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Abstract

In this paper a new special function called as M-series is introduced.
This series is a particular case of the H̄-function of Inayat-Hussain. The
M-series is interesting because the pFq-hypergeometric function and the
Mittag-Leffler function follow as its particular cases, and these functions
have recently found essential applications in solving problems in physics,
biology, engineering and applied sciences. Let us note that the Mittag-
Leffler function occurs as solution of fractional integral equations in those
area. In this short note we have obtained formulas for the fractional integral
and fractional derivative of the M-series.
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1. Introduction to the H-function

The H̄m,n
p,q [z]-function is a generalization of the familiar H-function of

Fox [4], given by Inayat-Hussain [1]. He defined the H̄-function, in terms of
Mellin-Barness contour integral, as

H̄m,n
p,q

[
z

∣∣∣∣
(αj , Aj ; aj)1,n, (αj , Aj)n+1,p

(βj , Bj)1,m, (βj , Bj ; bj)m+1,q

]
=

1
2πi

+i∞∫

−i∞
θ(s) zs ds, (1)

where the integrand (or the Mellin transform of the H̄-function)

θ(s) =

m∏
j=1

Γ(βj −Bjs)
n∏

j=1
[Γ(1− αj + Ajs)]

aj

q∏
j=m+1

[Γ(1− βj + Bjs)]
bj

p∏
j=n+1

Γ(αj −Ajs)
(2)
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contains fractional powers of some of the involved Γ-functions. Here αj (j =
1, . . . , p) and βj (j = 1, . . . , q) are complex parameters; Aj > 0 (j = 1, . . . , p),
Bj > 0 (j = 1, . . . , q); and the exponents aj (j = 1, . . . , n) and bj (j =
m + 1, . . . , q) can take non-integer values. Evidently, when all these ex-
ponents aj and bj take integer values only, the H̄-function reduces to the
familiar H-function of Fox, [4], see also [3], [7]. The sufficient conditions for
the absolute convergence of the contour integral (1), as given by Buschman
and Srivastava [6], are as follows:

Ω :=
m∑

j=1

|Bj |+
n∑

j=1

|ajAj |−
q∑

j=m+1

|bjBj |−
p∑

j=n+1

|Aj | > 0 and | arg(z)| < 1
2
πΩ.

2. The M-series

Here we give first the notation and the definition of the M-series, intro-
duced by the author:

p

α
M q (a1, . . . , ap; b1, . . . , bq; z) := p

α
M q (z),

p

α
M q (z) =

∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

Γ(αk + 1
. (3)

Here, α ∈ C, <(α) > 0 and (aj)k, (bj)k are the Pochammer symbols. The
series (3) is defined when none of the parameters bjs, j = 1, 2, , q, is a
negative integer or zero. If any numerator parameter aj is a negative integer
or zero, then the series terminates to a polynomial in z. From the ratio test
it is evident that the series in (3) is convergent for all z if p ≤ q, it is
convergent for if p = q + 1 and divergent, if p > q + 1. When p = q + 1

and |z| = 1, the series can converge in some cases. Let β =
p∑

j=1
aj −

q∑
j=1

bj .

It can be shown that when p = q + 1 the series is absolutely convergent for
|z| = 1 if <(β) < 0, conditionally convergent for z = −1 if 0 ≤ <(β) < 1,
and divergent for |z| = 1 if 1 ≤ <(β).

Some special cases of the p

α
M q (z)-function are the following:

(i) When there is no upper or lower parameters, we have

0

α
M0 (−;−; z) =

∞∑

k=0

zk

Γ(αk + 1)
(4)

and thus, the 0

α
M0 (.)-function reduces to the Mittag-Leffler function, [5].
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(ii) When α = 1, we have

p

1
M q (z) =

∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k!
= pFq(z), (5)

so the series p

1
M q (z) becomes the generalized hypergeometric function, see

[3],[7].
The M-series is a special case of the H̄-function, by putting the following

values in definition (1), ∀j: aj = 1, bj = 1, Bj = 1, Aj = 1, namely:

H̄m,n
p,q

[
z

∣∣∣∣
(αj , 1; 1)1,n, (αj , 1)n+1,p

(βj , 1)1,m, (βj , 1; 1)m+1,q

]
= p

α
M q (α1, . . . , αp; β1, . . . , βq; z).

(6)

3. Fractional integral and fractional derivative of the M-series

Let us consider the fractional Riemann-Liouville (R-L) integral operator,
see [7] (for lower limit a = 0, with respect to variable z), of the M-series (3):

Iν
z p

α
M q (z) =

1
Γ(ν)

z∫

0

(z − t)ν−1
∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

tk

Γ(αk + 1)
dt. (7)

The uniform convergence of the M-series follows from the properties of the
H̄-function, [1]. Then, using term by term integration we obtain

Iν
z p

α
M q (z) =

1
Γ(ν)

∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

1
Γ(αk + 1)

z∫

0

(z − t)ν−1tkdt

=
1

Γ(ν)

{ ∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

1
Γ(αk + 1)

}
zν−1

z∫

0

(1− t

z
)ν−1tkdt.

Using the substitution
t

z
:= u, finally (7) takes the form

Iν
z p

α
M q (z)=

1
Γ(ν)

{ ∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

1
Γ(αk+1)

}
zν+k

1∫

0

(1−u)ν−1ukdu

=
zν

Γ(ν)

{ ∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

Γ(αk + 1)

}
Γ(ν)Γ(k + 1)
Γ(ν + k + 1)

=
zν

Γ(ν + 1)

{ ∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

(1)k

(ν + 1)k

zk

Γ(αk + 1)

}
, or :

Iν
z p

α
M q (z)=

zν

Γ(ν+1) p+1

α
M q+1 (a1, . . . , ap, 1; b1, . . . , bq, ν + 1; z), (8)
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that is, as naturally expected for fractional calculus operators of special
functions being generalized hypergeometric functions, a R-L fractional in-
tegral of an M-series is again M-series which indices p, q are increased to
(p + 1), (q + 1).

Analogously, the R-L fractional differential operator (see [7]) of the M-
series can be considered (with a = 0 and with respect to z):

Dν
z p

α
M q (z)=

1
Γ(n−ν)

(
d

dz

)n
z∫

0

(z−t)n−ν−1
∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

tk

Γ(αk+1)
dt,

where n = [ν] + 1. As before, term by term integration leads to

Dν
z p

α
M q (z)=

1
Γ(n−ν)

(
d

dz

)n ∞∑

k=0

(a1)k . . .(ap)k

(b1)k . . .(bq)k

1
Γ(αk+1)

z∫

0

(z−t)n−ν−1tkdt

=
1

Γ(n−ν)

(
d

dz

)n ∞∑

k=0

(a1)k . . .(ap)k

(b1)k . . .(bq)k

1
Γ(αk+1)

B(n− k, k + 1)

=
1

Γ(n−ν)

(
d

dz

)n ∞∑

k=0

(a1)k . . .(ap)k

(b1)k . . .(bq)k

1
Γ(αk+1)

zn−ν+k Γ(n− ν)Γ(k + 1)
Γ(n− ν + k + 1)

,

(9)
where k + 1 > 0, n− ν > 0 and we use the modified Beta-function:

b∫

a

(t− a)α−1(b− t)β−1 = (b− a)α+β−1 B(α, β), for <(α) > 0,<(β) > 0.

Differentiation n times the term zn−ν+k and using again Γ(a+k) = (a)kΓ(a),
representation (9) reduces to

Dν
z p

α
M q (z)=z−ν

∞∑

k=0

(a1)k . . .(ap)k

(b1)k . . .(bq)k

zk

Γ(αk+1)
Γ(k + 1)

Γ(k − ν + 1)

=
zν

Γ(1− ν)

∞∑

k=0

(a1)k . . .(ap)k(1)k

(b1)k . . .(bq)k(1− ν)k

zk

Γ(αk+1)
,

which for k+1 > 0, (k−ν+1)n 6= 0, gives that a R-L fractional derivative of
an M-series is a M-series which indices p, q are increased to (p+1), (q +1):

Dν
z p

α
M q (z)=

z−ν

Γ(1− ν) p+1

α
M q+1 (a1, . . . , ap, 1; b1, . . . , bq, 1− ν; z) . (10)
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