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Abstract

This paper is devoted to an important case of Wright’s hypergeometric
function gFf’ﬁ(a,b; ¢ z) =2 FlT”B(z), to studying its basic properties and
to application of o Fy o (z) to the generalization of the associated Legendre
functions.
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1. Introduction

It is known that the gamma function appeared in the definition of the
fractional order differentiation given by L. Euler and later developed by
J. Liouville. A detailed discussion of this can be found in [14], [1]. The
I'— and B—functions are also in the base of many special functions [3], [15].
The diversity of the problems generating special functions has led to a quick
increasing in the number of functions used in applications, from the simplest
transcendental functions to the hypergeometric functions of different forms,
see [8], [9].

One of the most important special functions is the Gauss hypergeometric
function o F} (a, b; ¢; z). It should be noted that many algebraic or transcen-
dental functions that occur in the problems of applied mathematics can be
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expressed in terms of the hypergeometric functions. The Legendre, Bessel,
Whittaker and other special functions, and the classical orthogonal polyno-
mials are particular cases of the hypergeometric functions or their various
combinations. Let us note that in a systematic study of the generalized
probability density, in solving problems of the theory of special functions,
differential and integral equations, integral transforms etc., these functions
and their applications have played a significant role, see for example [2], [4],
(7, [5], 191, [13], [8].

The Legendre functions are one of the most well known particular cases
of the hypergeometric function. They have been discovered by Laplace
and by Legendre as early as in the 18" century. Later, their importance
has grown substantially due to their connections with many problems of
mathematical physics, in the potential theory for spheroidal, toroidal and
other coordinates [6]. A general theory of the Legendre functions has been
constructed by Heine, Hobson, Burns, Bateman, Erdélyi, Watson and etc.,
as [5], [6], [8], [12].

There exist various generalizations of the Legendre and the associated
Legendre functions P}'(2), QU (2). In 1957 Kuipers and Meulenbeld [11] in-
troduced into consideration the generalized associated Legendre functions
of the first and the second kind P;""(z) and Q}""(z) respectively, see [11],
[16], [19].

In this paper we consider the generalized (in the sense of Wright [20],
[8]) hypergeometric Gauss function and its applications to the generalization
of the Legendre functions "P}'(z), "PP[""(2), 7PQ]""(z). These functions
are useful in such areas of applications as mathematical physics, heat con-
duction, astronomy, quantum mechanics, approximation theory, probability
theory etc., [1], [7], [17], [18], [19].

2. (1,3)—generalized Gauss hypergeometric function

Let us introduce the (7, 3)—generalized Gauss hypergeometric function
of the following form:

1
2Ff’ﬁ(a,b; c; 2) = Ff’ﬂ(z) = Fgc)(c ) /tbl(l — )bt
0

T(a)T(b)T

X oWy

2t7 ]dt, (1)
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where a, b, ¢ can be complex, {r,8} C R, 7 > 0, > 0, Rec > Reb >
0, Rea > 0, 7 — 3 < 1, I'(...) is the classical gamma function [5], oWy
is the Fox-Wright function [20]. When § = 7 = 1, (1) gives the classical
hypergeometric function o F}(a, b; c; z), see [5].

THEOREM 2.1. (Integral representations of o F] » (z)) For the function
o F P (a,b;c; z) the following integral representations are valid:

o0

P @b = A [ @y gw | @Oy ]dt; @
%
gFf’ﬁ(a,b; cz) = 2A/(.5'h7f)2b_1(ch15)1_2c oWy (e, (10’;?'7-); (tht)* ]dt,
0
where 3)
s I'(c) (4)

T(a)T(B)C(c — b)’

1 s T [{-x)ft g |
FT,ﬁ b . — 7€ B FT7 b _ 13 dt
2 1 <a’7 ,C, xﬁ) z F(C—/B)F(ﬁ)/ tc 2 1 a? 7C ﬂ? tﬁ

(the generalized Koornwinder’ formula [10]), (5)
Re(c — ) >0, Rea >0, Reb> 0, |z| > 1.

The validity of relations (2), (3), (5) is proved with the help of the
series representations of o F B (z), applications of the properties of the I'—
and B—functions, the legality of interchanging of the order of integration
and summation.

For example, let us prove (5):

T t— )Pt - 1
/ 7( tc) o F) B (a, b;c— f3; tﬂ)dt

EZ)_F(ﬁbi Pla+n)l(b+7n) 1 /(t _ g)Plyebn gy

F
—0
( ﬁ) F(a+n)r(b+7n) i x*075n+ﬁ c— n
['(a)L'(b) = Z L(c—B+pn) nl B(B3,c— B+ pn)

" e o ri(ane-h).

(c—p+pn) nl!

I'(c)
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THEOREM 2.2. (Addition formula) For the (1, [3)—generalized Gauss
hypergeometric function o F} B (z) the following addition formula is valid:

B8 g B I'(c) <=T(a+n)(b+7n) y"
2F1 (a7b, C,$+y) - F(a)F(b) 7;) I‘(c—l—nﬂ) n!
X QFf’ﬁ(a+n,b+nT;c—|—nﬁ; x). (6)

Proof It follows from the differentiation formula for o F] s (2):

dr - o I'(a+n)'(c)T'(b+ Tn)
g 2 (@ biaz) T(a)T(0)T(c + Bn)
X QFf’ﬁ(a—l—n,b—i—Tn;c—i—ﬁn;z), (7)

and Taylor’ theorem [15]: if f(x) is analytical function, its series converges
as |x| < p, then for |y| < p we have

faty) =3 1@ Q
n=0 ’

THEOREM 2.3. (Product formula) For the (7, 3)—generalized Gauss hy-
pergeometric function o F} B (z) the following formula is valid:

3 o B I'(c) =T(a+n)(b+7n) z"(y—1)"
PG = oG 2T Tt ng) n
X QFf’*B(a—I—n,b—an;c—Fﬂn;x). (9)

Here we use (7) and the Taylor theorem [15]:

Flay) =3 W ) (10)
n=0 '

THEOREM 2.4. (Generalization of the Erdélyi theorem [5]) If Rec >
ReX >0, z # 1, |arg(l — z)| <7, Rec > Reb >0, Re2b > Rea >0, T €

R, 7 > 0, then the following formula is valid:

1
LT ' A=B+1) [ 4,
F{ (a,b;c; = F(b- L,LLix=b4+1;
2 1(a7 7632) F(C—b)r(2b—)\) /x 2 1( C+ P + "T)

X oFT(a,b;2b — \; za™) dx. (11)
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Proof. Let §=7. From (1) we have

1
oF (a,b;c;2) = F(b)FF((Cc)—b) /(1 — )b g (1 — 22T . (12)
0

Let us consider the expression z°~!(1 — z27) ™. Taking into account the
following formula ([5])

(1 —2z2")" ZF a+n " (Jzx"] < 1), (13)
we obtain:
b— b 1 n 2T T
2711 — 227 nz% o
- (a)n b+mn—1_n __ F( - b —+ Tn) (2b B A)
1;) nl " ST TE N xH n; nl I‘2b—)\—|—7n) T(b)
L)  d=* e
inl,Qb-l—Tn—l—)\] — F(2b(_) )\) i |: 9 17'(&’ b;2b — \; ZJZ‘T)$2b A—1 )

Using the derivative

dbf)\beJrTnf)\fl _ F(Qb Y —i—T?”L) xb-{—ﬂ'n—l
dxb—A L'(b+mn)

and the fractional integration by parts we get:

I'(c)
T(c—b)T(2b—N)

oF7 (a,b;¢;2) =

1
x/ yeb- lddb )\{ 20=A-1 zFf(a,b;Qb—)\;sz)}dx
x

0

I'(c / "
_ 2-A—1 T CoNe—b-1
= T oI 2b— /x oF (a,b;2b — \; zx )dmb*A{(l x) }

0

1

I(c 2%-A—1 — (b—c+1)n
_ 2 — \; S L
T(c— b)I( 2b ) /x 2FY (a,b; m)n;) nl

0
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" A+ 1) TA=b+1) T(T'A-p+1)

“TO—b+1+m)TA—b+1)  T(c—bI(2b— N
1
X /mbl oFi(b—c+ 1,1, A —=b+ 1;2) oF] (a,b;2b — \; za")dx.
0

Thus the theorem is proved. [ ]

3. The generalized associated Legendre functions

For the first time the functions P;""(z), Q;"" () were introduced as lin-

early independent solutions of the following generalized Legendre differential
equation [11]:

d2 d 2 2
Y k) - - u=0. (14)

=2 e 2 20—2) 201+ 2)

Let us note that as m = n = u,k = v, we have the known Legendre
functions P}'(2),QU(2), [6]. If 2 € C and k,m,n are the real parameters,
then the solutions of the differential equation (14) may be written in the
form:

1 00 -1
u:P % _k' % z )
—m o1 -

where arg z, arg(z+1) have their principal values. Evidently, the generalized
functions P;""(z), Q)" (z) are of the class of the hypergeometric functions.
The functions P;,""(z) and Q" (z) are defined for all points of the complex
z—plane cut along the real axis from —oo to 1.

Let us introduce the (7, 3)—generalized associated Legendre functions
TBPI (), Q" (2) of the following form:

T’BP]Z,TL’TL(Z) — 1 (Z + 1)?”
F(l—m) (z—l)?
— — 1—=2
Frofp "y P 1
X gl < 9 + 1, 5 m; 9 s ( 5)
where
u_d<2;h+m+n¢—L—Z”4kﬁjn;n¢QiLiZ”4 (16)

m#1,2,...; larg(zx )| <m, {r,} CR,7>0, T—[F<1;
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(m—n) m+n m—n
2T (e ) (k4 () 4)

7,8 Hm,n 2) = Mmi _ h 17
Q) (2—1)k+§+1(z+1)_5f(2k+2) a7)
2
X 2Ff“6 mtn — ],
2 2 1—2z
with
m—+n m-—-n
k+ #*—-1,-2,..., , 2,00 2k #£—-2,-3,...,
(18)

|z =1 >2, |arg(z £ )| <7, {1,6} CR, 7>0, T— (< 1.
In the sequel we discuss some properties of the functions ™7 P""(z2),
T»ﬂQ;:"n(z)_

THEOREM 3.1. If the conditions (16) are valid, then the following inte-
gral representations for the function ™? P,"""(z) hold:

T,ﬂPm,n( ) _ ( )%(Z — 1)7%
1
x / T e
0
(k=252 4+1,1),(1=m,7); | 1—, ,»
X oWy (1—m.B); 5= 17 | dt, (19)
where 9V is the Fox-Wright function [20];
TP (cha) = Kch” —-sh™™ % /e b1 — e t)k—"2"
0
ot | B (1 B m)ﬁ() T | gp2 g e ] dt;  (20)

7\'

T’ﬁPIzn’”(cosw) :K2-cosng (— sm m/ (cost)~2k=mAn—L(gip ¢)2k—m-n+l
0

(k_ @ +171)7(1 _m77)7

X oW1y

sin? £ - cos®t ] dt; (21)
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[e.o]

T’BPIT’"(cha) K- 2ch”% sh™ mC;/ (chw) m=1, 5>‘hcu)2k_m_"Jrl
X oWy (k=55 (;—_1; ’ﬁ()l —mT); 1 —sh? § - (chw)™? ] dw;  (22)
with
277 I (k- ™ 4 1
K= 2mfn ( +m)fn :
I'(k - )I'(— k— 5

THEOREM 3.2. If the conditions (18) are valid, then some integral rep-
resentations for the function "PQ}""(z) have the following form:

m—n

T (z—1) P27 e+ 1)2T(k + T (k + 152 4 1)
D(k— 252+ DT (k + ™2 + 1)D(k — 282 + 1)

( et +1,1), (25 +2,7);
(2 + 2. )

1
X/tk+m;—n (1 —t)k_mTJrn 2‘111
0

27 ] dt;
(23)
T,ﬁQ’Zb,TL(Cha) _ M(shg)_zk_” 2 / —4k—3 ht)Qk:—m—n-i—l
0

(k— "5 4+1,1),(2k + 2,7);
(2k + 2, B3);

—sh? §-ch™ ¥ w ] dw, (24)

emrm2 (k—i— m+n 4 1)
I(k— mn +1)r(k:— min 4 2)

M =

The proofs of Theorems 3.1, 3.2 are straightforward with help of the se-
ries representation of o F] B (z), the interchanging of the order of summation
and integration, and using suitable substitutions.

THEOREM 3.3. (Integral representation of ™ P™"(z) by the hyperge-
ometric functions) If k + mTJr" is a positive integer, and k — #5* and m
are not integers, {r,f} C R, 7 > 0, 8 > 0, (3 — \) is positive integer,
|arg(l — z)| < m, z # 1, then the following formula is valid:

(z+1)2 r'(A-F+1)
(z—1)% T(1+k— B0 (—k — B8

TaBP];n’n(z) -

)
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1
X/tkm?nl 3F~’2(—k3—min+1, —k—min, 1—m;
2 2
0

m-—n ~ 1—=z
k- “\ 1-—m: AT
5 tA=A m; — )
x QFl(—kjLL;”, LA+ k42 L pa (25)

where 3 Fy is the Wright hypergeometric function ([20]) and o F is the Gauss
hypergeometric function.

The proof is similar to the proof of Theorem 2.4.

COROLLARY. Let the conditions of Theorem 3.3 hold. Then the function
TP[""(z) is represented by the expression:

1
z -1 m-—n
TPk'm,'rl(z): (Z‘i_l)jl T ()\+k+ P} ].) /t_k_m2n_1
(z—1)% D(k—"22 4+ 1)I(—2k —m+n—\)
0
xR (kT Ak T )
_ _ 1 —
xoFT(h— 21 p = ok - A = Z4T)dr. (26)

2

For practical goals the following theorem is useful.

THEOREM 3.4. If Reu < %, T € R, 7 > 0,z = cha, then for the
T—generalized associated Legendre function ™ P}'(z) the following formula is
valid:

«

ptg

TP!(cha) = N - / it (oo = =E 11 (62 et /25ha) T dt,

—

where

I

- 1
N = 2#+%5 71011 — )I(1 — 2)072(5 — p) (sha) #— 2 +5,

2
. . . yn . 2vz2-1
P r o o f. Taking into account the expression for P, with z — porey o

([5]), using the substitutions z = cha, (cha+ sha)-27 —2sha(l —cost)” =
e" - 27, after transformations, we obtain (27). ]
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