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Abstract

Based on the fractional g—integral with the parametric lower limit of
integration, we consider the fractional g—derivative of Caputo type. Es-
pecially, its applications to g-exponential functions allow us to introduce
g—analogues of the Mittag—Leffler function. Vice versa, those functions can
be used for defining generalized operators in fractional g—calculus.
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1. Introduction

The calculus of the real order derivatives and integrals has become very
suitable apparatus in describing and solving a lot of problems in numerous
sciences, such as physics, electrochemistry and material science (see, for
example [12]). Their treatment from the point of view of the g—calculus can
additionally open new perspectives as it did, for example, in optimal control
problems [5].

Starting from the g—integral

(o)) = [ @)t =2 =03 1) 0=l <1, ()

k=0
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(Iaf) (@ (/f dt—/f’dt—/f’ (2)

the iterated g-integral operator I, is defined by

and

R.f=f  IJf=ILaI7'f) (n=1,23,.).

The reduction of this iterated g—integral to a single integral of one variable
was considered by Al-Salam [3], by a g—analogue of the Cauchy formula

xn—l x
(17, f)(x) = [n—l]q'/a (qt/x;q)n—1 f(t) dgt (neN), (3)
where
[alg == 11—_qq“ (a eR), H ' (neN),
k=1
and
N = ad wa) = (@@
(a;9)o0 = g(l q') , (a;q)a = (20”; @)oo (@, €R) . (4)

Al-Salam [2] and Agarwal [1] introduced several types of fractional ¢—
integral operators and fractional g—derivatives, always with the lower limit
of integration being zero. However, in some considerations, such as the
construction of a ¢—Taylor formula or solving of g—differential equation of
fractional order, it is interesting to allow nonzero lower limit of integration.

Therefore, we define the fractional ¢g—integral in the following way.

DEFINITION 1.1. The fractional q—integral is

xafl T
1))@ = fos [ @z S dt @eRT). )

where the ¢—Gamma function is defined by
Ty(z) = (g Q)a1(1— )" . (6)

LEMMA 1.1. The fractional g—integral (5) can be written in the equiv-
alent form

:/wfwdwmaw (a €R),
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where the function wq(x,t) is defined by
1

Lg(a+1) ($
The permission for the lower limit of integration to take some nonzero

value, brings a lot of troubles while working with fractional g—calculus (see

[13]).

Here are some of the properties of the previously defined integral.

We(z,t) = * — 3%(t/x;q)a) (a eRY).

THEOREM 1.2. Let a,3 € R*. The q—fractional integration has the
following semigroup property

(I2.10.f)(x) = (IgF°f)(x)  (0<e<w).

In [13] the next useful statement is proven.
LEMMA 1.3. Fora € RT, A A+« € R\ {-1,-2,...}, the following

fractional q—integral is valid:

Ig(xMc/z5q)n) = m 2 Mefz;q)arn  (0<c<az). (7)

2. The fractional g—derivative of Riemann-Liouville type

The g—derivative of a function f(x) is defined by
f(z) — f(qz)

T —qr

(Do) () = (2 £0),  (Dyf)(0) = I (Dyf) (@)

and the g—derivatives of higher order, resp.:
DVf=f, Dlf=DyDlf) (n=1,23,.). (8)

On the basis of fractional g—integral, we can define g—derivative of real
order.

DEeFiNiTION 2.1.  The fractional g—derivative of Riemann—Liouville
type of order v € R is

(D2 f) () = (DlTr]al =2 f) (@), (9)

where [« denotes the smallest integer greater or equal to a.

Some useful relations are true:
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LEMMA 2.1. For 0 < ¢ < z, the operators Dy and I, satisly:
(Dgelgef) (@) = f(z) .

LEMMA 2.2. For A € R\ {—1,-2,...} and 0 < ¢ < =z, the following
relation is valid:

FQ(A—i_ 1) Afa(

= i Dr—a, a—AER\N,
T,h—atD ¥ (GTiha, a=reRA

DS (aMc/z;q)y) =
0, a—ANeEN.

3. The fractional g—derivative of Caputo type

If we change the order of operators in (9), we can introduce another
type of fractional g—derivative.

DEeFINITION 3.1. The fractional g-derivative of Caputo type of order
a € RT is defined as

(«Dgef) (@) = (12Dl f) @) - (10)

It is important to establish the connection between the two types of the
fractional g—derivatives (9) and (10).

THEOREM 3.1. Let o € R\ Ny and 0 < ¢ < x. The following con-
nection between the Caputo type and the Riemann-Liouville type fractional
integral holds true:

[a]—1 k
(Dgf)(e)
> Tasica

(D5 f)(x) = («Dgof)(x) + A+k—a) A (L) TR

k=0
The proof is pretty long, so we will omit it here.

LEMMA 3.2. For a € RT\N and X\ € (—1,00), the following is
valid:

D2 (zM(c/z;9)5) , [a] —AER\N,

*DZC(JTA(C/UC;Q),\) = . ol aen
, al]-AeN.
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THEOREM 3.3. For a € Rt \ Ny and a < wx, we have the following
relation:

(D f) (@) = («DgaDyf) (2).

Proof. Since a € RT\Ny, we can write « =n+e,n € Ny, 0 < e < 1.
Then o+ 1€ (n+1,n+2), so we get

(D (@) = (112 Dr 2 f) (2)
= (135D Dy f) () = (DS 4 Def) () .

"
THEOREM 3.4. For a € Rt \ Ny and a < =,
Dl—a]
(Dg «Dgaf) (@) = (« Da+1f)( ) = m ﬂfm_a_l(a/%@[a]—aA :

THEOREM 3.5. Let o € RT\N. Then, for a < z, the following is valid:

[a]-1
(Iga «Dgaf)(@) = flz) = Y (Dgf)(@)

ZL'k a/x;
pr [k]q' ( / 7Q)k

P r o o f. Really, we have

(I Do f) (@) = (I 1)l DleT £) () = (1}2] DIV f) ()
[a]—-1 k) (a
— st — > P g,
k=0 7

THEOREM 3.6. Let o € RT\N. Then, for a < z, the following is valid:
(«Dgalgaf)(@) = f(x) .
P roof. According to the previous theorems, we can write

1A (DEIg. ) a)

(Dt?éa[gaf)( ) (Dgajt(]laf)( )_ Z F(l—I—k—a) a(a/m;Q)kf
k=0 9
[a]-1 a—k a

= fl@)= ) mzka(“/x;Q)k—a = f(z) .

k=0
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THEOREM 3.7. Let o« € RY\ N, 3 € R and a > 3. Then, for a < x,
the following relations hold:
(«Dgalgaf) ()

o [a—pB]—1 (Dkf) (a) .
= (DN Y. st @/ iars

k=0
(Ia «Dgaf) (@)
[a]—1 k
_ a—0 o (D f)(a) k—a+p8 .
— (*Dq,a )(.’IJ) k:{;ﬁ“ Fq(k} _qa _’_5+ 1)'%. * (a/x,Q)k,aJrﬁ .

For ideas of the proofs of the propositions in this section, one can see in
[13] and [14].

4. On g—analogs of the Mittag—Leffler function
In the mathematical literature (see for example, see [12], [8], [9]) the

Mittag-Leffler (M-L) function (of two indices) is already well known and is
defined by

E.p(x) = 7;) m (a, € C: Re(a) >0, Re(B) >0) .

(11)
The function E(x) = E4,1(z), as a direct generalization of the exponential
and trigonometric functions, was introduced first in the paper [11] by G.
Mittag—LefHler in 1903. It always appears when solving fractional order
differential or integral equations. Nowadays, it is involved in the treatment
of many concrete problems in various applied sciences.

The g—exponential functions (see [6]) can be written by the power series

(-%'QQ)OO 0 (Q;Q)n (‘x’ = 1) ’
< ()
I i
Eq(l') = ( 7‘])00 o (q7 q)n )

or, applying the g—form of the Taylor theorem, by
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(ceR; |e] <lzl), (12)

¢ 2 (c/ziq)n

(—c@n  (©Dn (cecR). (13)

n=0

COROLLARY 4.1. Fora € RT and 0 < ¢ < z, the following q—fractional

integrals are valid:
(6% (6% > xa+n c .’E, q a—T+n
Iq,C(eq@)) = (1-9q)" eqlc) (/Do

(Q; Q)a—l—n

)

n=0
¢) 2 (/2 q)arn
(= Dn (¢ @Datn

IE(By@) = (1-0)" B0

n=0

Proof According to Lemma 1.3, we have

Igjc(a}”(c/%Q)n) 1 Ly(n+1) e
(¢ 9)n " (¢ 9)n Ly(n+a+1) (¢/2; @)nta
_ (1 — e BN/ T Dnta
— (@ Datn

Applying this to formulas (12) and (13) we get the required identities. m

The previous corollary indicates that it is necessary to define functions
which are g—analogues of the Mittag—Leffler function (11).

DEFINITION 4.1. The function

oo xan—i—,@—l(c/x; Q)oerﬂfl

(q; Q)a n+8—1

Cqa,6(7; ¢) = (lef <lzl),  (14)

n=0

(¢,2,¢,a,8 € C; Re(a),Re(B) >0, [q <1) (15)

we shall call the small g—Mittag—Leffler function. Similarly, the big q—
Mittag—Leffler function is introduced as

an+pB—1
Egap(z;c) = i q( i) 2P e/ 5 Qan+p-1 (16)
. n=0 (_C§ Q)an+5*1 (q;q)an+ﬁfl ,

with the same conditions (15).
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Evidently, in the limit case, we get

lim lim ey, 5((1 — ¢); ¢) = lim lim Eg. (1 — q)x;¢) = 21 E, g(2%) ,

q—1c—0 q—1c—0

and especially,
eq1,1(7;0) = eq(x), Eg1,1(2;0) = Eg(x)

THEOREM 4.2. The following g—fractional integrals are valid

Igc(eq(2)) = (1= q)* eq(c) egrari(zic)
I&C(Eq(x)) = (1- q>aq(a;1) Eq(cqfa) Eq1,a+1 (xqi(X;qua) :

P r oo f The first statement is obvious. The second one requires some
additional simplification.
Applying the relation (4) and (4), we can write

. _ <_Cq_a;q)n+a - (_Cq_a;Q)n—‘rOc (_C§ Q)oo
(_C, Q)n - (_cq—a;q)a - (_Cq_a§Q)oo
Eq(c)

E, (cq) ‘

The second statement of Corollary 4.1 can be written in the form

= (_qua; Q)n—i—a

00 (;) ot (o) oin
Ig.(By(x)) = (1= q)* Eq(c)z q (¢/x; q)art

= (—cqn (G Datn

a+1

— (1—q)* (") Ey(cq™)

— g("2%) (g~ )" (cq~*/2q™ " Q)atn
<
= (—cq

)

% Qnta (@ @Qatn

wherefrom the second relation follows. n

COROLLARY 4.3. For a € R\Ny, the Riemann-Liouville (R-L) fractional
q—derivatives of the q—exponential functions are:

o _ eq(c) - x C/x;Q)nfa
Daclealz)) = (1—q) HZ:% (43 Dn—a

n—o (
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o] =1
eq(c) 2" (e/% Pna
= + €q: o —Q CU, ¢ ’
(1-q) nzz;) (% Dn-a el
and
Eye) 5~ q®) 2" 0(e/rig)ua
D& (Ey(z)) = 2 ’
q, ( q( )) (1 — q)a r;) (—C, q)n (qa Q)n*a
(D5, q ) ag ) e/ 550)
2 4+ Byt o —at1 (2¢%; cg®
(- —q Z —cq” Q)n o (¢ Dn-a ool |

COROLLARY 4.4. Fora € R\Ny, the Caputo (C) fractional g—derivatives
of the g—exponential functions are:

o . eq(c) = xnia(c/xﬂﬁn—a
*Dq,c(eq(l‘)) - (1 — q)a et (q; Q)n—a
] - (161(2))a €q1,[a]—a+1(5€)
o B 5 a) am(e/aig)ea
Dq, (Eq(x)) - (1 _ q)a ng[;] ( c q) (q; Q)n—a
q(g)Eq(cqa)

o Eg1fal—a+1(2q%; c%) .
From now on, we suppose that 0 < ¢ < z and «, 3 € R.
THEOREM 4.5. For «,( > 0, the following is true:

2P (c/x; q)5-1

€q;a,8 (1‘; C) = (Q' Q)ﬁfl + €g:a.8+a (xQ C) s

) 51
(" 27 e/z;9)p-1
E,oplx;c) = + B, x;c) .

P r o o f. Starting from (14), by shifting of the counter index, we have

= $a(n+1)+ﬁ_1(c/9ﬁ;Q)a(n+1)+ﬁ—1
egafra(Tic) =

=0 (q; q)a(n-‘rl)—i—ﬁ—l

o0

_ xoerﬁil(C/-%; Q)an-i-ﬁ—l _ xﬁil(c/-m Q)ﬁ—l
= (¢ @)an+p-1 (¢59)p—1
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We get the second identity in the same way, starting from (16). [

THEOREM 4.6. For m € N and [ > m, the following differentiation
formulas hold:

D;n (e%aﬂ(l‘; C)) = (1 - Q)im eq;a,ﬁ—m($§ c) s
" g A
Dq (Eq;a,ﬁ(x;c)) = (1-¢9) : Eq;a,ﬁ—m(-rq ;eq™) -
(_Ca Q)m

The fractional g—integrals of the g—Mittag—LefHler functions are given in
the next statement.

THEOREM 4.7. For «,f3,u > 0, the following q—integrals are valid:
Izﬁc(eq;a,ﬂ(%c)) = (1-g" eq;a,ﬁJru(xSC) )
1 _ _ _
1 (Bgap(@io)) = (1=a)" a2 ) (—eq™5q), Bgapip(za™;ca™) .
The following two special cases are interesting. The second one follows
from Theorem 4.5.

COROLLARY 4.8. For «,( > 0, the following formulas hold:

1P (egap(@ic)) = (1—q)° egasplasc) ,
B+1 _ B -
I (Bgap(@i0)) = (1-a) ¢ (—cq5q)p Egazp(a™cq™?) .

COROLLARY 4.9. For «,( > 0, the following is true:

2P/ g B
Igc(eq;a,ﬁ(1'§c)) = (1 — Q)a(eq;aﬁ(%;c) _ ( / ’Q),@ 1)

(Q; Q)6—1
a+1 _ _ _
1§ (Bga,p(x;c) = (1 —q)* ¢ (g q)a Egap(za i cq®)
—a+p8-1 _
—(1—¢)" ¢ P efaq)pa

(—¢q)—atp-1 (¢:9)p-1

COROLLARY 4.10. For «,f > 0, the following differentiation formulas
are true:

Dg,c(e%a:ﬁ(x;c)) = (1 - Q)_ﬁ eq;a,a(xQC) ,
i .
(—ea)p

Dy (Egap(z;0)) = (1—q)7" Eyaa(@d®; cq
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COROLLARY 4.11. For «,f > 0, a # (3, the following is true:

(O Q)ﬂa1>

(45 9)g—a—1

Dje(egap(wic) =(1—q)™° (eq;a,ﬁ(w; ¢) +

q(3)
DZC(Eq;a,ﬁ(l'; C)) = (1 _ q),a

(=€ q)a
(=57 (zq*)P~*"e/2;9) 50
o pqty 4 g 19)f-a1
% (Eq?o"ﬁ(xq eq”) (—¢q™;q)p—a-1 (¢; 4)B-a—1 ) '

THEOREM 4.12. Fora, 3 > 0, such a—f € Ny, the function e, g(T2; TC)

(7 € R) is an eigenfunction of the operator DY
o

g.cr 1€

-
Dje(egap(re;Te)) = ( €gsa,(TT;TC) .

1—q)°

P r o o f Using (14) and Lemma 2.2, and by shifting of the counter
index, we get

1 om—l—ﬁ—l
Dy (eq,a BLTZL; Tc Z Tontos Dye <

(C/:E; Q)om—l—ﬁ—l )
(‘Z; Q)an+ﬂ—1

S pamts-at 2 /1 Qoo
1 - q n—1 (Q; Q)an+ﬂfa71
_ T — (12)°" P (c/x; @) ant 51
(1 - Q)a n—0 <Q; Q)an+ﬁfl

7_0(

= 7(1 — e eqap(TX;TC) .
[

THEOREM 4.13. For «,3 > 0, such that [a] — f € Ny, the function

eqap(T2;7C) (T € R) is an eigenfunction of the operator ,DY ., i.e.
(04

a,c’
.

«Die(egap(rai7e)) = 1—qe €qia,p(TT;TC) -

P roof. By using (14) we get

> an+p-1 )
+Dg.c(egiap(r7;7C)) = *D;C(Z (rz) (¢/; q)an+g1>

n=0 (q; q)an+ﬁ—1
> €T
= Yooy
n=0

an+06—1

(C/$§ Q)an—‘rﬁ—l )
(Q; Q)om-i-ﬂ—l .
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If [a] — 8 =m € Ny, according to Lemma 3.2, we have that
*Dgc(xﬁ_l(c/x;q)g,l) =0.

Therefore,

00 om—l—,B—l(/ . )

o x C/T;4)an+6—1
D (egog(ta;Te)) =Y ronth-asl po ( )
* q7C( anyﬁ( )) Z g (q; Q)anJr,Bfl

n=1

« > om-i—,ﬁ’—a—l(

_ T an+fB—a—1 £z
= — T
(1 _ q)a Z

n=1

C/J;; Q)an+ﬂ—a—1
(Q§ Q)oer,Bfafl

«

0 an+p-1 .
x c/x; _
T g () (¢/; @)an+5-1 = ega,p(TE;TC)

(1-q) &= (43 @)an+p-1 (1—q)°

5. From the ¢g—analogues of the Mittag—Leffler function
to g—integrals and ¢—derivatives

Following the notions and considerations in Kiryakova [8, Ch.2, Ch.5]
and [9], we can define the fractional g—integral and fractional g—derivative
of any function, using the g-analogues of Mittag-Leffler functions as gen-
erating functions of some Gelfond-Leontiev (G-L) operators for generalized
integration and differentiation.

Let us consider a function ¢(x;q) of the form

P(2:0) =Y nl@)x™ N c/a ) anso1 - (17)
n=0

By means of its coefficients ¢,,(q), we can define two G-L operators: of

integration ngf and resp., of differentiation Lngg , in the following way:

if a function f(z) is given by the expansion

f(:L‘) = Z anl‘an—’—ﬁ_l(c/l‘; Q)an-i-ﬁ—l )

n=0

then

Lfg’ff(ﬂ?) = Z anwxa(nJrl)Jrﬁl(C/l,; Q)a(n+1)+ﬂfl ’ (18)

n=0
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and

LD @) = 3 an ot g D i)y - (19

n=1

The following statement is then true.
THEOREM 5.1. If ¢(2;q9) = egaa((1 — q)z;(1 — g)c), then ng,’; is
a fractional gq—integral operator IS, and LDZ;CII is a Caputo fractional q—

q,c’
derivative operator , D%
q7c

Proof. The expansion of the function ¢(z;q) = ega,1((1—¢); (1—g)c)
in the form (17) has coefficients

on(q) = m (n € Ng) .
Hence, for
Z an 2" (c/2;Q)an
we have
Lt te Z_: :‘::)1) (iq;—qc);;ln 2D e/ q)a(ni)
nZan q)i(j‘:l) 22 (/2 q) a(nt1)
= Zan (/2 @)an) = Igef (@) -

Similarly,

a - 1-— q o(n=1) q59)an aln—

/%5 Q) a(n—
" (a; Q)a(nfl) (1 —q)em /%5q) (n—1)
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ExAMPLE 5.1. Especially, if @ = 1, the operators LI&’; and LDfp“j; be-

come fractional g-integral operator I, . and fractional g—derivative operator
D, respectively.
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