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Abstract

This paper proposes a novel method to design an H∞-optimal frac-
tional order PID (FOPID) controller with ability to control the transient,
steady-state response and stability margins characteristics. The method
uses particle swarm optimization algorithm and operates based on minimiz-
ing a general cost function. Minimization of the cost function is carried out
subject to the H∞-norm; this norm is also included in the cost function to
achieve its lower value. The method is applied to a phase-locked-loop motor
speed system and an electromagnetic suspension system as two examples to
illustrate the design procedure and verify performance of the proposed con-
troller. The results show that the proposed method is capable of improving
system responses as compared to the conventional H∞-optimal controller
while still maintains the H∞-optimality of the solutions.
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1. Introduction

As summarized in [1], many real-world physical systems are well char-
acterized by fractional-order differential equations, i.e., equations involving
noninteger-order derivatives. In particular, it has been shown that materi-
als having memory and hereditary effects [2] and dynamical processes, such
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as mass diffusion and heat conduction [3], in fractal porous media [4] can
be more adequately modeled by fractional-order models than integer-order
models. With the success in the synthesis of real noninteger differentia-
tor and the emergence of new electrical circuit element called “fractance”
[5], fractional-order controllers [6, 7, 8, 9], such as fractional-order PID
(Proportional-Integral-Derivative) controllers [10, 11, 12, 13], have been de-
signed and applied to control a variety of dynamical processes. The main
advantage of using fractional-order controllers for a linear control system
is that the time and frequency responses can be shaped using functions
rather than of exponential type and, as a consequence, the performance
of the feedback control loop can be improved over the use of integer-order
controllers.

In recent years, mixed H2/H∞-optimal control problems have received a
great deal of attention [14, 15, 16] to improve H∞ controller responses with
respect to rational-type controllers such as PID. This paper is to improve
those mixed cost functions by incorporating several different performance
characteristics not necessarily representable as H2 or H∞ norms. This will
partly degrade the H∞-norm of the controlled system. To overcome this
drawback, the paper extends the controller structure from rational PID
to the fractional order PID (FOPID). As compared with PID, the FOPID
offers more flexibility to obtain a lower H∞-norm which yields a more robust
control.

Heuristic search algorithms such as genetic algorithm (GA) and simu-
lated annealing (SA) have already been applied to the problem of mixed
H2/H∞-optimal control design [14, 15, 16]. The results confirm potential
of these algorithms for H2/H∞-optimal control design. GA is a population-
based search algorithm which works with a population of strings that repre-
sent different potential solutions. Therefore, GA has implicit parallelism
that enhances its search capability and the optima can be found more
quickly when applied to complex optimization problems. SA is an efficient
point-based optimization technique, which aims at escaping from local op-
tima to find a globally optimal solution, and has been widely applied in
various engineering problems. However, some deficiencies have been identi-
fied in GA and SA performance [17, 22].

Particle swarm optimization (PSO) is another evolutionary computa-
tion technique [19, 20]. This technique combines social psychology princi-
ples in socio-cognition human agents and evolutionary computations. PSO
has been motivated by behaviors of organisms such as fish schooling and
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bird flocking. Generally, PSO is characterized as a simple concept, easy to
implement, and computationally efficient algorithm. PSO has a flexible and
well-balanced mechanism to enhance global and local exploration abilities
and it has more efficiency than GA and SA [21, 22]. We use PSO as the
computational engine for the method presented in this paper and illustrate
its advantages in designing the proposed H∞-optimal FOPID controller.

2. Fractional calculus

We extracted the following material of fractional calculus from [18].

2.1. Definitions

Fractional calculus is a generalization of the common sense calculus. The
chief idea is to develop a functioning operator D, associated to an order v
not limited to integer numbers, that generalizes the classical concepts of
derivative (for a positive v) and integral (for a negative v).

Exactly like there are several optional definitions for the common sense
integer-order integrals (according to Riemann, Lebesgue, Stieltjes, etc.),
there are also different definitions for fractional derivatives. The most usual
definition is due to Riemann and Liouville (see [23]) that generalizes the
following definition corresponding to integer orders:

0D
−n
x f(x) =

∫ x

c

(x− t)n−1

(n− 1)!
f(t)dt, n ∈ N. (1)

The generalized definition of Dv is

cD
v
xf(x) =





∫ x
c

(x−t)−v−1

Γ(−v) f(t)dt, if v < 0;
f(x), if v = 0;
Dn[cDv−n

x f(x)], if v > 0;
n = min{K ∈ N : k>v},

(2)

where Γ(.) is the gamma function.
The Laplace transform of Dv satisfies the following analogues of the

classical rules:

L[0Dv
x] =





svF (s), if v ≤ 0;
svF (s)−∑n−1

k=0 sk
0D

v−k−1
x f(0),

if n− 1 < v < n ∈ N.

(3)

This means that, if zero initial conditions are assumed, the systems with
dynamic behavior described by differential equations including fractional
derivatives give rise to transfer functions with fractional orders of s. More
details are provided in [24, 25, 12].
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2.2. Integer order approximation

The most common way of using, in both simulations and hardware im-
plementations, of transfer functions including fractional orders of s is to
approximate them with usual (integer order) transfer functions. To per-
fectly approximate a fractional transfer function, an integer transfer function
would have to involve an infinite number of poles and zeroes. Nonetheless,
it is possible to obtain logical approximations with a finite number of zeroes
and poles.

One of the well-known approximations is due to Oustaloup, who uses
the recursive distribution of poles and zeroes. The approaching transfer
function is given by [1]:

sv ≈ k

N∏

n=1

1 + (s/ωz,n)
1 + (s/ωp,n)

. (4)

The approximation is legitime in the frequency range [ωl, ωh]. Gain k
is also regulated so that both sides of (4) shall have unit gain at 1 rad/s.
The number of poles and zeros (N) is chosen in advance, and the desired
performance of the approximation strongly depends on: low values cause
simpler approximations, but may cause ripples in both gain and phase be-
haviors. Such ripples can be functionally removed by increasing N , but the
approximation will become computationally heavier. Frequencies of poles
and zeroes in (4) are given by:

ωz,1 = ωl
√

η, (5)
ωp,n = ωz,nε, ; n = 1, . . . , N, (6)

ωz,n+1 = ωp,nη, ; n = 1, . . . , N − 1, (7)

ε = (ωh/ωl)v/N , (8)
η = (ωh/ωl)(1−v)/N . (9)

The case v < 0 can be handled by inverting (4). For |v| > 1, the
approximation becomes dissatisfactory. So it is common to separate the
fractional orders of s as follows:

sv = snsδ, v = n + δ, n ∈ Z, δ ∈ [0, 1] (10)
and only the second term, i.e. sδ, needs to be approximated.

The electric circuit shown in Fig. 1 can give an easy hardware implemen-
tation of the approximate fractional function of (4). Consider the circuit
depicted in Fig. 1, such that:

I =
n∑

i=1

Ii, Ri+1 =
Ri

ε
, Ci+1 =

Ci

η
, (11)
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where η and ε are scale factors, I is the current due to an applied voltage
V and Ri and Ci are the resistance and capacitance elements of the i-th
branch of the circuit, respectively.

The admittance Y (jω) is given by

Y (jω) =
I(jω)
V (jω)

=
n−1∑

i=0

jωCεi

jωCR + (εη)i
. (12)

Figure 2 shows the asymptotic Bode diagram of magnitude and phase angle
of Y (jω). According to (5)-(9), the pole and zero frequencies (ωi = ωp,i and
ώi = ωz,i) satisfy the following recursive relationships:

ωi+1

ωi
=

´ωi+1

ώi
= εη,

ωi

ώi
= ε,

´ωi+1

ωi
= η. (13)

From the Bode diagram of amplitude or phase, the average slope ḿ can be
calculated as

ḿ =
log ε

log ε + log η
. (14)

Thus, the circuit of Fig. 1 represents an approach to approximate the im-
plementation of sv, 0 < v < 1, with ḿ = v, based on a recursive pole/zero
placement in the frequency domain.

If a discrete transfer function approximation is sought, the above ap-
proximation in (4) may be discretized, see [26]. There are also methods
that directly provide discrete approximations, as in [27]. Besides, electric
circuits which can serve as exact fractional integrators and differentiators
have also been reported in [23, 28].

Figure 1: Electrical circuit with a recursive association of resistance and
capacitance elements.
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Figure 2: Bode diagrams of amplitude and phase of Y (jω)

2.3. FOPID controller

The differential equation of a fractional order PIλDµ controller is de-
scribed by (see Podlubny [10, 12]):

u(t) = kP e(t) + kID
−λ
t e(t) + kDDµ

t e(t). (15)

The continuous transfer function of FOPID is obtained through Laplace
transform and is given by:

Gc(s) = kP + kIs
−λ + kDsµ. (16)

Design of an FOPID controller involves design of three parameters kP , kI , kD,
and two orders λ, µ which are not necessarily integer. As shown in Fig. 3,
the fractional order controller generalizes the conventional integer order PID
controller from point to plane. This expansion can provide more flexibility
in achieving control objectives.

3. Particle swarm optimization (PSO)

PSO is a population-based evolutionary algorithm that was developed
from research on swarm such as fish schooling and bird flocking [19]. It has
become one of the most powerful methods for solving optimization problems.
The method is proved to be robust in solving problems featuring nonlinearity
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Figure 3: PID controller with fractional order PID

and nondifferentiability, multiple optima, and high dimensionality. The
advantages of the PSO are its relative simplicity and stable convergence
characteristic with good computational efficiency.

The PSO consists of a swarm of particles moving in a D dimensional
search space where a certain quality measure and fitness are being op-
timized. Each particle has a position represented by a position vector
Xi = (xi1, xi2, . . . , xiD) and a velocity represented by a velocity vector
Vi = (vi1, vi2, . . . , viD), which is clamped to a maximum velocity Vmax =
(vmax1, vmax2, . . . , vmaxD). Each particle remembers its own best position
so far in a vector Pi = (pi1, pi2, . . . , piD), where i is the index of that particle.
The best position vector among all the neighbors of a particle is then stored
in the particle as a vector Pg = (pg1, pg2, . . . , pgD). The modified velocity
and position of each particle can be manipulated according to the following
equations:

v
(t+1)
id = wv

(t)
id + c1r1(pid − x

(t)
id ) + c2r2(pgd − x

(t)
id ), (17)

x
(t+1)
id = x

(t)
id + v

(t+1)
id , d = 1, . . . , D, (18)

where w can be expressed by the inertia weights approach [30] and often
decreases linearly from wmax (of about 0.9) to wmin (of about 0.4) during
a run. In general, the inertia weight w is set according to the following
equation

w = wmax − wmax − wmin

itermax
.iter , (19)
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where itermax represents the maximum number of iterations, and iter is the
number of current iteration or generation. Also c1 and c2 are the acceleration
constants which influence the convergence speed of each particle and are
often set to 2.0 according to the past experiences [31]. Moreover r1 and r2

are random numbers in the range of [0,1], respectively. If Vmax is too small,
then the particles may not explore sufficiently beyond local solutions. In
many experiences with PSO, Vmax is often set to the maximum dynamic
range of the variables on each dimension, vdmax = xdmax.

4. Design of H∞-optimal FOPID controller

4.1. Problem description

We consider application of PSO to effectively provide an accurate solu-
tion to the design problems of H∞-optimal FOPID controllers for systems
with uncertainty and disturbance. The problem description is given as fol-
lows. Consider a control system as shown in Fig. 4, where G(s) is the nom-
inal and SISO plant, 4G(s) is the plant perturbation, K(s) is the FOPID
controller, r(t) is the reference input, u(t) is the control input, e(t) is the
tracking error, d(t) is the external disturbance and y(t) is the output of the
system [14]. Without loss of generality, the plant perturbation is assumed
to be bounded by a known stable function

|4G(jω)| ≤ |4W1(jω)|, ∀ω ∈ [0,∞). (20)

A controller K(s) is desired to achieve the following conditions: 1) the
nominal closed loop system ( 4G(s) = 0 and d(t) = 0 ) is asymptotically
stable; and 2) the robust stability condition satisfies the following inequality:

‖W1(s)T (s)‖∞ < 1; (21)

Figure 4: Control system with plant perturbation and external disturbance.
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and 3) the disturbance attenuation performance satisfies the following in-
equality:

‖W2(s)S(s)‖∞ < 1, (22)

where ‖.‖∞ denotes the H∞-norm, which is defined as

‖M(s)‖∞ = max
ω
|M(jω)|. (23)

W2(s) is a stable weighting function specified by designer. S(s) and T (s) =
1− S(s) are the sensitivity and complementary sensitivity functions of the
system with the following representations:

S(s) = (1 + G(s)K(s))−1, (24)

T (s) = K(s)G(s)(1 + K(s)G(s))−1. (25)

A balanced performance criterion to minimize both (21) and (22) simulta-
neously is obtained as the following robust performance condition, [16]:

J∞ = max
ω

√
|W1(s)T (s)|2 + |W2(s)S(s)|2 < 1. (26)

4.2. Enhancing the cost function

Robust stability and disturbance attenuation are often not enough in the
control system design and desired transient, steady-state response charac-
teristics and/or adequate stability margins must also be taken into account.
In the proposed method, the handling of constraint (26) is to recast the con-
straint as an objective to be minimized and, consequently, a weighted-sum
approach is conveniently used. We propose the following cost function to
achieve the desire specifications:

J(k) = w1J∞+w2MP +w3tr +w4ts +w5ESS +w6

∫ T

0
e2(t)dt+

w7

PM
+

w8

GM
.

(27)
Beside the constraint (26), the performance criterion (27) includes over-
shoot MP , rise time tr, settling time ts, steady-state error ESS , integral of
squared-error (ISE ), gain margin (GM ) and phase margin (PM ). The ISE
is evaluated up to T which is chosen sufficiently large so that e(t) is negligi-
ble for t > T . In (27), k is [kP , kI , kD, λ, µ], as controller parameters. If we
set all weights to zero except w1 and w6, the cost is transformed to a mixed
H2/H∞-optimal controller which is studied in [14] and [16]. Consequently,
our proposed cost generalizes the ones in [14] and [16].
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The proposed performance criterion (27) comprises eight terms. The
significance of each is determined by a weight factor wi. It is up to the user
to set the weight factors properly in order to attain the desired specification.
An increase in wi will result in some improvement in the corresponding
feature at the expense of degrading other criteria. Because of particular
significance in satisfying (26), we choose w1 high. For the current study,
selections are w1 = 10, w2 = 1, w3 = 1, w4 = 1, w5 = 1, w6 = 1, w7 = 200
and w8 = 10.

An approach using penalty function (see [32]) is employed to ensure
the stability. Let the performance index (27) be J(k). Then the value of
the fitness of each particle of PSO ki(i = 1, . . . , n) is determined by the
evaluation function, denoted by F (ki) as

F (ki) = P (ki) + J(ki) ; i = 1, . . . , n, (28)

where n denotes the population size of PSO. The penalty for the individual
ki is calculated by means of the penalty function P (ki) given by

P (ki) =
{

P1 ; if ki is unstable,
0 ; else.

(29)

If the individual ki does not satisfy the stability then ki is an unstable
individual and it is penalized with a very large positive constant P1. Au-
tomatically, ki does not survive the evolutionary process. Otherwise, the
individual ki is feasible and is not penalized.

4.3. Design of H∞-optimal FOPID controller using PSO

The H∞-optimal FOPID controller design problem is to find the optimal
k = [kP , kI , kD, λ, µ] from search space to minimize the objective function
F (k) in (28) subject to the inequality constraint (26). Chen and Cheng
[16] used prior domain knowledge, i.e., the Routh-Hurwitz criterion, for
decreasing the domain size of each design parameter ki. In this study, we
do not use any domain knowledge to confine the search space in order to
demonstrate the strong search ability of PSO in efficiently obtaining a near-
optimal solution to the investigated problem.

The proposed PSO-based method for finding a near-optimal solution to
the H∞-optimal FOPID controller design problem is described as follows:

1. Randomly initialize the individuals of the population including search-
ing points and velocities in the search space.

2. For each initial individual ki of the population, calculate the values of
the evaluation function in (28).
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3. Compare each individual’s evaluation value with its personal best pid.
The best evaluation value among the pids is denoted as pgd.

4. Modify the member velocity of each individual ki according to (17),
where the value of w is set by (19).

5. Modify the member position of each individual ki according to (18).

6. If the number of iterations reaches the maximum, then go to Step 7,
otherwise, go to Step 2.

7. The latest Pg is the optimal controller parameter.

The flowchart of the algorithm is also shown in Fig. 5.

5. Illustrative examples

The following parameters are used for carrying out the FOPID design
using PSO:

• The members of each individual are kP , kI , kD, λ and µ.

• Population size =30.

• Inertia weight factor w is set as (19), where wmax = 0.9 and wmin =
0.4.

• The limit of change in velocity is set to maximum dynamic range of
the variables on each dimension.

• Acceleration constants c1 = 2 and c2 = 2.

• Maximum iteration is set to 1000.

• ωl and ωh in (5)-(9) are set to 10−5 and 105 rad/s respectively.

• The order of approximation in (4) is set to N = 7.

• T in (27) is set to 100s.

• P1 in (29) is set to 106.

5.1. Example 1
Consider a phase-locked-loop motor speed control system [16] as in

Fig. 4, where
G(s) =

68.76
s(0.05s + 1)

.

Suppose the system suffers from the external disturbance
d(t) = 0.1e−0.1t sin(0.8πt) and the plant perturbation
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Figure 5: Flowchart of the proposed method
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4G(s) =
0.5

s2 + 0.2s + 8
.

Note that the plant perturbation is unknown in fact but bounded by the
following known stable function:

W1(s) =
0.6

s2 + 0.2s + 8
.

To treat the disturbance attenuation problem, the weighting function W2(s)
is chosen as

W2(s) =
0.5s + 0.05

s2 + 0.2s + 6.3265
.

The plant perturbation and weights are taken from [16]. An FOPID con-
troller is to be designed to minimize (28). The lower bounds of the five
controller parameters are zero and their upper bounds are set to kP max =
kI max = kD max = 100 and λmax = µmax = 2. We performed 10 trials for
the proposed method. The best solution is summarized in Table 1 in com-
parison with conventional H∞ controller, two mixed H2/H∞ controllers,
and an optimal PID controller which is designed based on our proposed
method and the same cost function (28). The step response of the system
under the external disturbance is shown in Fig. 6 for different controllers.
The conventional H∞ controller which has an order of six has apparently
the best H∞-norm among all controllers. However, its transient response
characteristics are not desirable. The mixed H2/H∞ controllers include ISE
and ITSE criterion in addition to the H∞-norm. They have been able to
improve the transient response characteristics at the expense of some degra-
dation in H∞-norm. We applied our proposed method to design an optimal
PID controller. This controller further improves the transient response at
the cost of further degradation in H∞-norm. The proposed FOPID up-
grades the PID controller by reducing the H∞-norm from about 0.89 to
0.787. The proposed technique offers flexibility of control and compromise
over different performance characteristics.

5.2. Example 2

Electromagnetic suspension systems can suspend objects without any
contact. The increasing use of this technology in its various forms makes
the research extremely active. The electromagnetic suspension technology
has already applied to magnetically levitated vehicles, magnetic bearings,
and so on. Recent advances on this field are shown in [33]. The structure
of the electromagnetic suspension system is shown schematically in Fig. 7.
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Figure 6: Step response of the system in the presence of external disturbance

Figure 7: Schematic diagram of the electromagnetic suspension system
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The plant considered is:

G(s) =
−36.27

(s + 66.94)(s− 66.94)(s + 45.69)
.

The plant perturbation is:

W1(s) =
1.4× 10−5(1 + s/8)(1 + s/170)(1 + s/420)

(1 + s/30)(1 + s/35)(1 + s/38)
.

The weighting function W2(s) is chosen as:

W2(s) =
200

1 + 10s
.

The weights are taken from [33]. A PID and an FOPID controller are
designed based on the cost (28). The lower bounds of the five controller
parameters are zero and their upper bounds of them are set to, kP max =
kI max = kD max = 1010 and λmax = µmax = 2. We performed 10 trials
for the proposed method. The best solutions are summarized in Table 2 in
comparison with conventional H∞ controller which has an order of seven.
Step response of the system with the proposed FOPID controller and con-
ventional H∞ controller is shown in Fig. 8 (note that the PID response has
not been shown in this figure as it would mask the other two responses by
its highly oscillatory nature and large overshoots).

The FOPID controller apparently provides a more desired transient re-
sponse as compared with the conventional H∞ controller and the PID con-
troller. As compared to the H∞ controller, the FOPID not only improves
the transient response characteristics, it also improves the H∞-norm from
0.063 to 0.061. This is justifiable as we are implementing our FOPID con-
troller using a rational transfer function of order 15 while the controller has
an order of 7. The PID controller is marginally stable and, indeed, it cannot
achieve our control objectives while the FOPID does it.

6. Conclusion

In this paper, an H∞-optimal FOPID controller is designed using the
particle swarm optimization algorithm. To achieve desirable response char-
acteristics as well as robustness features, we combined the H∞-norm with
several response indices to generate an extended cost function. This cost
function facilitates control over different features at the cost of some degra-
dation in the H∞-norm. The fractional order PID offers further improve-
ment in the H∞-norm and provides a more robust system as compared
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Figure 8: Step response of the system with both FOPID and H∞ controller

to the rational PID. Simulated examples on a motor speed control and a
suspension system confirm the desired features of our proposed FOPID con-
troller.
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