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Abstract

Fractional q-integral operators of generalized Weyl type, involving gen-
eralized basic hypergeometric functions and a basic analogue of Fox’s H-
function have been investigated. A number of integrals involving various
q-functions have been evaluated as applications of the main results.
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1. Introduction

Al-Salam [3] introduced the generalized Weyl fractional q-integral oper-
ator in the following manner:

Kη,µ
q {f(x)} =

q−ηxη

Γq(µ)

∫ ∞

x
(y − x)µ−1 y−η−µf(yq1−µ)d(y; q), (1.1)

where Re(µ) > 0, η is arbitrary and the basic integration, cf. Gasper and
Rahman [5], is defined as:∫ ∞

x
f(t)d(t; q) = x(1− q)

∞∑

k=1

q−kf(xq−k). (1.2)

In view of relation (1.2), operator (1.1) can be expressed as:
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Kη,µ
q {f(x)} = (1− q)µ

∞∑

k=0

qkη (qµ; q)k

(q; q)k
f(xq−µ−k), (1.3)

where Re(µ) > 0 and η being an arbitrary complex quantity.

In the sequel we shall use the following notations and definitions:

For real or complex a and |q| < 1, the q-shifted factorial is defined as:

(a; q)n =





1 ; if n = 0

(1− a)(1− aq) · · · (1− aqn−1) ; if n ∈ N.
(1.4)

In terms of the q-gamma function, (1.4) can be expressed as

(a; q)n =
Γq(a + n)(1− q)n

Γq(a)
, n > 0, (1.5)

where the q-gamma function (cf. Gasper and Rahman [5]), is given by

Γq(a) =
(q; q)∞

(qa; q)∞(1− q)a−1
=

(q; q)a−1

(1− q)a−1
, (1.6)

where a 6= 0,−1,−2, · · ·. Also,

(x− y)ν = xν
∞∏

n=0

[
1− (y/x)qn

1− (y/x)qν+n

]
= xν

1Φ0




q−ν ;
q, yqν/x
;


 .

(1.7)
The generalized basic hypergeometric series, cf. Gasper and Rahman [5], is
given by

rΦs




a1, · · · , ar ;
q, x

b1, · · · , bs ;


=

∞∑

n=0

(a1, · · · , ar; q)n

(q, b1, · · · , bs; q)n
xn

{
(−1)nqn(n−1)/2

}(1+s−r)
,

(1.8)
where for convergence, we have |q| < 1 and |x| < 1 if r = s + 1, and for any
x if r ≤ s. The abnormal type of generalized basic hypergeometric series
rΦs(·) is defined as

rΦs

[
a1, · · · , ar ; q, x
b1, · · · , bs ; qλ

]
=

∞∑

n=0

(a1, · · · , ar; q)n

(q, b1, · · · , bs; q)n
xnqλn(n+1)/2, (1.9)

where λ > 0 and |q| < 1.
The q-exponential series is
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eq(x) =
∞∑

n=0

xn

(q; q)n
. (1.10)

The q-binomial series is given by

1Φ0




α ;
q, x

;


 =

(αx; q)∞
(x, q)∞

. (1.11)

The basic analogue of the Sine and Cosine functions are

sinq(ax) =
1
2i
{eq(iax)− eq(−iax)} , (1.12)

and

cosq(ax) =
1
2
{eq(iax) + eq(−iax)} . (1.13)

Similarly, we have the q-Laguerre polynomial:

L(α)
n (x; q) =

(qα+1; q)n

(q; q)n
1Φ1




q−n ;
q,−xqn

qα+1 ;


 ; (1.14)

the little q-Jacobi polynomial:

P (α,β)
n (x; q) =

(qα+1; q)n

(q; q)n
2Φ1




q−n, qα+β+n+1 ;
q, xq

qα+1 ;


 ; (1.15)

the Wall polynomial (or little q-Laguerre polynomial)

Wn(x; b, q) = (−1)n(b; q)n qn(n+1)/2
2Φ1




q−n, 0 ;
q, x

b ;


 ; (1.16)

and the Stieltjes-Wigert polynomial:

sn(x; q) =
n∑

k=0

(q−n; q)k

(q; q)k
qk(k+1)/2 (−x)k = 1Φ0

[
q−n ; q,−x

; q1

]
. (1.17)

Saxena, Modi and Kalla [9], introduced a basic analogue of the H-
function in terms of the Mellin-Barnes type basic contour integral in the
following manner:

Hm,n
A,B

[
x; q

∣∣∣∣
(a, α)
(b, β)

]
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=
1

2πi

∫

C

m∏
j=1

G(qbj−βjs)
n∏

j=1
G(q1−aj+αjs)πxs

B∏
j=m+1

G(q1−bj+βjs)
A∏

j=n+1
G(qaj−αjs) G(q1−s) sin πs

ds, (1.18)

where

G(qα) =
∞∏

n=0

{
(1− qα+n)

}−1 =
1

(qα; q)∞
, (1.19)

and 0 ≤ m ≤ B; 0 ≤ n ≤ A; αj and βj are all positive integers. The
contour C is a line parallel to Re(ωs) = 0, with indentations, if necessary,
in such a manner that all the poles of G(qbj−βjs) ; 1 ≤ j ≤ m, are to its
right, and those of G(q1−aj−αjs) ; 1 ≤ j ≤ n, are to the left of C. The basic
integral converges if Re [s log(x)− log sinπx] < 0, for large values of |s| on
the contour C, that is if

∣∣{arg(x)− ω2 ω−1
1 − log |x|}∣∣ < π, where |q| < 1,

log q = −ω = −(ω1 + iω2), ω, ω1 and ω2 are definite quantities. ω1 and ω2

being real.
For αj = βi = 1, j = 1, · · · , A; i = 1, · · · , B, the definition (1.18)

reduces to the q-analogue of the Meijer G-function due to Saxena, Modi
and Kalla [9], namely:

Gm,n
A,B

[
x; q

∣∣∣∣
a1, · · · , aA

b1, · · · , bB

]

=
1

2πi

∫

C

m∏
j=1

G(qbj−s)
n∏

j=1
G(q1−aj+s)πxs

B∏
j=m+1

G(q1−bj+s)
A∏

j=n+1
G(qaj−s) G(q1−s) sinπs

ds, (1.20)

where 0 ≤ m ≤ B; 0 ≤ n ≤ A and Re [s log(x)− log sinπx] < 0.
Further, if we set n = 0 and m = B in the equation (1.20), we get the

basic analogue of MacRobert’s E-function due to Agarwal [1], namely

GB,0
A,B

[
x; q

∣∣∣∣
a1, · · · , aA

b1, · · · , bB

]
≡ Eq [B; bj : A; aj : x]

=
1

2πi

∫

C

B∏
j=1

G(qbj−s)πxs

A∏
j=1

G(qaj−s) G(q1−s) sin πs

ds, (1.21)

where Re [s log(x)− log sinπx] < 0.
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Saxena and Kumar [8], introduced the basic analogues of Jν(x), Yν(x),
Kν(x), Hν(x) in terms of Hq(·) function as follows:

Jν(x; q) = {G(q)}2H1,0
0,3




x2(1− q)2

4
; q

(ν
2 , 1), (−ν

2 , 1), (1, 1)


 , (1.22)

where Jν(x; q) denotes the q-analogue of Bessel function of first kind Jν(x);

Yν(x; q) = {G(q)}2H2,0
1,4




(
−ν − 1

2
, 1)

x2(1− q)2

4
; q

(ν
2 , 1), (−ν

2 , 1), (−ν−1
2 , 1), (1, 1)


 ,

(1.23)
where Yν(x; q) denotes the q-analogue of the Bessel function Yν(x);

Kν(x; q) = (1− q)H2,0
0,3




x2(1− q)2

4
; q

(ν
2 , 1), (−ν

2 , 1), (1, 1)


 , (1.24)

where Kν(x; q) denotes the basic analogue of the Bessel function of the third
kind Kν(x);

Hν(x; q)=
(

1−q

2

)1−α

H3,1
1,4




(
1+α

2
, 1)

x2(1−q)2

4
; q

(ν
2 , 1), (−ν

2 , 1), (1+α
2 , 1), (1, 1)


 ,

(1.25)
where Hν(x; q) is the basic analogue of Struve’s function Hν(x).

Following Saxena and Kumar [8], Mathai and Saxena [6], [7], we have
the following q-extensions of certain elementary functions in terms of a basic
analogue of the Meijer G-function as:

eq(−x) = G(q)H1,0
0,2


 x(1− q); q

(0, 1), (1, 1)


 , (1.26)

sinq(x) =
√

π(1−q)−1/2{G(q)}2H1,0
0,3




x2(1−q)2

4
; q

(1
2 , 1), (0, 1), (1, 1)


 ;

(1.27)
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cosq(x)=
√

π(1−q)−1/2{G(q)}2H1,0
0,3




x2(1− q)2

4
; q

(0, 1), (1
2 , 1), (1, 1)


;

(1.28)

sinhq(x)=
√

π

i
(1−q)−1/2{G(q)}2H1,0

0,3


−

x2(1−q)2

4
; q

(1
2 , 1), (0, 1), (1, 1)


;

(1.29)

coshq(x)=
√

π(1−q)−1/2{G(q)}2H1,0
0,3


−

x2(1− q)2

4
; q

(0, 1), (1
2 , 1), (1, 1)


.

(1.30)

A detailed account of various classical special functions expressible in
terms of Meijer’s G-function or Fox’s H-function can be found in research
monographs by Mathai and Saxena [6] and [7].

The main motive of the present paper is to investigate the generalized
Weyl fractional q-integral operator involving basic hypergeometric functions
including the basic analogue of the H-function. Certain interesting special
cases have also been derived as the applications of the main results.

2. Main results

In this section, we shall evaluate the following fractional q-integrals of
generalized Weyl type involving basic hypergeometric function rΦs(·) and
basic analogue of Fox’s H-function. The main results are presented in the
following theorems.

Theorem 1. If Re(η − λ) > 0 and ρ is any complex number, then the
generalized Weyl fractional q-integral of xλ-weighted basic hypergeometric
function rΦs(·), is given by
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Kη,µ
q



xλ

rΦs




a1, · · · , ar ;
q, ρx

b1, · · · , bs ;






 =

xλq−µλΓq(η − λ)
Γq(η − λ + µ)

r+1Φs+1




a1, · · · , ar, q
1−η+λ−µ ;

q, ρx
b1, · · · , bs, q

1−η+λ ;


 . (2.1)

P r o o f. In view of relations (1.3) and (1.8), the left hand side of (2.1)
becomes

(1− q)µ
∞∑

k=0

qηk (qµ; q)k

(q; q)k
(xq−µ−k)λ

∞∑

n=0

(a1, · · · , ar; q)n

(q, b1, · · · , bs; q)n

×
{

(−1)nqn(n−1)/2
}(1+s−r)

(ρxq−µ−k)n,

and, interchanging the order of summations, we further obtain

xλ(1−q)µq−µλ
∞∑

n=0

(a1, · · · , ar; q)n

(q, b1, · · · , bs; q)n

{
(−1)nqn(n−1)/2

}(1+s−r)
(ρxq−µ)n

×
∞∑

k=0

(qµ; q)k

(q; q)k
qk(η−λ−n).

On summing the inner 1Φ0(·) series with the help of the equation (1.11),
the above expression reduces to

xλ(1− q)µq−µλ
∞∑

n=0

(a1, · · · , ar; q)n

(q, b1, · · · , bs; q)n(qη−λ−n; q)µ

×
{

(−1)nqn(n−1)/2
}(1+s−r)

(ρxq−µ)n,

and by further simplification, the above expression yields to the right hand
side of (2.1).

Theorem 2. Let Re(µ) > 0, λ ∈ I, ρ be any complex number, then the
following generalized Weyl fractional q-integral of Hq(.) function for λ ≥ 0
and λ < 0 holds:

Kη,µ
q

{
Hm,n

A,B

[
ρxλ; q

∣∣∣∣
(a, α)
(b, β)

]}
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= (1−q)µHm+1,n
A+1,B+1

[
ρ(xq−µ)λ; q

∣∣∣∣
(a, α), (µ + η, λ)
(η, λ), (b, β)

]
, λ ≥ 0

(2.2)

= (1−q)µHm,n+1
A+1,B+1

[
ρ(xq−µ)λ; q

∣∣∣∣
(1− η,−λ), (a, α)
(b, β), (1− µ− η,−λ)

]
, λ < 0,

(2.3)
where 0 ≤ m ≤ B, 0 ≤ n ≤ A and Re [s log(x)− log sinπx] < 0.

P r o o f. To prove the theorem, we consider the left hand side of (2.2)
and use definitions (1.3) and (1.18) to obtain

(1− q)µ

2πi

∞∑

k=0

qηk (qµ; q)k

(q; q)k

×
∫

C

m∏
j=1

G(qbj−βjs)
n∏

j=1
G(q1−aj+αjs)π(ρxλq−µλ−kλ)s

B∏
j=m+1

G(q1−bj+βjs)
A∏

j=n+1
G(qaj−αjs)G(q1−s) sin πs

ds.

On interchanging the order of summation and integration, valid under
the conditions given with equation (1.18), the above expression reduces to

(1− q)µ

2πi

∫

C

m∏
j=1

G(qbj−βjs)
n∏

j=1
G(q1−aj+αjs)π(ρxλq−µλ)s

B∏
j=m+1

G(q1−bj+βjs)
A∏

j=n+1
G(qaj−αjs)G(q1−s) sinπs

×
∞∑

k=0

(qµ; q)k

(q; q)k
qk(η−λs)ds.

On summing the inner 1Φ0(·) series, with the help of equation (1.11)
and on using definition (1.19), the left hand side of (2.2) finally reduces to

(1−q)µ

2πi

∫

C

m∏
j=1

G(qbj−βjs)G(qη−λs)
n∏

j=1
G(q1−aj+αjs)π(ρxλq−µλ)s

B∏
j=m+1

G(q1−bj+βjs)
A∏

j=n+1
G(qaj−αjs)G(qµ+η−λs)G(q1−s) sin πs

ds.

Interpreting the above expression in view of definition (1.18), we obtain the
right hand side of (2.2). The second part of the theorem follows similarly.
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3. Applications of the main results

In this section, we evaluate some basic integrals of generalized Weyl
type, involving basic hypergeometric functions and various elementary basic
functions expressible in terms of a basic analogue of Fox’s H-function, as
applications of the theorems from the previous section. These results are
presented in the table that follows.

For the sake of brevity, we mention here the proofs of a few results given
in the table. For example the results (3.1) to (3.6) have been derived by
assigning appropriate values to the parameters r, s and ρ in (2.1), Theorem
1, keeping in view of the definitions given by equations (1.7)-(1.17).

If we set r = s = 0 and ρ = 1 in (2.1), it reduces to (3.2). Further,
on making use of the result (3.2), we can easily prove the results (3.7) and
(3.8). The proof of the result (3.9) is similar to the result (2.1).

The proofs of the results (3.11) and (3.12) follow directly from (2.2) with
ρ = λ = 1 and on using the definitions (1.20)-(1.21), respectively.

While, if we assign m = 1, n = A = 0, B = 3, b1 = ν/2, b2 = −ν/2, b3 =
1, λ = 2 and ρ = (1−q)2

4 in (2.1), we obtain

Kη,µ
q

{
H1,0

0,3

[
x2(1− q)2

4
; q

∣∣∣∣
−
(ν

2 , 1), (−ν
2 , 1), (1, 1)

]}
= (1−q)µ

×H2,0
1,4

[
x2(1− q)2

4q2µ
; q

∣∣∣∣
(µ + η, 2)
(η, 2), (ν

2 , 1), (−ν
2 , 1), (1, 1)

]
.

(3.22)
In view of of definition (1.22), the above equation (3.22) reduces to the
result (3.13). The results (3.14)-(3.21) can be proved similarly by assigning
particular values to the parameters m, n,A, B, λ and ρ, keeping in mind
definitions (1.23)-(1.30), respectively.

The results deduced in the present paper aim to contribute to the theory
of basic hypergeometric series and q-fractional calculus. They are expected
to find some applications to the solutions of fractional q-differ-integral equa-
tions. We intend to take up this aspect in a next contribution.
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3.19 cosq(x)
√

π(1− q)µ−1/2{G(q)}2

H2,0
1,4

26664
(µ + η, 2)

x2(1− q)2

4q2µ
; q

(η, 2), (0, 1), (
1

2
, 1), (1, 1)

37775
3.20 sinhq(x)

√
π

i
(1− q)µ−1/2{G(q)}2

H2,0
1,4

2664 (µ + η, 2)
−x2(1− q)2

4q2µ
; q

(η, 2), ( 1
2
, 1), (0, 1), (1, 1)

3775
3.21 coshq(x)

√
π(1− q)µ−1/2{G(q)}2

H2,0
1,4

26664
(µ + η, 2)

−x2(1− q)2

4q2µ
; q

(η, 2), (0, 1), (
1

2
, 1), (1, 1)

37775
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