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New Vacuum Solutions for Quadratic

Metric-Affine Gravity - a Metric Affine

Model for the Massless Neutrino?

Vedad Pasic

In this paper we present an overview of our research that was presented at the MASSEE

International Congress on Mathematics MICOM 2009 in Ohrid, Macedonia. We deal with

quadratic metric–affine gravity , which is an alternative theory of gravity. We present new

vacuum solutions for this theory and an attempt to give their physical interpretation on the

basis of comparison with existing classical models. These new explicit vacuum solutions of

quadratic metric–affine gravity are constructed using generalised pp-waves. A classical pp-

wave is a 4-dimensional Lorentzian spacetime which admits a non–vanishing parallel spinor

field. We generalise this definition to metric compatible spacetimes with torsion, describe basic

properties of such spacetimes and eventually use them to construct new solutions to the field

equations of quadratic metric–affine gravity. The physical interpretation of these solutions we

propose is that these new solutions represent a conformally invariant metric–affine model for

the massless neutrino. We give a comparison with a classical model describing the interaction

of gravitational and massless neutrino fields, namely Einstein-Weyl theory. Future research

topics are briefly discussed.
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1. Introduction

There are a number of different alternative theories of gravity that try

to further the completion of Einstein’s theory of gravity. One such theory,

propagated by Einstein himself for some time, is the metric–affine gravity.

A number of developments in physics in the last several decades have

evoked the possibility that the treatment of spacetime might involve more than

just the Riemannian spacetime of Einstein’s general relativity. The smallest

departure from a Riemannian spacetime of Einstein’s general relativity would
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consist of admitting torsion, arriving thereby at a Riemann–Cartan spacetime,

and, furthermore, a possible nonmetricity, resulting in a ‘metric–affine’ space-

time.

The metric–affine gravity is a natural generalisation of Einstein’s gen-

eral relativity, which is based on a spacetime with a Riemannian metric g of a

Lorentzian signature. Similarly, in the metric–affine gravity we consider space-

time to be a connected real 4–manifold M equipped with a Lorentzian metric g

and an affine connection Γ. Note that the characterisation of the spacetime man-

ifold by an independent linear connection Γ initially distinguishes metric–affine

gravity from general relativity. The connection incorporates the inertial prop-

erties of spacetime and it can be viewed, according to Hermann Weyl [28], as

the guidance field of spacetime. The metric describes the structure of spacetime

with respect to its spacio-temporal distance relations.

The 10 independent components of the (symmetric) metric tensor gµν and

the 64 connection coefficients Γλ
µν are the unknowns of metric–affine gravity.

We mostly deal with quadratic metric-affine gravity. In the quadratic

metric-affine gravity, we define our action as

(1) S :=

∫
q(R)

where q is a quadratic form on curvature R . The coefficients of this quadratic

form are assumed to depend only on the metric, and the form itself is assumed

to be O(1, 3) invariant.

An independent variation of (1) with respect to the metric g and the

connection Γ produces the system of Euler–Lagrange equations which we will

write symbolically as

∂S/∂g = 0,(2)

∂S/∂Γ = 0.(3)

The objective of our work was the study of the combined system of field

equations (2), (3). This is a system of 10 + 64 real nonlinear partial differential

equations with 10+64 real unknowns. the quadratic curvature Lagrangians were

first discussed by Weyl [28], Pauli [17], Eddington [6] and Lanczos [10, 11, 12]

in an attempt to include the electromagnetic field in the Riemannian geometry.

Our motivation comes from the Yang–Mills theory. The Yang–Mills ac-

tion for the affine connection is a special case of (1) with

(4) q(R) = qYM(R) := Rκ
λµν R

λ
κ

µν .
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With this choice of q(R), equation (3) is the Yang–Mills equation for the affine

connection, which was analysed by Yang [29].

The idea of using a purely quadratic action in the General Relativity goes

back to Hermann Weyl, who argued that the most natural gravitational action

should be quadratic in curvature and involve all possible invariant quadratic

combinations of curvature, like the square of Ricci curvature, the square of

scalar curvature, etc. By choosing a purely quadratic curvature Lagrangian we

are hoping to describe phenomena whose characteristic wavelength is sufficiently

small and curvature sufficiently large.

As presented in [16], we were able to obtain a new class of solutions for

quadratic metric–affine gravity.

2. A short introduction to pp-waves

PP-waves are well known spacetimes in the general relativity, first discov-

ered by Brinkmann [2] in 1923, and subsequently rediscovered by several authors,

for example Peres [18] in 1959. We used them as the basis for constructing new

solutions for quadratic metric–affine gravity. Hence, an introduction to classical

pp-waves is required in order to fully understand this construction.

Recall first the well-known notion of a pp-wave.

Definition 1. A (classical) pp-wave is a connected 4-manifold M equipped with

Lorentzian metric g and Levi-Civita connection Γ which admits a nonvanishing

parallel spinor field.

Another way of characterising a pp-wave is by its restricted holonomy

group Hol0. Definition 1 is equivalent to

Definition 2. A (classical) pp-wave is a connected 4-manifold M equipped

with Lorentzian metric g and Levi-Civita connection Γ whose holonomy Hol0

is, up to conjugation, a subgroup of the group

(5) B2 :=

{(
1 q

0 1

)∣∣∣∣ q ∈ C

}
.

The group (5) is, up to conjugation, the unique nontrivial Abelian sub-

group of SL(2,C), where “non-trivial” is understood as “weakly irreducible and

not 1-dimensional” and dimension understood as real dimension. “Weak ir-

reducibility” means that the only non-degenerate invariant subspaces of the

tangent space are {0} and the tangent space itself.

Yet another equivalent way of characterising a pp-wave is via an explicit

formula for the metric.
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Definition 3. A (classical) pp-wave is a connected 4-manifold M equipped

with Lorentzian metric g and Levi-Civita connection Γ whose metric can be

written locally in the form

(6) ds2 = 2 dx0 dx3 − (dx1)2 − (dx2)2 + f(x1, x2, x3) (dx3)2

in some local coordinates (x0, x1, x2, x3).

PP-waves are well known in general relativity for their beautiful and

amazing properties. For example, the curvature tensor R of a pp-wave is linear

in f (in special local coordinates (6)) and is given by a simple explicit formula

(7) Rαβγδ = −1

2
(l ∧ ∂)αβ (l ∧ ∂)γδf

where l is a parallel null light–like vector and (l ∧ ∂)αβ := lα∂β − ∂αlβ. See

Section 3 in [16] for more details.

The main aim of our research was to extend the classical notion of a

pp-wave to metric compatible spacetimes with torsion, i.e. with

Γλ
µν 6= 1

2
gλκ(∂µgνκ + ∂νgµκ − ∂κgµν) ,

and to do it in such a manner that all the nice properties are preserved and

they are still easy to work with in practical applications, as presented in [16].

One natural way of generalising the notion of a pp-wave is simply to extend it

to general metric–compatible spacetimes. However, this would give us a class of

spacetimes which is too wide and difficult to work with. We choose to extend

the classical definition in a more special way, and in this section we do it by

introducing torsion explicitly.

Let A be a complex vector field defined by

(8) A = h(x3)m+ k(x3)l

where l is a parallel null light–like vector andm is a complex isotropic vector field

orthogonal to l. We choose the set of local coordinates for which lµ = (1, 0, 0, 0)

and mµ = (0, 1,∓i, 0). The functions h, k : R → C are arbitrary.

We can then define a generalised pp-wave as a metric–compatible space-

time with pp–metric and torsion

(9) T :=
1

2
Re(A⊗ dA).

Torsion can be expressed more explicitly in our local coordinates as

Tα
βγ =

1

2
Re
[
(k(x3)h′(x3)lα + h(x3)h′(x3)mα) (l ∧m)βγ

]
.
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Torsion is purely tensor and it has 4 non-zero independent components. The

formula for curvature in our local coordinates is

(10) Rαβγδ = −1

2
(l ∧ ∂)αβ(l ∧ ∂)γδf +

1

4
Re
(
(h(x3)2)′′ (l ∧m)αβ (l ∧m)γδ

)
.

Curvature only has two irreducible pieces, namely symmetric trace-free Ricci

and Weyl and it can be written down as

Rκλµν =
1

2
(gκµRicλν − gλµRicκν + gλνRicκµ − gκνRicλµ) + Wκλµν .

The Ricci and Weyl curvatures are given by

Ricµν =
1

2
(f11 + f22) lµlν ,

Wκλµν =

2∑

j,k=1

wjk(l ∧mj) ⊗ (l ∧mk),

where m1 = Re(m),m2 = Im(m), fαβ := ∂α∂βf and wjk are real scalars given

by

w11 =
1

4
[−f11 + f22 + Re((h2)′′)], w22 = −w11,

w12 = ±1

2
f12 −

1

4
Im((h2)′′), w21 = w12.

Note that our generalised pp-waves have the same irreducible pieces of curvature

as classical pp-waves and that their curvature has all the usual symmetries of

curvature in the Riemannian case.

3. The main result

The main result of our research thus far is the following

Theorem 1. Generalised pp-waves of parallel Ricci curvature are solutions of

the system of equations (2), (3).

Note that when using Theorem 1 it does not really matter whether the

condition ‘parallel Ricci curvature’ is understood in the non-Riemannian sense

∇Ric = 0, the Riemannian sense {∇}{Ric} = 0, or any combination of the

two ({∇}Ric = 0 or ∇{Ric} = 0). Here curly brackets refer to the Levi–Civita

connection.

In special local coordinates, the condition that Ricci curvature is parallel

is written as f11+f22 = const, where fαβ := ∂α∂βf . Hence, generalised pp-waves

of parallel Ricci curvature admit a simple explicit description.
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The proof of the main theorem is done by ‘brute force’. We write down

our field equations (2), (3) explicitly under certain assumptions on the properties

of the spacetime, which generalised pp-waves automatically posses. The proof

of the theorem is then quite straightforward, as we explicitly show that the field

equations are satisfied by inserting the formulae for the irreducible pieces of

curvature and torsion of generalised pp-waves.

For the proof of Theorem 1, see [16].

4. Physical interpretation of generalised pp-waves

Our analysis of vacuum solutions of quadratic metric–affine gravity shows,

see Theorem 1, that classical pp-spaces of parallel Ricci curvature should not

be viewed on their own. They are a particular (degenerate) representative of

a wider class of solutions, namely, generalised pp-spaces of parallel Ricci cur-

vature. The latter appear to admit a sensible physical interpretation. Indeed,

according to formula (10) the curvature of a generalised pp-space is a sum of

two curvatures: the curvature

(11) −1

2
(l ∧ {∇}) ⊗ (l ∧ {∇})f

of the underlying classical pp-space and the curvature

(12)
1

4
Re
(
(h2)′′ (l ∧m) ⊗ (l ∧m)

)

generated by a torsion wave traveling over this classical pp-space. Our torsion

(9), (8) and corresponding curvature (12) are waves traveling at speed of light.

The underlying classical pp-space of parallel Ricci curvature can now be viewed

as the ‘gravitational imprint’ created by a wave of some massless matter field.

Such a situation occurs in the Einstein–Maxwell theory1 and the Einstein–Weyl

theory2. The difference with our model is that Einstein–Maxwell and Einstein–

Weyl theories contain the gravitational constant which dictates a particular

relationship between the strengths of the fields in question, whereas our model

is conformally invariant and the amplitudes of the two curvatures (11) and (12)

are totally independent.

The physical interpretation of the solution from Theorem 1 we pro-

posed is that these new solutions represent a conformally invariant metric–affine

1The Einstein–Maxwell theory is a classical model describing the interaction of gravitational

and electromagnetic fields
2The Einstein–Weyl theory is a classical model describing the interaction of gravitational

and massless neutrino fields
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model for a massless elementary particle by comparing them to solutions of the

Einstein-Weyl theory.

In the Einstein–Weyl theory the action is given by

(13) SEW := 2i

∫ (
ξa σµ

aḃ ({∇}µξ
ḃ
) − ({∇}µξ

a)σµ
aḃ ξ

ḃ
)

+ k

∫
R,

where the constant k can be chosen so that the non-relativistic limit yields the

usual form of Newton’s gravity law.

In the Einstein–Weyl theory the connection is assumed to be Levi-Civita,

so we only vary the action (13) with respect to the metric and the spinor to

obtain the well known Einstein–Weyl field equations

(14)
δSEW

δg
= 0,

(15)
δSEW

δξ
= 0.

We pointed out the fact that the nonlinear system of Einstein–Weyl field

equations has solutions in the form of pp-waves. The main difference between the

two models is that in the metric–affine model our generalised pp-waves solutions

have parallel Ricci curvature, whereas in the Einstein–Weyl model the pp-wave

type solutions do not necessarily have parallel Ricci curvature. However, when

we look at monochromatic pp-wave type solutions in the Einstein–Weyl model

their Ricci curvature also becomes parallel and we conclude that while in the

metric–affine case the Laplacian of f can be any constant, in the Einstein–Weyl

case it is required to be a particular constant. This should not be surprising as

our metric–affine model is conformally invariant, while the Einstein–Weyl model

is not.

We pointed out a very interesting fact that that generalised pp-waves

of parallel Ricci curvature are sufficiently similar to pp-type solutions of the

Einstein–Weyl model, which is a classical model describing the interaction of

massless neutrino and gravitational fields, to suggest that generalised pp-waves

of parallel Ricci curvature represent a metric–affine model for the massless neu-

trino.
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5. Planned future research

The main aims of the research we plan to do in the immediate future

would be the following:

(i) Physical interpretation of previous results. We would first try to solidify

and expand the physical interpretation of the new solutions obtained

thus far. As our generalised pp-waves of parallel Ricci curvature clearly

have interesting properties, the main objective of this part of research

would be to further investigate the possibility that these solutions rep-

resent a metric–affine (and thus conformally invariant) model for some

massless particle. This would be done in collaboration with several peo-

ple who are perhaps more involved with the physical aspects of this area.

I expect this research to produce publishable results fairly soon, as the

majority of the work has already been done.

(ii) Further comparison with existing solutions. There are several results

from this area that can be compared to our solution in order to see if

additional solutions can be obtained or not. The two papers of Singh

[21, 22] are an example of this. In [21] Singh presents solutions of the

vacuum field equations with purely axial torsion, which is a class of

solutions unobtainable by the double duality ansatz of [1, 13].

In the second paper [22], Singh also constructs solutions unobtainable

by the double duality ansatz, but this time that have purely trace torsion.

These solutions are similar in many ways, as the metric and the hence

the Riemannian pieces of curvature are the same - which leads the author

to stipulate that it might be possible to combine these two solutions but

he however shows that this is unfortunately not possible.

It should be pointed out that in [21, 22] Singh was not working within

the setting of the most general purely quadratic action and the solutions

were obtained for the Yang–Mills case (4). It is clear that these solutions

differ from the ones presented in our work, as our torsion is purely tensor.

It would however be of interest to us to see whether this construction of

Singh’s can be expanded to our most general O(1, 3)-invariant quadratic

form q.

One other and more recent non-metric–compatible result comes from

Obukhov [15]. The quadratic form on curvature considered is the most

general, and identical to the quadratic form used in our work and in [16,

24, 27]. However, unlike the solutions presented in these works, Obukhov
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constructs new solutions that have non-zero nonmetricity, which are gen-

eralisations of pp-waves. Obukhov presents solutions that have not only

torsion waves present but the nonmetricity has a non-trivial wave be-

haviour as well, which is different from the generalised pp-waves pre-

sented in this thesis. Moreover, Obukhov suggests that his solutions

provide a minimal generalisation of the pseudoinstanton, see [23] for

definition of a pseudoinstanton. However, it should be pointed out that

solutions presented in [15] are not non-metric–compatible generalisations

of solutions presented in this thesis.

It would be of great interest to us to respond to this work of Obukhov’s,

for example by seeing what the relaxation of our condition on metric-

compatibility would produce and to investigate a possible combination

of these solutions.

(iii) Teleparallelism. The last, but definitely the most interesting part of

the research we plan to do in the near future would be in the field of

teleparallelism.

Teleparallelism is a very interesting alternative theory of gravity and it

can be considered as a special case of Cosserat elasticity initially investi-

gated by the Cosserat brothers in [5] and used by Einstein and Cartan to

try to unify electromagnetism and gravity, i.e. as a candidate for the the-

ory of everything. The subject of teleparallelism has a long history and

its origins lie in the pioneering works of Eugène and Francois Cosserat,

Élie Cartan, Albert Einstein and Roland Weitzenböck. Modern reviews

of the physics of teleparallelism are given in [7, 9, 14, 20].

The basic idea of teleparallelism is to work with a Lorentzian metric,

vanishing curvature and non-vanishing torsion, so it could be viewed as

a special case of metric–affine gravity. However, in practice instead of

using the metric as the unknown of this theory, one uses a quartet of

covectors (a coframe).

An interesting recent result in teleparallel gravity related to our pre-

vious result was done by Vassiliev in [25, 26], where a new (teleparallel)

representation for the Weyl Lagrangian is given. The advantage of the

teleparallel approach is that it does not require the use of spinors, Pauli

matrices or covariant differentiation, as we did in our work. The only

geometric concepts used are those of a metric, differential form, wedge

product and exterior derivative. It would be interesting to see whether

this can be applied to our previous research.
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Another interesting result that we plan to investigate and further

build on can be found in [3] where the authors suggest an alternative

mathematical model for the electron using the teleparallel approach and

where the electron mass and external electromagnetic field are incorpo-

rated into the model by means of a Kaluza–Klein extension.

One of the main topics of research interest for us in this field would

be the calculation the ground energy state of the hydrogen atom based

on the model presented in [3]. The model presented in [4] would be

interesting in comparison with our research thus far as [4] deals with

a teleparallel model for the massless neutrino, while we dealt with the

metric–affine model for the massless neutrino.
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Scientifique A. Hermann et fils, Paris, 1909 . Reprinted by Cornell Univer-

sity Library.

[6] A . S . E d d i n g t o n, The Mathematical Theory of Relativity Cambridge

1952

[7] F . G r o n w a l d a n d , F . W . H eh l, On the gauge aspects of gravity,

In: Proc. of the 14th Course of the School of Cosmology and Gravitation



New Vacuum Solutions for Quadratic Metric-Affine Gravity... 339

on ‘Quantum gravity’ (Erice, Italy 1995) World Scientific, Singapore, 1996,

148–198, gr-qc/9602013

[8] F . W . H eh l , J . D . Mc C r e a , E . W . M i e l k e a nd Y .

N e ’ e m an , Metric–affine gauge theory of gravity: field equations, Noether

identities, world spinors, and breaking of dilation invariance, Phys. Rep.

258, 1995 , 1–171

[9] F . W . H eh l , J . N i t s c h a n d P . v o n d e r H e y d e, In: General

Relativity and Gravitation, Vol. 1, Plenum Press, New York, 1980, 329–355

[10] C . L a n c z o s , A remarkable property of the Riemann–Christoffel tensor

in four dimensions, Ann. Math. 39, 1938, 842–850

[11] C . L a n c z o s , Lagrangian multiplier and Riemannian spaces, Rev. Mod.

Phys. 21, 1949, 497–502

[12] C . L a n c z o s , Electricity and general relativity. Rev. Mod. Phys. 29,

1957, 337–350

[13] E . W . M i e l k e, On pseudoparticle solutions in Yang’s theory of gravity,

Gen. Rel. Grav. 13, 1981, 175–187

[14] U . Mu en c h , F . G r o nw a l d a n d F . W . H e h l, A small guide

to variations in teleparallel gauge theories of gravity and the Kaniel–Itin

model, Gen. Rel. Grav. 30, 1998, 933–961

[15] Yu . N . O bu kh o v, Plane waves in metric–affine gravity, Phys. Rev. D

73, 2006, 024025 [6 pages]

[16] V . P a s i c a n d D . Va s s i l i e v, PP–waves with torsion and metric–

affine gravity, Class. Quantum Grav. 22, 2005, 3961–3975

[17] W . P au l i, Zur Theorie der Gravitation und der Elektrizität von Hermann

Weyl, Physik. Zaitschr. 20, 1919, 457–467

[18] P e r e s, Some gravitational waves, Phys. Rev. Lett. 3, 1959 , 571

[19] P e r e s, abstract to preprint hep-th/0205040, 2002 (reprinting of [18])

[20] T . S a u e r, Field equations in teleparallel spacetime: Einstein’s fernparal-

lelismus approach towards unified field theory, preprint physics/0405142v1,

2004

[21] P . S i n g h, On axial vector torsion in vacuum quadratic Poincaré gauge
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