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1. Introduction

We study the solvability of the following integral equation of the first kind

b
o= [ cwd= s, ve@n. @D

|o — |-

where0 < a < 1 and the functiorz(z, t) may have a jump at the diagonal:

] ou(z,t), ift<a
oz, t) = { v(x,t), ift>uwz.

The interval(a,b) may be finite or infinite. For definiteness we give the final
results for the case of a finite intervaloco < a < b < oo, the case of a half
axis or axis requiring some technical modifications. However, occasionally we
formulate some auxiliary results for the cdse- oo, when this does not require
special modifications.

Equations of typeX.]), including especially the case of jumpdfr, t) at the
diagonalt = z, have various applications. They were widely studied in the setting
when the solutionp was looked in the Lebesgue spat®(a,b) or L”([a,b], 0),
see§30 in [2]] and references therein.

In applications it may happen that a solution of the equation is looked for in
a more general setting: the solution may ha¥ebehavior at one end point of the
interval and be for instance bounded at another end point. Or, more generally, it
may belong tolP* near one end point and tb”2 near another end point, with
differentp; andps. This generalization, in its turn is a particular case of a more
general setting related to the so-called variable exponent Lebesgue spaces, when
the order of integrability may be a function of. Last years there was observed an
enormous rise of interest to the study of the so-called variable exponent Lebesgue
spaces and operator theory in such spaces, influenced both by theoretical interest
and possible applications revealed [k8], we refer in particular to the existing
surveys 8,19, 2Q], in this topic, and paperdlD, 12] mostly related to the content
of this paper.

This paper deals with such a setting when the solutior) is integrable with
variable exponeni(x). The right-hand sid¢ (x) of the equation in this case runs
the fractional Sobolev spade*?(") with variablep(z). One of the main points in
the study of equations of typd.() is to reveal the influence of the endpoints of
the interval onto the picture of solvability. Making use of the recent progress in
the variable exponent analysis, we show that it is possible to “localize” the values
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of p(x) in this influence, namely we show, under the natural assumptiop&on

that only the valueg(a) andp(b) are important in the study of the solvability of

the equation, the Fredholmness criterion and formula for the index depending on
the valuesp(a) andp(b), but not depending on the values gfr) in the inner
points of the interval.

The paper is organized as follows.

An essential part of the paper contains necessary preliminaries, given in Sec-
tion 2, where we have to present necessary tools related to variable exponent spaces
(Subsection 2.1, on maximal, singular, convolution and potential operators in such
spaces (Subsections 2.2-2.3), Marchaud fractional derivative in connection with
variable exponent (Subsection 2.4), fractional Sobolev spaces with variable expo-
nent (Subsection 2.5) and Fredholmness of singular integral operators in variable
exponent Lebesgue spaces (Subsection 2.6). Making use of these tools, we inves-
tigate the Fredholm nature of the operafdrin Section 3. The main result on
Fredholmness is given in Theorem 3.23 and closed form solution formulas for the
generalized Abel equation are considered in Subsection 3.4.

NOTATION:
B(z,r)={yeR": |z —y| <r};
o is aweight,j.e, an a.e. finite and a.e. positive function;
P(Q) andP1(Q2), seeR.2)-(2.3);
w-Lip (2), seeR.4);
w-Lipy, (), seeR.13);
M is the maximal operator, se2.7);
P,(Q) is the set of exponenisc P(2) such thatM is bounded inL?¢) (9, o).

2. Preliminaries

2.1. On spaced.”(") with variable exponents

Although our main results concern the one-dimensional case 1, some
auxiliary statements below are given for the multidimensional case. We refer to
[14, 19 for details on variable Lebesgue spaces over domairiR"inbut give
some necessary definitions. For a measurable fungtiof? — [1,00), where
Q2 C R™ is an open set, we put

pT =pt(Q) :=esssupp(z) and p~ =p () := essinf p(z).

e e
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In the sequel we use the notation
P(Q):={pe L®Q):1<p Sp(x)=p" < oo} (2.2)
and
Pi(Q):={pe L¥(Q): 1<p” Sp(x) = p" < oo} (2.3)

The generalized Lebesgue spdé®) () with variable exponent is introduced
as the set of functiong on (2 for which

3¢) = [ le@)Pde < o.

By w-Lip (2) we denote the class of exponemptss L>°(12) satisfying the
log-condition

C

1
) |’:C - y| é 50 LY € Q. (24)
—In|z —y| 2

Ip(z) — p(y)| =

In case of unbounded domains we also refer to the decay condition

C
Ip(z) — p(oo)| = m, x €. (2.5)

By p'(z) we denote the conjugate expon Mty + ﬁ =1.
The weighted Lebesgue spab&") (1, ) is defined as the set of all measur-
able on(2 functionsy for which

. ~ (0¥
Il o0 = loglio = inf {A>0:3, (£7) <1} < 0.

The notation||¢|| .. (o) and||¢|l,.) will be used interchangeably, when no
ambiguity arise.

In [12] the following theorem was proved.
THEOREM2.1. The classo°(R™) is dense in the spadg’) (R™, o) if
pePi(R") and [o(x)]"") € Li,.(R"). (2.6)

LEMMA 2.2. Let) be a bounded domain IR andp € P(2) (w-Lip ().
There exists an extensigitx) of p(x) to the whole spac®™ such thap(z) =
p(z) forz € Q, p € P(R") N w-Lip (R™) andp(zx) is constant outside some
large fixed ball.
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2.2. On maximal and convolution operators inL?(")
Let )
(Mo)a) =swp = [ lelaldy @7)
B(zr) N9

be the Hardy-Littlewood maximal operator. For dilations

wnw =25 [ #(2) fwa

there is known the following statement, s@kfpr the non-weighted case, which
was extended to the weighted caselifi[as stated below.

THEOREM 2.3. Letp be a weightp~! € o p € P1(R"™) andk(z) be an

loc

integrable function ofR™ with A := sup |k(y)|dz < oo. Then:
R™ [y|2|a|
i) sup (K. f) (z)| £ AMSf)(x)  forall e LPOR, o),
e>0

so that

ii)

sup (K. f) (x)
e>0

< Cillfll o) @m, )
LPC)(Rn, )

in the casep(-) € P,(R™). If in addition k(y)dy = 1, ando(x) satisfies
Rn
condition(2.6), then also

iii) (Kef) (x) — f
ase — 0 in L*C) (R™, ) and almost everywhere.

By Theorem 2.3, the boundednessif(*) (R, o) of the maximal operator
guarantees that of convolution operators

(Af) (z) = / k() f(z — y)dy

]Rn

whose kernek(x) has a decreasing integrable dominant. However, the bound-
edness of the maximal operator requires in general the local log-condidin (
Meanwhile, for rathenice kernelsk(x) this condition may be avoided, se& b,
Corollary 4.7].
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2.3. Boundedness of potential and singular operators
in weighted () - spaces

We consider power type weights of the form

g(x):H\x—wk]ﬁ’“, 1, €0, k=1,2,...,m, (2.8)
k=1

where

" < k=1,2,..,m. (2.9)
p(zk) P (xk)

The following result was proved inlB] for a single power weight, but its
validity is extended to the case of a finite product of power weights 828.8), (
by standard means using unity partition, see for instad&zRemark 2.7] or/16,
Section 5].

THEOREM 2.4. LetQ) C R™ be a bounded domain, le{z) € L*°(Q) and
essinfzeq a(z) > 0, letp € P(Q) (N w-Lip () and letp(x) be weight of form
(2.9) with x;, € Q. Under conditior(2.9) the operator

(Ig‘(')f) (z) = Q(fﬂ)/Q Q(mi(?j)yjlga(z)

is bounded in the spadé’®’) ().

We will consider the “unilateral” one-dimensional potential operators

(Igﬂrgo) (x) = F(la) /x @ Cp(tt))la dt, x> a; (2.10)
b
(1) (@) = (1a) / 0 _‘pfct))l_a dt, x<b, (2.11)

as well, wherex > 0, known also as Riemann-Liouville fractional integrals, left-
sided and right-sided, respectiveR4].
The following theorem on the boundedness of the singular operator

t—x

b
CO Y )

was proved in12].
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THEOREM 2.5. Let—oc0 < a < b < oo and letp € P(a,b) (w-Lip (a,b).
The operatof is bounded in the spade®")|(a, b), o], whereg is weight of form
(2.8) with zy, € [a,b], k=1,2,...,m, ifand only if

1 1
< O < —, k=1,2,...,m.
p(zk) P (zx)
2.4. Marchaud fractional derivative

Let nown = 1 and{2 = [a, b], where—oo < a < b £ oo, and consider the
spaceL”()[(a, b), o] with the weight

— q|r@|p — g|v(@)
o) _{ |z — a|"®)|b — z| when b < oo (2.12)

T |z —af® A+ 2@ whenb=oc0
where the exponentg(z), v(x) are bounded functions which have finite limits
w(a) = lim p(x),v(b) = lin}) v(z). We need the following notation for the class
of exponents of the weight admissible in the sequel.

DEFINITION 2.6. LetQ = (a,b), where—oco < a < b < oo and let
xo € [a,b]. By w-Lips;,(€2) we denote the class

’LU—L’prO(Q) = {/’L S LOO(Q) : |/~L("L‘) - /L($0)| g In A1 ’ |:E - xO’ é % ;
ol (213)
in caserg # oo, and
w-Lin(®) = { € 2@ s lnlo) - (o) < s b @29

Forp € w-Lipg(a, b) () w-Lipy(a,b) with —oo < a < b < oo one has
|z — alP@ b — z|"®) x|z — oD | — 2] ®). (2.15)
Similarly, for i € w-Lip, (RY) N w-Lipy(RY) N w-Lipoo (RY)
|x—a!“(x)|b—:c|”(z) ~ |x_a|u(a)|b_$|'/(b)(1+|$|)u(00)+V(OO)—u(a)—V(b)' (2.16)
REMARK 2.7. From Theorem 2.1 itis easy to derive that the cl&$$((a, b))
of infinitely differentiable functions with support ifw,b), —co < a < b < o is

dense in the spack”()|[(a, b), o] with the weight of form2.12), if p € Py (a,b)
andu(a)p(a) > —1,v(b)p(b) > —1.
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Everywhere in the sequel we assume that
p(x) = poo = const forlarge |z| > R inthecase b=00. (2.17)

For the weightz —a|*(®)|b—z[*(*), in the sequel we will refer to the following
conditions

— (@) < pa) < m, o) <v(b) < m; (2.18)
- pio < 1(00) + 1{00) < . (2.19)

The Marchaud fractional derivativ@], p. 200]

o € o r x)— f(t
Pa =) = 77— ig(i “s T —a) / Jzi - t){JEO‘) at, (2:20)

of order0 < « < 1, for “not so nice” functionsf(z) is understood as

. (0% f 7
lim (DG o) () = (- a;(ﬂ)ﬁ - a)a+

a o [T fx) - f()
+r(1—a)§13% o (a:—t)Ho‘dt’ =0

where f(z) is assumed to be continued as zero beyond the intéiyé]. It is
known 21, p. 200] that

(081.01) (0) = s iy B0
where e
(A f) (@) :/ wdt for ate<z<b  (2.21)
(A f)(z) = ff) Lla— (x_la)a] for a<z<ate (222

The following statement was proved ibg].

THEOREM2.8. Let—co<a<b< oo, 0<a<1and

f=1%¢, ¢ LPY(a,b),oa,
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where p € P(a,b) (w-Lip (a,b) ando = (z — a)*@ (b — z)*®) with u € w-
Lip,(a,b), v € w-Lipy(a,b). Then, under conditioni2.18),

Dg—‘f—f = ¥,

whereDy, | = lim D, . f with the limit in the norm of the spade®)[(a,b), o].
E— ’

This is also valid in the cage= oo for the weight(xz — a)*\) (1 + |2|)¥®), if
additionallyp, v € w-Lips(a,b) and(2.17) and(2.19 hold.

2.5. Fractional Sobolev spacd®?(") [(a, b), o]

In the following definition we introduce a Sobolev space of fractional smooth-
ness of functions ora, b] as the restriction of Bessel potentials of@ob] un-
der the corresponding extensions of the variable expas{entand the exponents
wu(x), v(z) initially defined on|a, b].

DEFINITION 2.9. Let —co < a < b < co. We define the fractional Sobolev
type spacd.®?()[(a, b), o] with weighto = (z — a)*®) (b — 2)"(*) as

Lo70(a,b), g] = B[LPO(RY, ) (2.23)
(a,b)
wherep is an arbitrary extension gfto R! with preservation of the log-continuity
and with the decay condition at infinity; we may take for instance, the extepsion
as described in Lemma 2.2. The extensioof the weightp is taken in the form
o(z) = |z — af® . |b — 2" with i € w-Lip,(RY) w-Lipe(RY), 7 € w-

Lipy(RY) N w-Lipso (RY). We define the norm of = By by

. (a,b)
1Nl orr(ap),0) = IE [0l L5 (m1 5)

where the infimum is taken with respect to all possiplén the representation

f =By and all the extensions i andw.
(a,b)
The following proposition, proved inljg] and important for our further ap-
plications, states that the spat&”() [(a,b), o] coincides with the range of the
operators of fractional integration.

THEOREM 2.10. Let —o00 < a < b < o0, p(-) € P(a,b)(w-Lip(a,b)
ando(x) be weight of form(3.43 with the exponentg.(x) andv(z) satisfying
assumptior(2.13. Under the conditions

1 1 1

V(@) a—@<y(b)<

1
Ok (2.24)
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the following coincidence of the spaces
12, [0, 0l] = I [DPO(a,0),0]] = L97O((,h), 0] (2.25)
holds, and

CiDGy fl e (ap),o < Il Laworiap),g < CollPay fllrorap),g-  (2-26)

2.6. Fredholmness of singular integral operators
in the weighted spaceL?")(T, o)

We recall the notion of Fredholmness of a linear operator in a Banach space.
Let X andY be Banach spaces apfl — Y| the algebra of all the linear operators
bounded fromX into Y. By Zx(A) = {¢ : Ap = 0, € X} we denote the
kernel of an operatod € [X — Y], and byZy (A) = {¢ : A" =0,¢ € Y*}
its co-kernel. We also denotey = dim Zx(A4) andm, = dim Zy~«(A*) and
define thandexof a Fredholm operator as

=Xy = NA—TA.

We will need the result on Fredholmness, in weighted variable exponent spaces
LPC)(T, p), of singular integral operators
A= AP, + BP_, (2.27)
whereP. = %(IiS) andA, B € PC(T"). The Fredholm theory of such operators
for constanp is well known and extensively developed, see the botk$8], [ 7].
For the case of the spack&") (T, o) with variablep(-), we will derive the required
statement on Fredholmness from a general such result within the framework of

abstract Banach function spaces provedLih) p.73]. To formulate the result from
[11], we need to introduce the following notions frodd].

DEFINITION 2.11. A Banach spac& = X(I') of functions on a closed
simple Jordan rectifiable curieis calledadmissibleif:

(A1) ¢(I') ¢ X c Ly (),
(R2) anya € Lo (T") is a multiplier inX,
(2A3) the operatofS is bounded inX (T"),

(2(4) C>(TI") is dense inX.
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In the sequel we assume that the spacsatisfies the following two axioms.

AxioM 1. For the space there exist two functionsa(t) andj3(t), 0 <
at) < 1, 0 < B(t) < 1, such that the operattr— to|(?0) S|t — to|~7(0) I with
an arbitraryty € I is bounded in the spaceé(I") for all y(to) such that-a(ty) <
v(to) < 1 — B(to) and is unbounded iX if ~(ty) ¢ (—a(to), 1 — B(to))-

Let X (I, [t — to") = {f : [t — to"£(2) € X(I)}.

AXIOM 2. For anyy < 1 — f(to) the imbeddingX (T, |t — to|?) ¢ LY(T) is
valid andC*°(T") is dense inX (T, |t — to|”), whatsoevet, € T is.

DEFINITION 2.12. Let X be a Banach function space satisfying Axiom 1. A

] . ) . . 1 a(ty—0)
functiona € PC(T') is calledX -nonsingular |’r}g la(t)| > 0and- arg a(ixT0) ¢

[a(ty), B(tx)] + Z for every discontinuity point,, k = 1,2, ..., m, of a(t), where
[--]+Z stands forthe setl ) {¢,£+£1,£+2,...}.

gel+]
Let
1 tk+1—0
O(ty) = Py / darg a(t).
tr+0

DEFINITION 2.13. Let X(I') satisfy Axiom 1 anda € PC(I") be X-
nonsingular. The integer

m

Ind a : = > 10(te) — RT (1)), (2.28)
k=1

whereRT (t;) are chosen in the interval(t,) — 1 < RI'(tx) < a(ty), is called
X-index of the functioru.

In [11] the following statement was proved.

THEOREM 2.14. Let X be any space admissible in the sense of Definition
2.11, satisfying Axioms 1-2. The operatér= aP, + bP_ witha,b € PC(T') is
Fredholm in the spac¥ if

inf inf 2.2
inf |a(t)] # 0, inf[b(t)] # 0 (2.29)
and the functio:% is X -nonsingular. In this case

a
IndA=—1Ind -. 2.
I)l(d I)l(d 3 (2.30)
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Condition(2.29) is also necessary for the operatbto be Fredholm inX . If the
functionsa(t) andj(t) of the spaceX coincide at the points, of discontinuity
of the coefficientsi(t), b(t): a(ty) = B(tx), k = 1,2,...,m, then the condition
of X -nonsingularity of% is necessary as well.

The spaceX (I') = LPO(T, 0) = {f : o(t)f(t) € LPO)(T)}, wherel is a
Carleson curve and

" 1 1
=Il1t-tu"™, ——<mp<—, txel, k=12,...,m,
1:[ p(tr) P (t)

(2.31)

is admissible in the sense of Definition 2.11 and Axioms 1 and 2 are fulfilled with
¢ / ?5 b7 b 2.32
=00 = o T HE t=1k E=1,2,..,m (2.32)

which follows from Theorem 2.5.
As a result, we arrive at the following corollary of Theorem 2.14.

COROLLARY 2.15. LetT" be a closed Carleson curve, lgt) = [] |t —
kf

=1
t|" and letp(t),t € T" and alsop(-) € P(I') (w-Lip (I'). The operatoA =
aP, +bP_ witha,b € PC(T) is Fredholm in the spade®) (T, o), if and only if
condition(2.29) is satisfied and

1 g(tx — 0) 1

— ar + mod 1), 2.33
whereg(t) = % Under these conditions
. g(tr — 0)
Ind A=-— t——ﬂ@———f, (2.34)
Lyy(T0) ; [ g 9(tx +0)
tp+1—0 0
wheref(t,) = 5~ [ darg g(t) and the values of- arg 58’2103 are chosen in
tr+0
the interval
1 1 gty —0) 1
- < —arg— < < pp + ——. 2.35
M ) 2w B gl 0) < i) (239
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For the case wherE = [a,b] is an interval of the real line, we obtain the
following statement, in which

O(x) := arg ﬁ((i)) and 0= 6(a) < 27. (2.36)

THEOREM 2.16. The operatots = AP, + BP_ with A,B € C([a,b]) is
Fredholm in the space’)[(a,b), o], whereo(x) = (x — a)*(b — x)", if and only
if

min |A(z)| # 0, min |B(z)| #0 (2.37)

z€[a,b] z€la,b]

and 0(a) 1 0(b) 1

a
Under these conditions
1 0(@)] [ 1 G(b)]

Ind A=|—4+p——|+|—+v+—]. 2.39
Ol [p<a> A [ o) T e (2.39)

Proof. Toobtain Theorem 2.16 from Corollary 2.15, we may take any closed
smooth curvel which contains the intervdk, b] and continue the coefficients
c(t),d(t) toT'\[a, b] asc(t) = 1 andd(t) = 0. It is known that the exponemit)
may be also continued with the preservation of the log-condition 2&2teGhapter
6, Section 2, where an extension of functions with preservation of the continuity
modulus is described in case of domainsRh; this gives a similar result for
smooth curves). Formul®39 for the index may be obtained from the general
formula 2.34) by direct recalculation (see Remark 2.15 and formula (2.338]in [
for similar formulas in the non-weighted case and for congtant [

3. On Fredholmness of the operatorM/

In the sequel-oo < a < b < co. We consider the equation

[Tz, t)e(t)dt b u(a, t)p(t)dt
(Me)(z) :/a W+/yc (t—z)ie (3.40)
=: (M1p)(x) + (May)(x) = f(),

where0 < a < 1, and the functions(z, t) andv(x, t) are supposed to satisfy the
following assumptions:
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1°. w(z,t) andv(z, t) are Holderian inz uniformly in t:
lu(zy,t) — u(zo,t)| < Alzy — 2, 1 =t a0 2t (3.41)
lv(z1,t) — v(xo,t)| < Bley — xo|*, x1 Styao S, (3.42)

wherea < A < 1andA > 0 andB > 0 do not depend oy, zo andt;

2°. u(z,x) == u(z,x — 0) € C([a,b]), v(z,z) == v(z,z+0) € C([a,b]).

We consider the operatdr in the spacd.’(")[(a, b), o] with the weight
o(x) = (z — )@ (b — x)"®) (3.43)

where the exponents(x), v(z) € L*>(a,b) have finite limitsu(a) = lim p(z),
v(b) = liIr%) v(z) and satisfy the log-conditions at the end-points:

A A
D ’V(x)_l/(b” él

(@) — ()] < D=2(b-a). (3.44)

In b=
Under conditions3.44) we have
(z — a)*@ (b — 2)"®) ~ (2 — )M (b — 2)¥®). (3.45)

We represent the operatdf as

M = My+ Ty + Ts, (3.46)
where ,
_ [Tult,t)p(t)dt v(t, t)p(t)dt
(Mop)(z) = /a ot +/x =) (3.47)
and

(Tipe) = [ DS )0y,

b v\xr — v
L

(y — )t~

(3.48)
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3.1. Arepresentation for the operator M

The boundedness of the operafdy in the space.?®) [(a, b), ], under suit-
able conditions orp, follows from Theorem 2.4 and the fact that the functions
u(t,t) andv(t,t) are bounded. However, we need a stronger statement, namely its
boundedness from?() [(a,b), o] into L*?()[(a,b), o]. That statement, given in
Corollary 3.18 will follow from Theorem 2.10 and the next theorem.

THEOREM 3.17. Letp(z) € P(a,b) (w-Lip (a,b) andp(x) be weight of
form (3.43 with the exponents(xz) andv(x) satisfying assumptiofB8.44) and
the conditions

(3.49)

Then on functions € L*") [(a,b), o] the operatonl, can be represented in the
form
Moy =T'(@)Ig Nawp, (3.50)

where

b —a\%a
Nop = a(@ole) + = [ (y ) W) sty @51)

s r—a) y—zx

anday(x) = u(z, x) + v(z, x) cos ar, az(x) = v(x, ) sin am.

Proof. The representatio.60-(3.5]) is known within the frameworks of
constant exponenjs seeR1, p. 653], so itis valid folC§°-functions.

Using Theorem 2.1 and taking into accou®#4) and 2.4), we see that’s® is
dense in the.?()[(a, b), o|. Therefore, the validity of representati@3%0) should
follow from the boundedness ifi*) [(a,b), o] of all the operators involved in
(3.50. The boundedness of the operafdy was already observed above. The
operator/{’, is bounded according to Theorem 2.4 (take) = 1 in Theorem
2.4). To state that the operatdF, is bounded inL?() [(a,b), o], it suffices to
observe that;; (z) in the first term on the right-hand side .%1) is a bounded
function, while the boundedness I#®) [(a, b), ¢] of the second term is equiva-
lent to the boundedness i#() [(a, b), o] of the singular operata$ in the space
LPC) [(a,b), o1] with o1(z) = (z — a)*@® (b — z)*®), The latter is covered by
Theorem 2.5. [

COROLLARY 3.18. Under the assumptions of Theorem 3.17, the operdtpr
is bounded from the weighted Lebesgue sgate [(a, b), o] to the weighted frac-
tional Sobolev space®*")[(a,b), ol.
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3.2. On compactness of the operator$; and 75

We have to prove the compactness of the oper&toamdT from L) [(a, b),
o] to L*P0) [(a,b), o]. It suffices to consider only the operafby, the proof for
T, being symmetrical (one can also reduce the cage ¢b the case of by the
reflection change of variables= a + b — x1, y = a + b — y; and working with
the reflected variable exponent(z;) = p(a + b — z1).

We will base ourselves on the following Krasnoselski type dominated com-
pactness theorem for integral operators

Kf(x) = /Q K(z.9)f()du(y), QCR™, (3.52)

proved for variable exponents iiq]. We recall that theK is called a regular
operator from a Banach spag&einto a Banach spacg, if a similar operator with
the kernel K (x, y)| is bounded fromX to Y. By W),y (£2) we denote the class of

weightsp of the form
N

o(@) =[] lz — 2™, e, (3.53)
k=1

Where—ﬁ < Bk < ﬁ, k=1,2,...,N.

ProPOSITION3.19. LetK andK, be two regular linear integral operators of
form (3.52) with the kernelsC(z,y) andK(z, y), acting from the spack® () (1,
01) into LP20)(Q, po), wherelQ| < oo, letp: (-) andps(-) satisfy conditiong2.2)-
(2.4) andgj S ij(.)(Q),j =1,2. If

|’C(.’L’,t)| < ’Co(SE, t)v

and the majorizing operatd€, is compact fromLP'()(Q, o) to LP>)(Q, 0o),
then the operatdK is also compact.

By means of Proposition 3.19, id¥] there was also proved the following
weighted compactness theorem, which we formulate here for the one-dimensional
case.

PROPOSITION3.20. Let{) = (a,b), —0c0 < a,b < co. Under the conditions
A(z,y) € L>(Q x Q) andess iélfa y) > 0, the operator
yE

Az, y)

is compact in the spade’")(Q2, o), if p(-) € P(Q) N w-Lip () andp is a weight
of form (3.43) with the functionsgu, v satisfying condition42.18), (3.44).
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THEOREM 3.21. Letu(x,t) satisfy assumptioh®. The operatofl’, is com-
pact fromLP®) [(a,b), o] into L*?)[(a,b), 0], —0c0 < a < b < oo, if p(-) €
P(2) N w-Lip[(a,b)] ande is a weight of form(3.439 with the functionsu, v
satisfying conditiong2.18), (3.44).

Proof. We will use the fact that the operafigris known, see21, p. 654], to
be representable as a composition of the fractional opefgtowith an operator
having a weak singularity:

Tve = 14 Vag, (3.54)

where

o' x T u(x,s) —ul(t,s)
= K K = .
Vi = e [ R s, Ko = [ M s
(3.55)
Then by Theorems 2.10 and 2.8, we have only to prove that the opéfaier

compact in the spack”®) [(a, b), o]. From 3.4]) it easily follows that
K (2,5)] < c(z— ).

Then the compactness of the operdtprfollows from Proposition 3.19 and the
compactness of operators with weak singularity in variable exponent spaces. The
latter was proved in13] in non-weighted case and i ] in the weighted case, as
presented in Proposition 3.20. [

COROLLARY 3.22. Letu(x,t) andv(z,t) satisfy assumptiotX-2°. The op-
eratorsM, andM, are bounded froni”") [(a,b), o] into L*?)[(a,b), o], —c0 <
a<b<oo,lifp(:) € P(Q)w-Lip[(a,b)] andp is a weight of the form(3.43)
with the functiong., v satisfying condition$2.18), (3.44).

Proof. We have

Tt t)e(t)
Mip = —— = dt +1T;
1¥ /a (Qf — t)lia + 19,

whereT} is the operator defined il8(48). By representation3(54), we obtain

Mip =154 (wp + Vip), (3.56)

whereu(z) = u(z,z). The boundedness &ff; in L*?0) [(a,b), o] follows from
the boundedness ib”(")[(a, b), o] of the operatorl + V;. Similarly the operator
M is considered. [
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3.3. Fredholmness statement for
the operator M : LP0) [(a,b), o] — L“P)[(a,b), o]

Observe that the functiof(x), introduced in2.3€), for the operator3.5J)

takes the form ‘
u(z, x) + v(x,z)e ™

O(x) = arg (3.57)

u(z, z) + v(x, x)eo™

and as usual we choose the initial valuexof by the conditior) < 6(a) < 2.

THEOREM 3.23. Let the functions.(x, t) andv(x,t) satisfy assumptions’1
and 2. Then the operatadv! is Fredholm fronLP() [(a,b), o] into L*?)[(a, b), o]
with p(x) € P(Q) (" w-Lip (2) and the weighp of form (3.43) satisfying condi-
tions(3.44) and(3.49), if and only if:

i) u?(z,z) + v*(z,2) # 0, = € [a,b]; (3.58)
iy 2@ 1 —a (mo o) L _ v mo
) G # o) —a (mod 1), 577 o= u(b) (mod 1)

(3.59)

These conditions being satisfied, the index of the operdtas given by

= L a —a—@ L v @
Ind M = p(a)+”() ]+[p +v(b) + o |- (3.60)

P r o o f. By representatiorB(4€), compactness dfy, T, and by B.50),
the investigation of the Fredholmness of the operatofrom LP() [(a,b), o] into
L*P0)[(a,b), o] is equivalent to that of the operatdi, in LP() [(a, b), o], the latter
being equivalent to the study of the Fredholmness of the singular integral operator

1 (" as(y)
a@ota) + = [ 2oy

in the spacd.?)[(a, b)o*] whereo*(z) = (z — a)*®)~*(b — 2)*(*), The result
on its Fredholmness follows from Theorem 2.16 withz) = a;(x) + a2(z) and
B(xz) = a1(z) — az(x), if we take B.45) into account. [

3.4. Closed form formulas for solutionsy € LP() [(a, ), o] of the equation
Moy = fwith f € L%PO)[(a,b), o]

We consider the equatiailyp = f in the form

/"” u(t)p(t)dt N /b v(t)p(t)dt _

@t ") {@— )i f(=), (3.61)
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known as the generalized Abel equation, <2& [Ch. 6]. The functions: and

v are assumed to be continuous [enb]. Since the equatiod/yp = f was re-
duced to the singular integral equation, we may use the well known fact from the
theory of the latter to obtain the closed form expression for the general solution
of the equationVlyp = f, assuming that the Fredholmness conditions are satis-
fied. The Fredholmness of the equatibfyo = f has already been characterized

in Theorem 3.23. In view of condition8.69 and 3.49, we have the only two
possibilities ford(a):

0(a) 1 0(a)
< _ — —— <1
=2r “p@ 7 pla) or pl@) " Ha) < o <
and similarly two possibilities fol" = %? - [%ﬁ)]
0<T< 1 (b) ! b)<T<1
_— = —_— — UV .
= ) P (b)

To write down the general solution of the equatidgy = f in the weighted space
L*0) [(a,b), o] wheref € L*P()[(a,b), o], we need the following numbers:

e i< %9 < Lo 4 pua);
Aa(p) = 1 27r9(a) . 1_ 2 p(a) G(a) (362)
and
T, ifO§T<I%(b)—y(b);
Mo(p) = o (3.63)

For brevity we defines = Ind M, wherelnd M is given by 8.60).

THEOREM 3.24. Let conditions(3.58-(3.59 hold, the functions.(x,t) and
v(x,t) satisfy assumptions’land 2, p(z) € P(Q)(w-Lip () andp be of the
form (3.43).

If 2 > 0, then for everyf € L*?")[(a,b), o] the equationMyp = f is
unconditionally solved in the spad&()[(a, b), o] and all its solutions in this space
are given by the following formula

plz) = u2<x;(+x)vz(x> (w = a)*® (b — )W) Z(2) Py ()
Lou@f@) v (@- a) ) (b — )P Z ()
u?(z) +v%(z)  w?(z) 4+ v (x) T

) /b (Dg, £)(t) dt
o (- a Dbt DZ(D)(E—2)
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where
x—1
P, 1(x)= Z cpat
k=0

is a polynomial of degree: — 1 with arbitrary coefficients an&(x) is a non-
vanishing continuous function defined by
0(a)

b
Z(z)=exp¥(x), Y(x)= ;ﬂ_/ teitldthQﬂ_ln(xa) — 02(:)11&(():3),

If 3 < 0, the equation is solvable in the spdd¥)[(a,b), o], if and only if f
satisfies the conditions

b k
. (t— a)ua,(p)(b — t)#b(P)Z(t)

P r o o f. By the standard arguments well known in the theory of singular
integral equations, it may be checked that the above formula gives the general
solution in the spacé?()[(a,b), o], if the singular operator involved in that for-
mula, is bounded in this space. By Theorem 2.5 this is the case under the choice
(3.62)-(3.63 of A\, (p) andXy(p). [

We dwell on a special case wheft) = u = const andv(t) = v = const:

b
/ C1 + Casign (z — t)

|z —t|t—

p(t)dt = f(x), (3.64)

a

whereC; + Cy = u,C7 — Co = v. This equation attracted attention of various
authors in view of applications of such equation, <&t Ch. 6] and references
therein. We have denoted

u -+ Ue—iom

0 =arg —+—
e u + veem

€ (0,2m),

and also,

1 1
A—m—i-u(a)—a, B—m—ku(b).
Note that within the frameworks of the well-posedness of the equation, that is,
in the case where the operator generated by the left-hand side of the equation is
bounded fromL?() [(a, b), o] to L*?()[(a, b), o], we have

0<A<l—0a 0<B<l1,
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according to condition$3(49). Recall also that the Fredholmness conditions imply
the following restrictions on the value 6f

6 0
%#A and %#B.

A direct calculation by formulg3.60) shows that the index may have only
values—1,0 and1:

0, if % < min(A4, B) or % > max(A4, B)
w={ -1, ifA<BandA< £ < B,

+1, ifA>BandB< £ <A,
Thus, we arrive at the following statement.

THEOREM3.25. Under the conditions of Theorem 3.24 on the expopény
and the weighb(z), equation(3.64) with f € L*?()[(a,b), o] is uniquely and
unconditionally solvable in the spaé&()[(a,b), o] if and only if

0 . 1 1
5, <min (p(a) + p(a) —Oé,p,(b)+V(b)> )

or
0 1

1
5o > max <p(a)+'u(a) —Ol,p,(b)‘f‘V(b)>-

The solution of the equation is derived from the general formula of Theorem
3.24 withP,,_1 =0 andZ(z) = 1.
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