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Abstract

We obtain a criterion of Fredholmness and formula for the Fredholm index
of a certain class of one-dimensional integral operatorsM with a weak singular-
ity in the kernel, from the variable exponent Lebesgue spaceLp(·)([a, b], %) to the
Sobolev type spaceLα,p(·)([a, b], %) of fractional smoothness. We also give formu-
las of closed form solutionsϕ ∈ Lp(·) of the 1st kind integral equationM0ϕ = f ,
known as the generalized Abel equation, withf ∈ Lα,p(·), in dependence on the
values of the variable exponentp(x) at the endpointsx = a andx = b.
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1. Introduction

We study the solvability of the following integral equation of the first kind

(Mϕ)(x) :=

b∫

a

c(x, t)
|x− t|1−α

ϕ(t) dt = f(x), x ∈ (a, b), (1.1)

where0 < α < 1 and the functionc(x, t) may have a jump at the diagonal:

c(x, t) =
{

u(x, t), if t < x
v(x, t), if t > x.

The interval(a, b) may be finite or infinite. For definiteness we give the final
results for the case of a finite interval,−∞ < a < b < ∞, the case of a half
axis or axis requiring some technical modifications. However, occasionally we
formulate some auxiliary results for the caseb = ∞, when this does not require
special modifications.

Equations of type (1.1), including especially the case of jump ofc(x, t) at the
diagonalt = x, have various applications. They were widely studied in the setting
when the solutionϕ was looked in the Lebesgue spaceLp(a, b) or Lp([a, b], %),
see§30 in [21] and references therein.

In applications it may happen that a solution of the equation is looked for in
a more general setting: the solution may haveLp-behavior at one end point of the
interval and be for instance bounded at another end point. Or, more generally, it
may belong toLp1 near one end point and toLp2 near another end point, with
differentp1 andp2. This generalization, in its turn is a particular case of a more
general setting related to the so-called variable exponent Lebesgue spaces, when
the order of integrabilityp may be a function ofx. Last years there was observed an
enormous rise of interest to the study of the so-called variable exponent Lebesgue
spaces and operator theory in such spaces, influenced both by theoretical interest
and possible applications revealed in [18], we refer in particular to the existing
surveys [3, 9, 20], in this topic, and papers [10, 12] mostly related to the content
of this paper.

This paper deals with such a setting when the solutionϕ(x) is integrable with
variable exponentp(x). The right-hand sidef(x) of the equation in this case runs
the fractional Sobolev spaceLα,p(·) with variablep(x). One of the main points in
the study of equations of type (1.1) is to reveal the influence of the endpoints of
the interval onto the picture of solvability. Making use of the recent progress in
the variable exponent analysis, we show that it is possible to “localize” the values
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of p(x) in this influence, namely we show, under the natural assumptions onp(x),
that only the valuesp(a) andp(b) are important in the study of the solvability of
the equation, the Fredholmness criterion and formula for the index depending on
the valuesp(a) andp(b), but not depending on the values ofp(x) in the inner
points of the interval.

The paper is organized as follows.

An essential part of the paper contains necessary preliminaries, given in Sec-
tion 2, where we have to present necessary tools related to variable exponent spaces
(Subsection 2.1, on maximal, singular, convolution and potential operators in such
spaces (Subsections 2.2-2.3), Marchaud fractional derivative in connection with
variable exponent (Subsection 2.4), fractional Sobolev spaces with variable expo-
nent (Subsection 2.5) and Fredholmness of singular integral operators in variable
exponent Lebesgue spaces (Subsection 2.6). Making use of these tools, we inves-
tigate the Fredholm nature of the operatorM in Section 3. The main result on
Fredholmness is given in Theorem 3.23 and closed form solution formulas for the
generalized Abel equation are considered in Subsection 3.4.

NOTATION:

B(x, r) = {y ∈ Rn : |x− y| < r};
% is a weight,i.e., an a.e. finite and a.e. positive function;
P(Ω) andP1(Ω), see (2.2)-(2.3);
w-Lip (Ω), see (2.4);
w-Lipx0 (Ω), see (2.13);
M is the maximal operator, see (2.7);
P%(Ω) is the set of exponentsp ∈ P(Ω) such thatM is bounded inLp(·)(Ω, %).

2. Preliminaries

2.1. On spacesLp(·) with variable exponents

Although our main results concern the one-dimensional casen = 1, some
auxiliary statements below are given for the multidimensional case. We refer to
[14, 19] for details on variable Lebesgue spaces over domains inRn, but give
some necessary definitions. For a measurable functionp : Ω → [1,∞), where
Ω ⊂ Rn is an open set, we put

p+ = p+(Ω) := ess sup
x∈Ω

p(x) and p− = p−(Ω) := ess inf
x∈Ω

p(x).
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In the sequel we use the notation

P(Ω) := {p ∈ L∞(Ω) : 1 < p− 5 p(x) 5 p+ < ∞} (2.2)

and
P1(Ω) := {p ∈ L∞(Ω) : 1 5 p− 5 p(x) 5 p+ < ∞}. (2.3)

The generalized Lebesgue spaceLp(·)(Ω) with variable exponent is introduced
as the set of functionsϕ onΩ for which

Ip(ϕ) :=
∫

Ω
|ϕ(x)|p(x)dx < ∞.

By w-Lip (Ω) we denote the class of exponentsp ∈ L∞(Ω) satisfying the
log-condition

|p(x)− p(y)| 5 C

− ln |x− y| , |x− y| 5 1
2
, x, y ∈ Ω. (2.4)

In case of unbounded domains we also refer to the decay condition

|p(x)− p(∞)| 5 C

ln(1 + |x|) , x ∈ Ω. (2.5)

By p′(x) we denote the conjugate exponent:1p(x) + 1
p′(x) ≡ 1.

The weighted Lebesgue spaceLp(·)(Ω, %) is defined as the set of all measur-
able onΩ functionsϕ for which

‖ϕ‖Lp(·)(Ω,%) = ‖%ϕ‖Lp(·)(Ω) = inf
{

λ > 0 : Ip

(%ϕ

λ

)
5 1

}
< ∞.

The notation‖ϕ‖Lp(·)(Ω) and‖ϕ‖p(·) will be used interchangeably, when no
ambiguity arise.

In [12] the following theorem was proved.

THEOREM 2.1. The classC∞
0 (Rn) is dense in the spaceLp(·)(Rn, %) if

p ∈ P1(Rn) and [%(x)]p(x) ∈ L1
loc(Rn). (2.6)

LEMMA 2.2. Let Ω be a bounded domain inRn andp ∈ P(Ω)
⋂

w-Lip (Ω).
There exists an extensioñp(x) of p(x) to the whole spaceRn such that̃p(x) ≡
p(x) for x ∈ Ω, p̃ ∈ P(Rn)

⋂
w-Lip (Rn) and p̃(x) is constant outside some

large fixed ball.
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2.2. On maximal and convolution operators inLp(·)

Let

(Mϕ)(x) = sup
r>0

1
rn

∫

B(x,r)
T

Ω

|ϕ(y)|dy (2.7)

be the Hardy-Littlewood maximal operator. For dilations

(Kεf) (x) =
1
εn

∫

Rn

k

(
x− y

ε

)
f(y)dy

there is known the following statement, see [2] for the non-weighted case, which
was extended to the weighted case in [16] as stated below.

THEOREM 2.3. Let % be a weight,%−1 ∈ L
p′(·)
loc , p ∈ P1(Rn) andk(x) be an

integrable function onRn with A :=
∫

Rn

sup
|y|=|x|

|k(y)|dx < ∞. Then:

i)
∣∣∣∣ sup

ε>0
(Kεf) (x)

∣∣∣∣ 5 A(Mf)(x) for all f ∈ Lp(·)(Rn, %),

so that

ii)
∥∥∥∥ sup

ε>0
(Kεf) (x)

∥∥∥∥
Lp(·)(Rn,%)

≤ C1‖f‖Lp(·)(Rn,%)

in the casep(·) ∈ P%(Rn). If in addition
∫

Rn

k(y)dy = 1, and%(x) satisfies

condition(2.6), then also

iii) (Kεf) (x) → f

asε → 0 in Lp(·)(Rn, %) and almost everywhere.

By Theorem 2.3, the boundedness inLp(·)(Rn, %) of the maximal operator
guarantees that of convolution operators

(Af) (x) =
∫

Rn

k(y)f(x− y)dy

whose kernelk(x) has a decreasing integrable dominant. However, the bound-
edness of the maximal operator requires in general the local log-condition (2.4).
Meanwhile, for rathernicekernelsk(x) this condition may be avoided, see [4, 5,
Corollary 4.7].
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2.3. Boundedness of potential and singular operators
in weightedLp(·) - spaces

We consider power type weights of the form

%(x) =
m∏

k=1

|x− xk|βk , xk ∈ Ω, k = 1, 2, . . . , m, (2.8)

where
− n

p(xk)
< βk <

n

p′(xk)
, k = 1, 2, ..., m. (2.9)

The following result was proved in [13] for a single power weight, but its
validity is extended to the case of a finite product of power weights as in (2.8),
by standard means using unity partition, see for instance, [15, Remark 2.7] or [16,
Section 5].

THEOREM 2.4. Let Ω ⊂ Rn be a bounded domain, letα(x) ∈ L∞(Ω) and
ess infx∈Ω α(x) > 0, let p ∈ P(Ω)

⋂
w-Lip (Ω) and let%(x) be weight of form

(2.8) with xk ∈ Ω. Under condition(2.9) the operator

(
Iα(·)
% f

)
(x) = %(x)

∫

Ω

f(y) dy

%(y)|x− y|n−α(x)

is bounded in the spaceLp(·)(Ω).

We will consider the “unilateral” one-dimensional potential operators

(
Iα
a+ϕ

)
(x) =

1
Γ(α)

∫ x

a

ϕ(t)
(x− t)1−α

dt, x > a; (2.10)

(
Iα
b−ϕ

)
(x) =

1
Γ(α)

∫ b

x

ϕ(t)
(t− x)1−α

dt, x < b, (2.11)

as well, whereα > 0, known also as Riemann-Liouville fractional integrals, left-
sided and right-sided, respectively [21].

The following theorem on the boundedness of the singular operator

(Sϕ)(x) =
1
π

b∫

a

ϕ(t) dt

t− x
, x ∈ (a, b)

was proved in [12].
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THEOREM 2.5. Let−∞ < a < b < ∞ and letp ∈ P(a, b)
⋂

w-Lip (a, b).
The operatorS is bounded in the spaceLp(·)[(a, b), %], where% is weight of form
(2.8) with xk ∈ [a, b], k = 1, 2, . . . , m, if and only if

− 1
p(xk)

< βk <
1

p′(xk)
, k = 1, 2, . . . ,m.

2.4. Marchaud fractional derivative

Let nown = 1 andΩ = [a, b], where−∞ < a < b 5 ∞, and consider the
spaceLp(·)[(a, b), %] with the weight

%(x) =
{ |x− a|µ(x)|b− x|ν(x) when b < ∞
|x− a|µ(x)(1 + |x|)ν(x) when b = ∞ , (2.12)

where the exponentsµ(x), ν(x) are bounded functions which have finite limits
µ(a) = lim

x→a
µ(x), ν(b) = lim

x→b
ν(x). We need the following notation for the class

of exponents of the weight admissible in the sequel.

DEFINITION 2.6. Let Ω = (a, b), where−∞ 5 a < b 5 ∞ and let
x0 ∈ [a, b]. By w-Lipx0(Ω) we denote the class

w−Lipx0(Ω) =

{
µ ∈ L∞(Ω) : |µ(x)− µ(x0)| 5 A

ln 1
|x−x0|

, |x− x0| 5 1
2

}
,

(2.13)
in casex0 6= ∞, and

w−Lip∞(Ω) =
{

µ ∈ L∞(Ω) : |µ(x)− µ(∞)| 5 A

ln(2 + |x|)
}

. (2.14)

Forµ ∈ w-Lipa(a, b)
⋂

w-Lipb(a, b) with −∞ < a < b < ∞ one has

|x− a|µ(x)|b− x|ν(x) ≈ |x− a|µ(a)|b− x|ν(b). (2.15)

Similarly, for µ ∈ w-Lipa(R1)
⋂

w-Lipb(R1)
⋂

w-Lip∞(R1)

|x−a|µ(x)|b−x|ν(x) ≈ |x−a|µ(a)|b−x|ν(b)(1+|x|)µ(∞)+ν(∞)−µ(a)−ν(b). (2.16)

REMARK 2.7. From Theorem 2.1 it is easy to derive that the classC∞
0

(
(a, b)

)
of infinitely differentiable functions with support in(a, b), −∞ < a < b < ∞ is
dense in the spaceLp(·)[(a, b), %] with the weight of form (2.12), if p ∈ P1(a, b)
andµ(a)p(a) > −1, ν(b)p(b) > −1.
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Everywhere in the sequel we assume that

p(x) ≡ p∞ = const for large |x| ≥ R in the case b = ∞. (2.17)

For the weight|x−a|µ(x)|b−x|ν(x), in the sequel we will refer to the following
conditions

− 1
p(a)

< µ(a) <
1

p′(a)
, − 1

p(b)
< ν(b) <

1
p′(b)

; (2.18)

− 1
p∞

< ν(∞) + µ(∞) <
1

p′∞
. (2.19)

The Marchaud fractional derivative [21, p. 200]

(Dα
a+f)(x) =

f(x)
Γ(1− α)(x− a)α

+
α

Γ(1− α)

∫ x

a

f(x)− f(t)
(x− t)1+α

dt, (2.20)

of order0 < α < 1, for “not so nice” functionsf(x) is understood as

lim
ε→0

(
Dα

a+,εf
)
(x) =

f(x)
Γ(1− α)(x− a)α

+

+
α

Γ(1− α)
lim
ε→0

∫ x−ε

a

f(x)− f(t)
(x− t)1+α

dt, ε > 0,

wheref(x) is assumed to be continued as zero beyond the interval[a, b]. It is
known [21, p. 200] that

(
Dα

a+,εf
)
(x) =

f(x)
Γ(1− α)(x− a)α

+
α

Γ(1− α)
(Aεf)(x),

where

(Aεf)(x) =
∫ x−ε

a

f(x)− f(t)
(x− t)1+α

dt for a + ε 5 x 5 b, (2.21)

(Aεf)(x) =
f(x)
α

[
1
εα
− 1

(x− a)α

]
for a 5 x 5 a + ε. (2.22)

The following statement was proved in [16].

THEOREM 2.8. Let−∞ < a < b < ∞, 0 < α < 1 and

f = Iα
a+ϕ, ϕ ∈ Lp(·)[(a, b), %],
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where p ∈ P(a, b)
⋂

w-Lip (a, b) and% = (x − a)µ(x)(b − x)ν(x) with µ ∈ w-
Lipa(a, b), ν ∈ w-Lipb(a, b). Then, under conditions(2.18),

Dα
a+f = ϕ,

whereDα
a+f = lim

ε→0
Dα

a+,εf with the limit in the norm of the spaceLp(·)[(a, b), %].

This is also valid in the caseb = ∞ for the weight(x− a)µ(x)(1 + |x|)ν(x), if
additionallyµ, ν ∈ w-Lip∞(a, b) and (2.17) and (2.19) hold.

2.5. Fractional Sobolev spaceLα,p(·) [(a, b), %]

In the following definition we introduce a Sobolev space of fractional smooth-
ness of functions on[a, b] as the restriction of Bessel potentials onto[a, b] un-
der the corresponding extensions of the variable exponentp(x) and the exponents
µ(x), ν(x) initially defined on[a, b].

DEFINITION 2.9. Let−∞ < a < b < ∞. We define the fractional Sobolev
type spaceLα,p(·)[(a, b), %] with weight% = (x− a)µ(x)(b− x)ν(x) as

Lα,p(·)[(a, b), %] = Bα[Lep(·)(R1, %̃)]

∣∣∣∣∣
(a,b)

(2.23)

wherep̃ is an arbitrary extension ofp toR1 with preservation of the log-continuity
and with the decay condition at infinity; we may take for instance, the extensionp̃
as described in Lemma 2.2. The extension%̃ of the weight% is taken in the form
%̃(x) = |x − a|µ̃(x) · |b − x|ν̃(x) with µ̃ ∈ w-Lipa(R1)

⋂
w-Lip∞(R1), ν̃ ∈ w-

Lipb(R1)
⋂

w-Lip∞(R1). We define the norm off = Bϕ

∣∣∣∣
(a,b)

by

‖f‖Lα,p(·)[(a,b),%] = inf ‖ϕ‖Lep(·)(R1,e%)

where the infimum is taken with respect to all possibleϕ in the representation

f = Bϕ

∣∣∣∣
(a,b)

and all the extensions̃p, µ̃ andν̃.

The following proposition, proved in [16] and important for our further ap-
plications, states that the spaceLα,p(·) [(a, b), %] coincides with the range of the
operators of fractional integration.

THEOREM 2.10. Let −∞ < a < b < ∞, p(·) ∈ P(a, b)
⋂

w-Lip (a, b)
and%(x) be weight of form(3.43) with the exponentsµ(x) andν(x) satisfying
assumption(2.13). Under the conditions

α− 1
p(a)

< µ(a) <
1

p′(a)
, α− 1

p(b)
< ν(b) <

1
p′(b)

, (2.24)
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the following coincidence of the spaces

Iα
a+

[
Lp(·)[(a, b), %]

]
= Iα

b−
[
Lp(·)[(a, b), %]

]
= Lα,p(·)[(a, b), %] (2.25)

holds, and

C1‖Dα
a+f‖Lp(·)[(a,b),%] ≤ ‖f‖Lα,p(·)[(a,b),%] ≤ C2‖Dα

a+f‖Lp(·)[(a,b),%]. (2.26)

2.6. Fredholmness of singular integral operators
in the weighted spaceLp(·)(Γ, %)

We recall the notion of Fredholmness of a linear operator in a Banach space.
Let X andY be Banach spaces and[X → Y ] the algebra of all the linear operators
bounded fromX into Y . By ZX(A) = {ϕ : Aϕ = 0, ϕ ∈ X} we denote the
kernel of an operatorA ∈ [X → Y ], and byZY (A) = {ψ : A∗ψ = 0, ψ ∈ Y ∗}
its co-kernel. We also denotenA = dimZX(A) andmA = dimZY ∗(A∗) and
define theindexof a Fredholm operator as

κ = κX→Y = nA −mA.

We will need the result on Fredholmness, in weighted variable exponent spaces
Lp(·)(Γ, %), of singular integral operators

A = AP+ + BP−, (2.27)

whereP± = 1
2(I±S) andA,B ∈ PC(Γ). The Fredholm theory of such operators

for constantp is well known and extensively developed, see the books [1], [6], [7].
For the case of the spacesLp(·)(Γ, %) with variablep(·), we will derive the required
statement on Fredholmness from a general such result within the framework of
abstract Banach function spaces proved in [11, p.73]. To formulate the result from
[11], we need to introduce the following notions from [11].

DEFINITION 2.11. A Banach spaceX = X(Γ) of functions on a closed
simple Jordan rectifiable curveΓ is calledadmissible, if:

(A1) C(Γ) ⊂ X ⊂ L1(Γ),

(A2) anya ∈ L∞(Γ) is a multiplier inX,

(A3) the operatorS is bounded inX(Γ),

(A4) C∞(Γ) is dense inX.
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In the sequel we assume that the spaceX satisfies the following two axioms.

AXIOM 1. For the spaceX there exist two functionsα(t) andβ(t), 0 <
α(t) < 1, 0 < β(t) < 1, such that the operator|t− t0|γ(t0)S|t− t0|−γ(t0)I with
an arbitraryt0 ∈ Γ is bounded in the spaceX(Γ) for all γ(t0) such that−α(t0) <
γ(t0) < 1− β(t0) and is unbounded inX if γ(t0) /∈ (−α(t0), 1− β(t0)).

Let X(Γ, |t− t0|γ) = {f : |t− t0|γf(t) ∈ X(Γ)}.
AXIOM 2. For anyγ < 1− β(t0) the imbeddingX(Γ, |t− t0|γ) ⊂ L1(Γ) is

valid andC∞(Γ) is dense inX(Γ, |t− t0|γ), whatsoevert0 ∈ Γ is.

DEFINITION 2.12. Let X be a Banach function space satisfying Axiom 1. A
functiona ∈ PC(Γ) is calledX-nonsingular ifinf

t∈Γ
|a(t)| > 0 and 1

2π arg a(tk−0)
a(tk+0) /∈

[α(tk), β(tk)]+Z for every discontinuity pointtk, k = 1, 2, . . . , m, of a(t), where
[· · · ] + Z stands for the set

⋃
ξ∈[··· ]

{ξ, ξ ± 1, ξ ± 2, ...}.

Let

θ(tk) =
1
2π

tk+1−0∫

tk+0

d arg a(t).

DEFINITION 2.13. Let X(Γ) satisfy Axiom 1 anda ∈ PC(Γ) be X-
nonsingular. The integer

Ind
X

a : =
m∑

k=1

[θ(tk)−<Γ(tk)] , (2.28)

where<Γ(tk) are chosen in the intervalβ(tk) − 1 < <Γ(tk) < α(tk), is called
X-index of the functiona.

In [11] the following statement was proved.

THEOREM 2.14. Let X be any space admissible in the sense of Definition
2.11, satisfying Axioms 1-2. The operatorA = aP+ + bP− with a, b ∈ PC(Γ) is
Fredholm in the spaceX if

inf
t∈Γ

|a(t)| 6= 0, inf
t∈Γ

|b(t)| 6= 0 (2.29)

and the functiona(t)
b(t) is X-nonsingular. In this case

Ind
X

A = − Ind
X

a

b
. (2.30)
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Condition(2.29) is also necessary for the operatorA to be Fredholm inX. If the
functionsα(t) andβ(t) of the spaceX coincide at the pointstk of discontinuity
of the coefficientsa(t), b(t): α(tk) = β(tk), k = 1, 2, . . . , m, then the condition
of X-nonsingularity ofa(t)

b(t) is necessary as well.

The spaceX(Γ) = Lp(·)(Γ, %) = {f : %(t)f(t) ∈ Lp(·)(Γ)}, whereΓ is a
Carleson curve and

%(t) =
m∏

k=1

|t− tk|µk , − 1
p(tk)

< µk <
1

p′(tk)
, tk ∈ Γ, k = 1, 2, . . . , m,

(2.31)
is admissible in the sense of Definition 2.11 and Axioms 1 and 2 are fulfilled with

α(t) = β(t) =

{
1

p(t) , t 6= tk
1

p(t) + µk, t = tk, k = 1, 2, . . . , m
(2.32)

which follows from Theorem 2.5.

As a result, we arrive at the following corollary of Theorem 2.14.

COROLLARY 2.15. Let Γ be a closed Carleson curve, let%(t) =
m∏

k=1

|t −
tk|µk and letp(t), t ∈ Γ and alsop(·) ∈ P(Γ)

⋂
w-Lip (Γ). The operatorA =

aP+ + bP− with a, b ∈ PC(Γ) is Fredholm in the spaceLp(·)(Γ, %), if and only if
condition(2.29) is satisfied and

1
2π

arg
g(tk − 0)
g(tk + 0)

6= 1
p(tk)

+ µk (mod 1), (2.33)

whereg(t) = a(t)
b(t) . Under these conditions

Ind
Lp(·)(Γ,%)

A = −
m∑

k=1

[
θ(tk)− 1

2π
arg

g(tk − 0)
g(tk + 0)

]
, (2.34)

whereθ(tk) = 1
2π

tk+1−0∫
tk+0

d arg g(t) and the values of12π arg g(tk−0)
g(tk+0) are chosen in

the interval

µk − 1
p′(tk)

<
1
2π

arg
g(tk − 0)
g(tk + 0)

< µk +
1

p(tk)
. (2.35)
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For the case whereΓ = [a, b] is an interval of the real line, we obtain the
following statement, in which

θ(x) := arg
B(x)
A(x)

and 0 5 θ(a) < 2π. (2.36)

THEOREM 2.16. The operatorA = AP+ + BP− with A,B ∈ C([a, b]) is
Fredholm in the spaceLp(·)[(a, b), %], where%(x) = (x− a)µ(b−x)ν , if and only
if

min
x∈[a,b]

|A(x)| 6= 0, min
x∈[a,b]

|B(x)| 6= 0 (2.37)

and
θ(a)
2π

6= 1
p(a)

+ µ,
θ(b)
2π

6= 1
p′(b)

− ν (mod 1). (2.38)

Under these conditions

Ind
Lp(·)([a,b],%)

A =
[

1
p(a)

+ µ− θ(a)
2π

]
+

[
1

p(b)
+ ν +

θ(b)
2π

]
. (2.39)

P r o o f. To obtain Theorem 2.16 from Corollary 2.15, we may take any closed
smooth curveΓ which contains the interval[a, b] and continue the coefficients
c(t), d(t) to Γ\[a, b] asc(t) ≡ 1 andd(t) ≡ 0. It is known that the exponentp(t)
may be also continued with the preservation of the log-condition (see [22], Chapter
6, Section 2, where an extension of functions with preservation of the continuity
modulus is described in case of domains inRn; this gives a similar result for
smooth curves). Formula (2.39) for the index may be obtained from the general
formula (2.34) by direct recalculation (see Remark 2.15 and formula (2.33) in [8]
for similar formulas in the non-weighted case and for constantp).

3. On Fredholmness of the operatorM

In the sequel−∞ < a < b < ∞. We consider the equation

(Mϕ)(x) ≡
∫ x

a

u(x, t)ϕ(t)dt

(x− t)1−α
+

∫ b

x

v(x, t)ϕ(t)dt

(t− x)1−α

=: (M1ϕ)(x) + (M2ϕ)(x) = f(x),
(3.40)

where0 < α < 1, and the functionsu(x, t) andv(x, t) are supposed to satisfy the
following assumptions:
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1◦. u(x, t) andv(x, t) are Ḧolderian inx uniformly in t:

|u(x1, t)− u(x2, t)| 5 A|x1 − x2|λ, x1 = t, x2 = t, (3.41)

|v(x1, t)− v(x2, t)| 5 B|x1 − x2|λ, x1 5 t, x2 5 t, (3.42)

whereα < λ ≤ 1 andA > 0 andB > 0 do not depend onx1, x2 andt;

2◦. u(x, x) := u(x, x− 0) ∈ C([a, b]), v(x, x) := v(x, x + 0) ∈ C([a, b]).

We consider the operatorM in the spaceLp(·)[(a, b), %] with the weight

%(x) = (x− a)µ(x)(b− x)ν(x) (3.43)

where the exponentsµ(x), ν(x) ∈ L∞(a, b) have finite limitsµ(a) = lim
x→a

µ(x),

ν(b) = lim
x→b

ν(x) and satisfy the log-conditions at the end-points:

|µ(x)− µ(a)| 5 A

ln D
x−a

, |ν(x)− ν(b)| 5 A

ln D
b−x

, D = 2(b− a). (3.44)

Under conditions (3.44) we have

(x− a)µ(x)(b− x)ν(x) ≈ (x− a)µ(a)(b− x)ν(b). (3.45)

We represent the operatorM as

M = M0 + T1 + T2, (3.46)

where

(M0ϕ)(x) ≡
∫ x

a

u(t, t)ϕ(t)dt

(x− t)1−α
+

∫ b

x

v(t, t)ϕ(t)dt

(t− x)1−α
, (3.47)

and

(T1ϕ)(x) =
∫ x

a

u(x, y)− u(y, y)
(x− y)1−α

ϕ(y)dy,

(T2ϕ)(x) =
∫ b

x

v(x, y)− v(y, y)
(y − x)1−α

ϕ(y)dy.

(3.48)
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3.1. A representation for the operatorM0

The boundedness of the operatorM0 in the spaceLp(·) [(a, b), %], under suit-
able conditions on%, follows from Theorem 2.4 and the fact that the functions
u(t, t) andv(t, t) are bounded. However, we need a stronger statement, namely its
boundedness fromLp(·) [(a, b), %] into Lα,p(·)[(a, b), %]. That statement, given in
Corollary 3.18 will follow from Theorem 2.10 and the next theorem.

THEOREM 3.17. Let p(x) ∈ P(a, b)
⋂

w-Lip (a, b) and%(x) be weight of
form (3.43) with the exponentsµ(x) andν(x) satisfying assumption(3.44) and
the conditions

α− 1
p(a)

< µ(a) <
1

p′(a)
, − 1

p(b)
< ν(b) <

1
p′(b)

. (3.49)

Then on functionsϕ ∈ Lp(·) [(a, b), %] the operatorM0 can be represented in the
form

M0ϕ = Γ(α)Iα
a+Nαϕ, (3.50)

where

Nαϕ = a1(x)ϕ(x) +
1
π

∫ b

a

(
y − a

x− a

)α a2(y)
y − x

ϕ(y)dy (3.51)

anda1(x) = u(x, x) + v(x, x) cos απ, a2(x) = v(x, x) sin απ.

P r o o f. The representation (3.50)-(3.51) is known within the frameworks of
constant exponentsp, see [21, p. 653], so it is valid forC∞

0 -functions.
Using Theorem 2.1 and taking into account (3.44) and (2.4), we see thatC∞

0 is
dense in theLp(·)[(a, b), %]. Therefore, the validity of representation (3.50) should
follow from the boundedness inLp(·) [(a, b), %] of all the operators involved in
(3.50). The boundedness of the operatorM0 was already observed above. The
operatorIα

a+ is bounded according to Theorem 2.4 (take%(x) ≡ 1 in Theorem
2.4). To state that the operatorNα is bounded inLp(·) [(a, b), %], it suffices to
observe thata1(x) in the first term on the right-hand side of (3.51) is a bounded
function, while the boundedness inLp(·) [(a, b), %] of the second term is equiva-
lent to the boundedness inLp(·) [(a, b), %] of the singular operatorS in the space
Lp(·) [(a, b), %1] with %1(x) = (x − a)µ(x)−α(b − x)ν(x). The latter is covered by
Theorem 2.5.

COROLLARY 3.18. Under the assumptions of Theorem 3.17, the operatorM0

is bounded from the weighted Lebesgue spaceLp(·) [(a, b), %] to the weighted frac-
tional Sobolev spaceLα,p(·)[(a, b), %].
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3.2. On compactness of the operatorsT1 and T2

We have to prove the compactness of the operatorsT1 andT2 fromLp(·) [(a, b),
%] to Lα,p(·) [(a, b), %]. It suffices to consider only the operatorT1, the proof for
T2 being symmetrical (one can also reduce the case ofT2 to the case ofT1 by the
reflection change of variablesx = a + b − x1, y = a + b − y1 and working with
the reflected variable exponentp1(x1) = p(a + b− x1).

We will base ourselves on the following Krasnoselski type dominated com-
pactness theorem for integral operators

Kf(x) =
∫

Ω
K(x, y)f(y)dµ(y), Ω ⊂ Rn, (3.52)

proved for variable exponents in [17]. We recall that theK is called a regular
operator from a Banach spaceX into a Banach spaceY , if a similar operator with
the kernel|K(x, y)| is bounded fromX to Y . By Wp(·)(Ω) we denote the class of
weights% of the form

%(x) =
N∏

k=1

|x− xk|βk , xk ∈ Ω, (3.53)

where− n
p(xk) < βk < n

q(xk) , k = 1, 2, ..., N.

PROPOSITION3.19. LetK andK0 be two regular linear integral operators of
form (3.52) with the kernelsK(x, y) andK0(x, y), acting from the spaceLp1(·)(Ω,
%1) into Lp2(·)(Ω, %2), where|Ω| < ∞, letp1(·) andp2(·) satisfy conditions(2.2)-
(2.4) and%j ∈ Wpj(·)(Ω), j = 1, 2. If

|K(x, t)| ≤ K0(x, t),

and the majorizing operatorK0 is compact fromLp1(·)(Ω, %1) to Lp2(·)(Ω, %2),
then the operatorK is also compact.

By means of Proposition 3.19, in [17] there was also proved the following
weighted compactness theorem, which we formulate here for the one-dimensional
case.

PROPOSITION3.20. Let Ω = (a, b),−∞ < a, b < ∞. Under the conditions
A(x, y) ∈ L∞(Ω× Ω) andess inf

y∈Ω
α(y) > 0, the operator

∫

Ω

A(x, y)
|x− y|1−α(y)

ϕ(y)dy

is compact in the spaceLp(·)(Ω, %), if p(·) ∈ P(Ω)
⋂

w-Lip (Ω) and% is a weight
of form (3.43) with the functionsµ, ν satisfying conditions(2.18), (3.44).
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THEOREM 3.21. Let u(x, t) satisfy assumption1◦. The operatorT1 is com-
pact fromLp(·) [(a, b), %] into Lα,p(·)[(a, b), %], −∞ < a < b < ∞, if p(·) ∈
P(Ω)

⋂
w-Lip [(a, b)] and% is a weight of form(3.43) with the functionsµ, ν

satisfying conditions(2.18), (3.44).

P r o o f. We will use the fact that the operatorT1 is known, see [21, p. 654], to
be representable as a composition of the fractional operatorIα

a+ with an operator
having a weak singularity:

T1ϕ = Iα
a+V1ϕ, (3.54)

where

V1ϕ =
α

Γ(1− α)

∫ x

a
ϕ(s)K(x, s)ds, K(x, s) =

∫ x

s

u(x, s)− u(t, s)
(t− s)1−α(x− t)1+α

ds.

(3.55)
Then by Theorems 2.10 and 2.8, we have only to prove that the operatorV1 is
compact in the spaceLp(·) [(a, b), %]. From (3.41) it easily follows that

|K(x, s)| ≤ c(x− s)λ−1.

Then the compactness of the operatorV1 follows from Proposition 3.19 and the
compactness of operators with weak singularity in variable exponent spaces. The
latter was proved in [13] in non-weighted case and in [17] in the weighted case, as
presented in Proposition 3.20.

COROLLARY 3.22. Let u(x, t) andv(x, t) satisfy assumption1◦-2◦. The op-
eratorsM1 andM2 are bounded fromLp(·) [(a, b), %] into Lα,p(·)[(a, b), %],−∞ <
a < b < ∞, if p(·) ∈ P(Ω)

⋂
w-Lip [(a, b)] and% is a weight of the form(3.43)

with the functionsµ, ν satisfying conditions(2.18), (3.44).

P r o o f. We have

M1ϕ =
∫ x

a

u(t, t)ϕ(t)
(x− t)1−α

dt + T1ϕ,

whereT1 is the operator defined in (3.48). By representation (3.54), we obtain

M1ϕ = Iα
a+ (u ϕ + V1ϕ) , (3.56)

whereu(x) = u(x, x). The boundedness ofM1 in Lα,p(·) [(a, b), %] follows from
the boundedness inLp(·)[(a, b), %] of the operatoruI + V1. Similarly the operator
M2 is considered.
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3.3. Fredholmness statement for
the operator M : Lp(·) [(a, b), %] → Lα,p(·)[(a, b), %]

Observe that the functionθ(x), introduced in (2.36), for the operator (3.51)
takes the form

θ(x) = arg
u(x, x) + v(x, x)e−απi

u(x, x) + v(x, x)eαπi
(3.57)

and as usual we choose the initial value ofarg by the condition0 ≤ θ(a) < 2π.

THEOREM 3.23. Let the functionsu(x, t) andv(x, t) satisfy assumptions 1◦

and 2◦. Then the operatorM is Fredholm fromLp(·) [(a, b), %] intoLα,p(·)[(a, b), %]
with p(x) ∈ P(Ω)

⋂
w-Lip (Ω) and the weight% of form (3.43) satisfying condi-

tions (3.44) and (3.49), if and only if:

i) u2(x, x) + v2(x, x) 6= 0, x ∈ [a, b]; (3.58)

ii)
θ(a)
2π

6= 1
p(a)

+ µ(a)− α (mod 1),
θ(b)
2π

6= 1
p′(b)

− ν(b) (mod 1).

(3.59)

These conditions being satisfied, the index of the operatorM is given by

IndM =
[

1
p(a)

+ µ(a)− α− θ(a)
2π

]
+

[
1

p(b)
+ ν(b) +

θ(b)
2π

]
. (3.60)

P r o o f. By representation (3.46), compactness ofT1, T2 and by (3.50),
the investigation of the Fredholmness of the operatorM from Lp(·) [(a, b), %] into
Lα,p(·)[(a, b), %] is equivalent to that of the operatorNα in Lp(·) [(a, b), %], the latter
being equivalent to the study of the Fredholmness of the singular integral operator

a1(x)ϕ(x) +
1
π

∫ b

a

a2(y)
y − x

ϕ(y)dy

in the spaceLp(·)[(a, b)%?] where%?(x) = (x − a)µ(x)−α(b − x)ν(x). The result
on its Fredholmness follows from Theorem 2.16 withA(x) = a1(x) + a2(x) and
B(x) = a1(x)− a2(x), if we take (3.45) into account.

3.4. Closed form formulas for solutionsϕ ∈ Lp(·) [(a, b), %] of the equation
M0ϕ = f with f ∈ Lα,p(·)[(a, b), %]

We consider the equationM0ϕ = f in the form

∫ x

a

u(t)ϕ(t)dt

(x− t)1−α
+

∫ b

x

v(t)ϕ(t)dt

(t− x)1−α
= f(x), (3.61)
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known as the generalized Abel equation, see [21, Ch. 6]. The functionsu and
v are assumed to be continuous on[a, b]. Since the equationM0ϕ = f was re-
duced to the singular integral equation, we may use the well known fact from the
theory of the latter to obtain the closed form expression for the general solution
of the equationM0ϕ = f , assuming that the Fredholmness conditions are satis-
fied. The Fredholmness of the equationM0ϕ = f has already been characterized
in Theorem 3.23. In view of conditions (3.59) and (3.49), we have the only two
possibilities forθ(a):

0 ≤ θ(a)
2π

<
1

p(a)
− α + µ(a) or

1
p(a)

− α + µ(a) <
θ(a)
2π

< 1

and similarly two possibilities forT = θ(b)
2π −

[
θ(b)
2π

]
:

0 ≤ T <
1

p′(b)
− ν(b) or

1
p′(b)

− ν(b) < T < 1.

To write down the general solution of the equationM0ϕ = f in the weighted space
Lp(·) [(a, b), %] wheref ∈ Lα,p(·)[(a, b), %], we need the following numbers:

λa(p) =

{
−θ(a)

2π , if 0 ≤ θ(a)
2π < 1

p(a) − α + µ(a);

1− θ(a)
2π , if 1

p(a) − α + µ(a) < θ(a)
2π < 1,

(3.62)

and

λb(p) =





T, if 0 ≤ T < 1
p′(b) − ν(b);

T − 1, if 1
p′(b) − ν(b) < T < 1.

(3.63)

For brevity we defineκ = Ind M , whereIndM is given by (3.60).

THEOREM 3.24. Let conditions(3.58)-(3.59) hold, the functionsu(x, t) and
v(x, t) satisfy assumptions 1◦ and 2◦, p(x) ∈ P(Ω)

⋂
w-Lip (Ω) and% be of the

form (3.43).
If κ > 0, then for everyf ∈ Lα,p(·)[(a, b), %] the equationM0ϕ = f is

unconditionally solved in the spaceLp(·)[(a, b), %] and all its solutions in this space
are given by the following formula

ϕ(x) =
v(x)

u2(x) + v2(x)
(x− a)λa(p)(b− x)λb(p)Z(x)Pκ−1(x)

+
u(x)f(x)

u2(x) + v2(x)
− v(x)

u2(x) + v2(x)
(x− a)λa(p)(b− x)λb(p)Z(x)

π

×
∫ b

a

(Dα
a+f)(t) dt

(t− a)λa(p)(b− t)λb(p)Z(t)(t− x)
,
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where

Pκ−1(x) =
κ−1∑

k=0

ckx
k

is a polynomial of degreeκ − 1 with arbitrary coefficients andZ(x) is a non-
vanishing continuous function defined by

Z(x) = expΨ(x), Ψ(x) =
1
2π

∫ b

a

θ(t)
t− x

dt+
θ(a)
2π

ln(x−a)− θ(b)
2π

ln(b−x).

If κ < 0, the equation is solvable in the spaceLp(·)[(a, b), %], if and only if f
satisfies the conditions

∫ b

a

f(t)tkdt

(t− a)µa(p)(b− t)µb(p)Z(t)
= 0, k = 1, 2, . . . , |κ|.

P r o o f. By the standard arguments well known in the theory of singular
integral equations, it may be checked that the above formula gives the general
solution in the spaceLp(·)[(a, b), %], if the singular operator involved in that for-
mula, is bounded in this space. By Theorem 2.5 this is the case under the choice
(3.62)-(3.63) of λa(p) andλb(p).

We dwell on a special case whenu(t) = u = const andv(t) = v = const:

b∫

a

C1 + C2sign (x− t)
|x− t|1−α

ϕ(t) dt = f(x), (3.64)

whereC1 + C2 = u, C1 − C2 = v. This equation attracted attention of various
authors in view of applications of such equation, see [21, Ch. 6] and references
therein. We have denoted

θ = arg
u + ve−iαπ

u + veiαπ
∈ (0, 2π),

and also,

A =
1

p(a)
+ µ(a)− α, B =

1
p′(b)

+ ν(b).

Note that within the frameworks of the well-posedness of the equation, that is,
in the case where the operator generated by the left-hand side of the equation is
bounded fromLp(·) [(a, b), %] to Lα,p(·)[(a, b), %], we have

0 < A < 1− α, 0 < B < 1,
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according to conditions (3.49). Recall also that the Fredholmness conditions imply
the following restrictions on the value ofθ:

θ

2π
6= A and

θ

2π
6= B.

A direct calculation by formula (3.60) shows that the indexκ may have only
values−1, 0 and1:

κ =





0, if θ
2π < min(A,B) or θ

2π > max(A,B)

−1, if A < B andA < θ
2π < B,

+1, if A > B andB < θ
2π < A.

Thus, we arrive at the following statement.

THEOREM 3.25. Under the conditions of Theorem 3.24 on the exponentp(x)
and the weight%(x), equation(3.64) with f ∈ Lα,p(·)[(a, b), %] is uniquely and
unconditionally solvable in the spaceLp(·)[(a, b), %] if and only if

θ

2π
< min

(
1

p(a)
+ µ(a)− α,

1
p′(b)

+ ν(b)
)

,

or
θ

2π
> max

(
1

p(a)
+ µ(a)− α,

1
p′(b)

+ ν(b)
)

.

The solution of the equation is derived from the general formula of Theorem
3.24 withPκ−1 ≡ 0 andZ(x) ≡ 1.

References
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Birkhäuser, Boston (2001).

[9] V. Kokilashvili, On a progress in the theory of integral operators in weighted
Banach function spaces. In:”Function Spaces, Differential Operators and
Nonlinear Analysis”, Proc. of the Conference held in Milovy, Bohemian-
Moravian Uplands, May 28 - June 2, 2004. Math. Inst. Acad. Sci. Czech
Republick, Praha (2005), 152-175.

[10] V. Kokilashvili and S. Samko, Singular integrals and potentials in some
Banach spaces with variable exponent.Proc. A. Razmadze Math. Inst.129
92002), 150-155.

[11] V. Kokilashvili and S. Samko, Singular integral equations in Lebesgue spaces
with variable exponent.Proc. A. Razmadze Math. Inst.131(2003), 61-78.

[12] V. Kokilashvili and S. Samko, Singular integrals in weighted Lebesgue
Spaces with variable exponent.Georgian Math. J.10, No 1 (2003), 145-156.

[13] V. Kokilashvili and S. Samko, Maximal and fractional operators in weighted
Lp(x) spaces.Rev. Mat. Iberoamericana20, No 2 (2004), 495-517.
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[18] M. Růžička,Electrorheological Fluids: Modeling and Mathematical Theory.
Springer, Lecture Notes in Math., vol.1748(2000).

[19] S. Samko, Differentiation and integration of variable order and the spaces
Lp(x). In: ”Operator Theory and Complex and Hypercomplex Analysis”,
Proc. of Intern. Conference, 12–17 December 1994, Mexico City, Mexico.
Contemp. Math.212(1998), 203-219.

[20] S. Samko, On a progress in the theory of Lebesgue spaces with variable ex-
ponent: Maximal and singular operators.Integr. Transf. and Spec. Funct.16,
No 5-6 (2005), 461-482.

[21] S. Samko, A. Kilbas, O. Marichev,Fractional Integrals and Derivatives. The-
ory and Applications. Gordon & Breach. Sci. Publ., London - New York
(1993); Russian Ed.:Fractional Integrals and Derivatives and some of their
Applications, Nauka i Tekhnika, Minsk (1987).

[22] E.M. Stein,Singular Integrals and Differentiability Properties of Functions.
Princeton Univ. Press, Princeton (1970).

Received: December 8, 2007

Universidade do Algarve
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