TWO REMARKABLE POINTS
 OF THE TRIANGLE GEOMETRY

Sava Grozdev, Vesselin Nenkov

Abstract

It is shown in the paper the discovery of two remarkable points of the triangle by means of "THE GEOMETER'S SKETCHPAD" software. Some properties of the points are considered too.

Keywords: center of gravity, Gergonne point, isogonal conjugate points, THE GEOMETER'S SKETCHPAD

2010 Mathematics Subject Classifications: 51F20

An effective way to establish geometrical relations is by the realization of experimental investigations on definite geometrical constructions. On the other hand, precise constructions are necessary for an efficient study which gives possibilities for exact observations on the dependences under examination. A good knowledge of the geometrical configuration and an appropriate instrument for elaboration are needed. A possible way is by the use of corresponding software. In the sequel it is demonstrated an application of "THE GEOMETER'S SKETCHPAD" (GSP) program and of two well known theorems to the discovery of two remarkable points of the triangle plane geometry. The discovery is based on the following two theorems which are proved in [1]:

Theorem 1. Let k be the circumcircle of $\triangle A B C$ and the circle k_{c} with radius ρ_{c} be internally tangent to k and to the sides $C A$ and $C B$. If r is the radius of the incircle $\triangle A B C$) and $\angle B C A=\gamma$, then $\rho_{c}=\frac{r}{\cos ^{2} \frac{\gamma}{2}}$ (Fig. 1).

Theorem 2. Let k be the circumcircle of $\triangle A B C$ and the circle k_{c}^{\prime} with radius ρ_{c}^{\prime} be externally tangent to k and to the lines $C A$ and $C B$. If r_{c} is the radius of the externally tangent circle of $\triangle A B C$ with respect to $A B$ and $\angle B C A=\gamma$, then $\rho_{c}^{\prime}=\frac{r_{c}}{\cos ^{2} \frac{\gamma}{2}}$ (Fig. 2).

The usual notations for the sides and the angles of a given $\triangle A B C$ are be used. Additionally, the tangent points of k_{c} with $C A$ and $C B$ are denoted by C_{a} and
C_{b}, respectively (Fig. 1), while the tangent points of k_{c}^{\prime} with $C A$ and $C B$ are denoted by C_{a}^{\prime} and C_{b}^{\prime}, respectively (Fig. 2).

As stated in [2], it follows the following property from theorem 1:
Property 1. The points C_{a} and C_{b} together with the incenter I of $\triangle A B C$ are collinear (Fig. 1).

Fig. 1

The proof could be deduced by means of the equalities $C I=\frac{D I}{\sin \frac{\gamma}{2}}=\frac{r}{\sin \frac{\gamma}{2}}$ and $C C_{a}=C_{a} P_{c} \operatorname{ctg} \frac{\gamma}{2}=\rho_{c} \operatorname{ctg} \frac{\gamma}{2}$, which follow from the triangles IDC and $P_{c} C_{a} C$, respectively (Fig. 1). The equalities, together with theorem 1, lead to the conclusion that $\angle C I C_{a}=90^{\circ}$. Thus, $C I$ is angular bisector and altitude of $\Delta C_{a} C_{b} C$ from the vertex C. Consequently, the points I, C_{a} and C_{b} are collinear, the point I being the midpoint of the segment $C_{a} C_{b}$ (Fig. 1).

Analogously, it follows from theorem 2:
Ptoperty 2. The points C_{a}^{\prime} and C_{b}^{\prime}, together with the center I_{c} of the externally tangent circle of $\triangle A B C$ with respect to $A B$ are collinear (Fig. 2).

It could be deduced from corollaries 1 and 2 an easy way for the construction of the points $C_{a}, C_{b}, C_{a}^{\prime}$ and C_{b}^{\prime}. Such an observation facilitates the realization of all necessary constructions by GSP.

Fig. 2

Let $L_{c}=A C_{b} \cap B C_{a}$ (Fig. 1) and $L_{c}^{\prime}=A C_{b}^{\prime} \cap B C_{a}^{\prime}$ (Fig. 2). The points L_{a}, L_{b}, L_{a}^{\prime} and L_{b}^{\prime} are determined analogously. Some observations by GSP on the relations of the points with the vertices of $\triangle A B C$ give arguments for the formulation of the following two properties:

Property 3. The lines $A L_{a}, B L_{b}$ and $C L_{c}$ are concurrent in the point T.
Property 4. The lines $A L_{a}^{\prime}, B L_{b}^{\prime}$ and $C L_{c}^{\prime}$ are concurrent in the point T^{\prime}.
Barycentric coordinates with respect to $\triangle A B C$ like $A(1,0,0), B(0,1,0)$ and $C(0,0,1)$ could be applied to the proof of the above properties as well as of the next ones. What is used for the determination of the coordinates of the points C_{a} and C_{b} is that $I\left(\frac{a}{2 p}, \frac{b}{2 p}, \frac{c}{2 p}\right)\left[3\right.$, p. 91], where $p=\frac{a+b+c}{2}$ and also the formula for scalar product of vectors [3, p. 60] in the equation $\overrightarrow{C I} \cdot \overrightarrow{C_{b} I}=0$ (it follows from property 1). Thus we get: $C_{a}\left(\frac{a}{p}, 0, \frac{p-a}{p}\right), C_{b}\left(0, \frac{b}{p}, \frac{p-b}{p}\right)$.

It is obtained analogously that $C_{a}^{\prime}\left(\frac{a}{p}, 0,-\frac{p-b}{p-c}\right), C_{b}^{\prime}\left(0, \frac{b}{p},-\frac{p-a}{p-c}\right)$.
Using the coordinates of the points $C_{a}, C_{b}, C_{a}^{\prime}$ and C_{b}^{\prime}, we determine the equations of the pairs of lines $A C_{b}, B C_{a}$ and $A C_{b}^{\prime}, B C_{a}^{\prime}$. Next, their common points L_{c} and L_{c}^{\prime} are determined in the form:

$$
\begin{equation*}
L_{c}\left(\frac{a(p-b)}{p^{2}-a b}, \frac{b(p-a)}{p^{2}-a b}, \frac{(p-a)(p-b)}{p^{2}-a b}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
L_{c}^{\prime}\left(-\frac{a(p-a)}{(p-c)^{2}-a b},-\frac{b(p-b)}{(p-c)^{2}-a b}, \frac{(p-a)(p-b)}{(p-c)^{2}-a b}\right) . \tag{2}
\end{equation*}
$$

It is well known that three points $M(x, y, z), \quad M_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $M_{2}\left(x_{2}, y_{2}, z_{2}\right)$ are collinear iff the following equality is verified:

$$
\left|\begin{array}{ccc}
x & y & z \tag{3}\\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=0[3, \text { p. 61]. }
$$

Now, by (1) and (3) the equation of the line $C L_{c}$ is obtained in the form: $C L_{c}: b(p-a) x-a(p-b) y=0 . \quad$ Substitute the equations $p-a=\operatorname{rctg} \frac{\alpha}{2}$, $p-b=\operatorname{rctg} \frac{\beta}{2}, a=2 R \sin \alpha$ and $b=2 R \sin \beta$. The last equation takes the form $C L_{c}: \sin ^{2} \frac{\beta}{2} x-\sin ^{2} \frac{\alpha}{2} y=0$.

Analogously we obtain the equations $A L_{a}: \sin ^{2} \frac{\gamma}{2} y-\sin ^{2} \frac{\beta}{2} z=0$ and $B L_{b}: \sin ^{2} \frac{\alpha}{2} z-\sin ^{2} \frac{\gamma}{2} x=0$. Next, it is easy to check that the three equations are verified by the coordinates of the point

$$
\begin{equation*}
T\left(\frac{\sin ^{2} \frac{\alpha}{2}}{\tau}, \frac{\sin ^{2} \frac{\beta}{2}}{\tau}, \frac{\sin ^{2} \frac{\gamma}{2}}{\tau}\right) \tag{4}
\end{equation*}
$$

where $\tau=\sin ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\beta}{2}+\sin ^{2} \frac{\gamma}{2}$.
Analogously, by means of (2) and (3) it follows that the lines $A L_{a}^{\prime}, B L_{b}^{\prime}$ and $C L_{c}^{\prime}$ pass through the point

$$
\begin{equation*}
T^{\prime}\left(\frac{\cos ^{2} \frac{\alpha}{2}}{\tau^{\prime}}, \frac{\cos ^{2} \frac{\beta}{2}}{\tau^{\prime}}, \frac{\cos ^{2} \frac{\gamma}{2}}{\tau^{\prime}}\right) \tag{5}
\end{equation*}
$$

where $\tau^{\prime}=\cos ^{2} \frac{\alpha}{2}+\cos ^{2} \frac{\beta}{2}+\cos ^{2} \frac{\gamma}{2}$.
This ends the proof of properties 3 and 4.
Argumentation for the points T and T^{\prime} thus obtained to be considered as remarkable of $\triangle A B C$ could be found in some interesting properties of them. The search is possible by GSP again.

Fig. 3

A first observation is connected with the following:
Property 5. T and T^{\prime} are in-points of $\triangle A B C$ (Fig. 3).
The proof of this property could be deduced directly from (4) and (5).
A search of a relation between the points T, T^{\prime} and classic remarkable points of $\triangle A B C$ leads to the following:

Property 6. The center of gravity G and the Gergonne point J of $\triangle A B C$ are on the line TT' (Fig. 3).

The proof of this property could be obtained by the coordinate representations of G and $J: G\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), J\left(\frac{\operatorname{tg} \frac{\alpha}{2}}{\theta}, \frac{\operatorname{tg} \frac{\beta}{2}}{\theta}, \frac{\operatorname{tg} \frac{\gamma}{2}}{\theta}\right)$, where $\theta=\operatorname{tg} \frac{\alpha}{2}+\operatorname{tg} \frac{\beta}{2}+\operatorname{tg} \frac{\gamma}{2}$ [3, p. 97]. The validity of (3) for the triples of points T, T^{\prime}, G and T, T^{\prime}, J could be verified from (4) and (5) by substitution.

By the help of GSP relations of the points T and T^{\prime} under known transformations in the plane of $\triangle A B C$ could be found. Thus, a dependence exists between T and T^{\prime} under isogonal transformation which could be formulated in the following way:

Property 7. The points T and T^{\prime} are isogonal conjugate with respect to $\triangle A B C$.

It could be used in the proof of the above property that the isogonal conjugate of a given point $P(x, y, z)$ is the point $Q\left(\frac{a^{2}}{x t}, \frac{b^{2}}{y t}, \frac{c^{2}}{z t}\right)$, where $t=\frac{a^{2}}{x}+\frac{b^{2}}{y}+\frac{c^{2}}{z}$ [3, p. 65]. It follows easily from (4) and (5) that the same dependence exists between the points T and T^{\prime} which implies that they are isogonal conjugate.

On the grounds of the obtained properties of the points T and T^{\prime} we call them remarkable points of $\triangle A B C$.

References

[1] Nenkov, V., Quotient of the Radii of Two Circles, Teaching of Mathematics and Informatics, 1, (1991), pp. 63 - 64 (in Bulgarian).
[2] Second Triangle Problem Again, James Cook Mathematical Notes, V 6 (1994), pp. 6364.
[3] Paskalev, G., I. Chobanov. Remarkable points of the Triangle. Sofia, Narodna Prosveta, (1985) (in Bulgarian).

Sava Grozdev

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences, Bulgaria
Bl. 8, Acad. G. Bonchev Str.
1113 Sofia, Bulgaria
e-mail: sava.grozdev@gmail.com

Vesselin Nenkov
Technical College - Lovech
Saiko Saev Str., 31,
5500 Lovech, BULGARIA
e-mail: vnenkov@mail.bg

