)] = ε̄(s) :=
∫ ∞

0
ε(t) e−st dt (9)

of (5) or (8), and applying the initial condition in (7), produces the same
mathematical relationship between the transform of stress and the transform
of strain:

σ̄(s) =
E∞ + E0(αs)β

1 + (αs)β
ε̄(s) . (10)
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Dividing both sides of (10) by the transform of the strain history ε̄(s) and
replacing the Laplace parameter s with the frequency parameter iω, where
i =

√−1, produces the expression for the model’s frequency-dependent
complex modulus,

E(iω) =
σ̄(iω)
ε̄(iω)

. (11)

As expected, the equivalence of the two viscoelastic models in time domain
extends into the frequency domain.

3. Conclusion

This equivalence of the Caputo and Riemann-Liouville derivatives is
based on two propositions. The first is a thermodynamic consideration,
and the second is that singular terms in stress-strain relationships should
balance out. The thermodynamic considerations ensure that the material’s
complex modulus will have positive real and imaginary parts over all positive
frequencies of motion. The balancing of the singular terms ensures that the
initial stress is a function only of the initial strain. With these minimally
restrictive conditions applied, the two derivatives produced identical models
of a linear viscoelastic material.
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