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Abstract

In this paper, design of fractional order digital differentiators and inte-
grators using indirect discretization is presented. The proposed approach is
based on using continued fraction expansion to find the rational approxima-
tion of the fractional order operator, sα. The rational approximation thus
obtained is discretized by using s to z transforms. The proposed approach
is tested for differentiators and integrators of orders 1

4 and 1
2 . The results

obtained compare favorably with the ideal characteristics
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1. Introduction

Fractional calculus is an old topic dealing with the generalization of the
integration and differentiation to an arbitrary order, see e.g. [1]. Nowadays,
the fractional calculus theory is applied in almost all the areas of science and
engineering. There are different commonly used definitions for fractional
order integration and differentiation operators, one of them is the Grünwald-
Letnikov definition

Dαf(t) = lim
τ→0

1
τα

∞∑

k=0

(−1)k

(
α
k

)
f(t− kτ), (1.1)



144 B.T. Krishna, K.V.V.S. Reddy

where
(

α
k

)
=

Γ(α + 1)
Γ(k + 1)Γ(α− k + 1)

. The fractional order systems in-

volve fractional order differential equations, examples of such are: the frac-
tance device, semi-infinite lossy transmission line, diffusion of heat into the
semi-infinite solid, fractional order differentiators and integrators, PIλDµ –
controllers, etc (see for example [10], [11]). Fractional order differentiators
and integrators are used to determine the fractional order time derivatives
and integrals of the applied input signal, see [4]. They find applications also
in control systems, signal processing, bio-medical engineering, radars, sonars
etc, see [4]-[6]. A fractional order differentiator or integrator is defined by

H(s) = sα , (1.2)

where α could be either positive or negative, for differentiator or integrator
respectively. The design of digital differentiators and integrators involves the
discretization of the fractional-order operators sα, see [5]. The direct and
the indirect discretizations are commonly used discretization techniques.
The direct discretization involves direct power series expansion or continued
fraction expansion of the s to z transform. Chen, Petras and Vinagre [5]-
[6] have used direct discretization techniques in designing fractional order
differentiators and integrators. In the indirect discretization, first, rational
approximation for H(s) in s-domain is obtained by limiting its order and
then, it is digitized.

In this paper, the indirect discretization technique is followed. The
paper is organized as follows. In Section 2, we present indirect discretization
technique. Section 3 deals with the magnitude and phase responses. Finally,
conclusions are drawn in Section 4.

2. Indirect discretization

A.N. Khovanskii [9] has obtained the continued fraction expansion for
(1 + x)α as

(1 + x)α = 1 +
αx

1+
(1− α)x

2+
(1 + α)x

3+
(2− α)x
2 + · · · . (2.1)

The above continued fraction expansion is shown to be convergent, see [9].
Replacing x by s − 1, the numerator and denominator polynomials in the
rational approximation limited to the fifth order:

sα =
P0s

5 + P1s
4 + P2s

3 + P3s
2 + P4s + P5

Q0s5 + Q1s4 + Q2s3 + Q3s2 + Q4s + Q5
(2.2)

are obtained using the first ten terms of expansion (2.1) and are as below:
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P0 = Q5 = −α5 − 15α4 − 85α3 − 225α2 − 274α− 120
P1 = Q4 = 5α5 + 45α4 + 5α3 − 1005α2 − 3250α− 3000
P2 = Q3 = −10α5 − 30α4 + 410α3 + 1230α2 − 4000α− 12000
P3 = Q2 = 10α5 − 30α4 − 410α3 + 1230α2 + 4000α− 12000
P4 = Q1 = −5α5 + 45α4 − 5α3 − 1005α2 + 3250α− 3000
P5 = Q0 = α5 − 15α4 + 85α3 − 225α2 + 274α− 120 .

(2.3)

The rational approximation thus obtained is to be discretized using s to z
transforms. The most efficient s to z transforms are the Al-Alaoui and the
bilinear transforms as defined in [2],[3],[7],[8]:

s =
8(z − 1)

7T (z + 1/7)
, (2.4)

s =
2(z − 1)
T (z + 1)

. (2.5)

The discretized transfer function in the z-domain is obtained by employing
(2.4) and (2.5) in (2.2), and is given by H(z) as follows:

H(z) =
A0z

5 + A1z
4 + A2z

3 + A3z
2 + A4z + A5

B0z5 + B1z4 + B2z3 + B3z2 + B4z + B5
, (2.6)

where the digital filter coefficients A0, A1, . . . , A5 and B0, B1, . . . , B5 are
given in Table. 1.

3. Simulation results

To verify the effectiveness of the indirect discretization technique, α is
chosen as 1

4 and 1
2 . The magnitude and phase responses,pole-zero diagrams

of the integrators and differentiators evaluated at T=1 sec are shown in
Figs. 1-4. Figures 1 and 2 depict the magnitude and phase responses of
differentiators and integrators of order 1

4 using the bilinear and the Al-Alaoui
transforms. Figures 3 and 4 depict the magnitude and phase responses
of differentiators and integrators of order 1

2 for the same transforms. It
can be inferred that the Al-Alaoui transform improves the high frequency
magnitude response compared to the bilinear transform, whereas the bilin-
ear transform provides better phase response compared to the Al-Alaoui
transform. Figures 5 and 6 are the pole-zero diagrams of differentiators
and integrators of order 1

2 and 1
4 . One can observe from these figures that

the poles and zeros are lying inside of the unit circle. Further, the poles
and zeros are interlacing on the segment of the real axis. So the proposed
differentiators and integrators are stable and are of minimum phase.
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4. Conclusions

In this paper a design of fractional order digital differentiators and in-
tegrators using indirect discretization technique has been presented. First
the rational approximation for the fractional order operator is calculated
and then it is digitized using s to z transforms. The magnitude response
obtained by using the Al-Alaoui transform is more closer to the ideal one,
compared to the bilinear transform. But the phase response is better when
the bilinear transform is used. The differentiators and integrators obtained
are stable and minimum phase. The thus proposed approach seems to be
simple and accurate.
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Figure 1: Magnitude and phase responses of digital differentiator of order 1
4

Figure 2: Magnitude and phase responses of digital integrator of order 1
4
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Figure 3: Magnitude and phase responses of digital differentiator of order 1
2

Figure 4: Magnitude and phase responses of digital integrator of order 1
2



DESIGN OF FRACTIONAL ORDER DIGITAL . . . 151

Figure 5: Pole-zero plot of differentiators and integrators of order 1
2

Figure 6: Pole-zero plot of differentiators and integrators of order 1
4


