DEVELOPMENT OF A REFACTORING LEARNING
ENVIRONMENT

A. Stoyanova-Doycheva

Abstract: This paper describes a Refactoring Learning Enviment, which is
intended to analyze and assess programming codedban refactoring rules. The
Refactoring Learning Environment architecture ird#s an intelligent assistant —
Refactoring Agent, which is responsible for analyand assessment of the code,
written by students in real time by using a saebdctoring methods. According to
the situation and based on the refactoring methaltich should be applied, the
agent could react in different ways. Its goal isstow the student, as much as
possible, the weak places of his programming cadkthe possible ways to makes
it better.

Keywords: Intelligent Agents, Refactoring, Tools, eLearning
2010 Mathematics Subject Classification: 97R40

1. Introduction

“Software Engineering: Computer Science EducatimhResearch” [13] is an
international project, funded by DAAD (German Acatle Exchange Service) and
realized under the auspices of “Stability PactSouth Eastern Europe”. Thirteen
institutions participate in it, one of which is thimiversity of Plovdiv, Bulgaria.
The coordinator of the project is the Institutdrdbrmatics, Humboldt University,
Berlin.

One of the main aims of the project was the codjpperaesearch and practical
experience gathering in reengineering of the ctigreactive system XCTL in the
field experimental Physics [19], where the tasktloé Bulgarian team was to
realize the refactoring of the system.

During the work on this project we considered fur first time the concept of
developing the Refactoring Learning EnvironmentEyLOn the basis of our
results [15, 16] and particular theoretical modelsaddition, we decided to
implement a programming tool, which we intend, daréher stage, to integrate in
SELBO [14]. SELBO is a virtual environment, whickeare currently working on.
Its main aim is to assist both teachers and stsdémtthe field Software
Engineering.

In this paper we present the programming tool Refaw Learning
Environment. It is intended to analyze and asdessode, written by students in
real time, as well as to recommend to them changds structure, if needed, in
order to improve its quality. The analysis and ssseent are made by an
intelligent assistant — Refactoring Agent (RA) iompliance with the rules for
refactoring for the programming language Javapeefin [4].

296 Anniversary International Conference REMIA2010

2. Refactoring tools overview

In this section some of the available types of gifiang tools are briefly
presented. Although refactoring process could bézed by hand, the possibility
of applying automatic tools is of great importandé.present a number of such
tools are available, where the aspect and degreetofnation of the process vary
depending on the particular tool and the maintea@ngupports.

Tools such as Refactoring Browser [10], XRefactd$], jFactor [5] apply
semi-automatic approach after which the place spd of refactoring are chosen
by the user.

Completely automatic refactoring, according to s@oientific researches, is
also an acceptable approach. Guru, for examplenbslto this category and is
used for restructuring hierarchies of successots raathods for refactoring in
SELF programs [9]. Some other approaches for automefactoring are presented
in[1, 6, 11, 2].

A current tendency in this field consists in theegration of refactoring tools
in powerful, industrial environments for developrmehsoftware. Such is the case
with Smalltalk Visual Works from v7, Eclipse fron2 vTogether Control Center
from v6, IntelliJ IDEA from v3, Borland JBuilderdm v7 etc. All these tools
focus on applying refactoring in compliance witle thser requirements.

Another group of tools, which are less in humbercamparison with the
previous ones, afford the opportunity to define whand where to apply
refactoring. In [12] an approach is presented aftbich the implementation is
realized via metrics, whereas in [8] the possipitif automation via invariants by
means of the tool Daikon is described. The latggreach is based on a dynamic
analysis of the behavior of the run-time of theteys and its most proper
application is as a complement to the other apjmesmc

3.rLE architecture
The rLE Architecture consists of two subsystemsg.(F):

e Front-end subsystem (FES) — the environment, whichsed by
the students for the development, compilation asding of the source
code;

e Back-end subsystem (BES) — the Refactoring Age#t) (Rvhich
is an intelligent agent that assists the studentsing the code
development.

The Refactoring Agent is an autonomous softwardiegpn that analyzes
and assesses continuously the code that is devklopgeES. Consequently, from
the RA point of view FES is its environment.

The Refactoring Agent communicates with its envinent by means of its
sensors and effectors. Via the sensors RA accésse®mplete source code. This
implies not only the files, being edited, but atke completed ones that were not
opened in FES for editing. This way the agent conddke a deep analysis and give
an adequate assessment for the required changée dasis of all the code, and

10-12 December 2010, Plovdiv, Bulgaria 297

not only of the part that is currently modified.elbensors provide also some basic
metric information to the agent, which is used ifatial filtering of the possible
refactoring methods that can be further evaluated.

The possible metrics are

| BES (JADE) 1T 1+ LOC per class/method, number

| z FES 1 of methods/attribut |

: : Y ipE) Of methods/attributes per class

: Refactoring i » (' and s.o

: Agent ol g | o _

| |3 ! The role of the effectors is

! oL to raise different events that

! [LocalControl | 1t [o i assist the students by the

i no|e i accomplishment of their tasks in

: [Ranalyzer] [RParser] 11 | § i FES, where they are working.

i ¥ ' Such events could be:

i |Refactoring Knowledge i: i . e Underlying

| Base ' ! particular parts of the

' ﬁ |Emmmmmmm e ' code by marking them

! Rules H . .

: : with an appropriate

L - | ¢ Displaying

messages in dialog

Figure 1. rLE Architecture windows, balloon

messages etc.;
¢ Emitting sound-signals, vocal messages;
o “Materializing” the agent in the form of animatido exalt the
effect.

The collaboration of the sensors and effectorsosrdinated by the Local
Control of the agent which is based both on thermétion, incoming from the
sensors and the refactoring rules, stored in tHadR®ing Knowledge Base (RKB)
of the agent.

The analyzing of the source code, written by theleamnt in FES, is made by
the RAnalizer. Before RAnalizer starts his worke tRParser parses the source
code and creates a tree structure from it. Thes gteucture can be analyzed by the
RAnalizer.

The RKB consist of set of rules together with sktlasses, which builds
consistent knowledge base. Each rule describesomenon form the conditions,
which allows a particular refactoring method to fagé in the “short list”, based
upon some metrics.

By example a possible rule for choosing the “Extralass” refactoring
method could be LOC_by class > predefined_value.

In this way the rules are used by the RAnalyzeoriher to make the initial
filtering of the refactoring methods, which shoble evaluated at the next step.

Each refactoring class contains the code for thiécpéar refactoring method
as well as code for final evaluation of the pogisjbito apply this refactoring

298 Anniversary International Conference REMIA2010

method. The refactoring methods filtered by the Rlifxper are then examined by
using the evaluation part of each refactoring cllsghis way the agent takes final
decision, which refactoring method at what placbegaised.

As the last step the refactoring is applied by gishe actual refactoring class
after negotiation with the user — as describedthénrtext topic.

The proposed environment differs from the existaggisions in several
aspects:

e The environment is a prototype and is intendedt faf all, for
teaching students;

e The code analysis is done in real time, i.e. aleddring the
development of the code the students could betedsis improving its
quality;

¢ An agent-oriented implementation is realized.

4. Agent functionality
Depending on the refactoring method, which showddabplied, the agent
could react in three different ways :

e To apply automatically the method after receivoanfirmation
from the user;

e To display detailed instructions, explaining to tser where and
how the particular refactoring method should bdiadp

e To ask the user additional questions in order tarifgl the
conditions and define the appropriate refactorirghod.

Automatic Refactoring

In the cases when the refactoring method is cortigaha simple and the
criteria for its application are clear the agentildooffer to the user to realize the
required changes automatically. Some of the ap@tprfor these approach
methods are: Move Method, Move Field, Extract Cl&sdract Method etc.

Refactoring Proposal

Often the criteria for refactoring are clear bug #ipplication of the particular
method implies a significant change in the coditsostructure.

In these cases an approach is recommended afteh wieé agent inform the
user about the specific situation and offer himaded explanations about the
possible improvements that could be made in thicpdar situation.

Some of the proper refactoring methods that belinghis category are
Replace Conditional with Polymorphism, Replace Dat®n with Inheritance,
Replace Inheritance with Delegation etc.

Refactoring Questionarie
Often the choice of applying one or another meffoodefactoring is made on
the basis of an almost one-type set of criteriare/hest a few differ from one
another.

10-12 December 2010, Plovdiv, Bulgaria 299

In the cases when some of the requirements foryemgplthe refactoring
methods are met and yet this is not sufficient éfingd synonymously the most
appropriate one, the agent could “ask” the useers¢\questions in order to clarify
the concrete situation.

After having made the requirements clear the adefines the type of the
situation again. It could be brought to one of &beve described types: automatic
refactoring or refactoring proposal.

5. Implementation

Taking into account the ever-increasing requiresiémivards the present-day
Integrated Development Environments (IDEs) andatailability of open-source
projects, which meet to a great extent these requénts, we chose Eclipse [3] as a
development environment.

In addition Eclipse supports a powerful mechanismm ihteraction with
external components in the form of plugins. Thisuldobe considered as a
significant advantage of this particular environmemhich simplifies the
integration of the Refactoring Agent (RA) in thevdlspment environment.

The sensors and effectors of the agent are realizeglugins in the IDE
module. The agent itself is implemented by meanh@fADE environment [7].

Current | mplementation

The Refactoring Agent represents several classétemviin Java that are
embedded into the Eclipse Platform in the form oflag-in. In this way the
Refactoring Agent is able to access a particulaa jaroject’'s source code and
additional infrastructure of the Platform i.e. gnagal components and APlIs.

The Eclipse platform consists of a core whose @hoi run and manage
hundreds and in some cases thousands of plug-ives.pllig-ins can and do use
each other’'s APIs. The Eclipse Ul Plug-in, for exden provides API for adding
buttons, menus, etc. to Eclipse’s graphical userfice. Many plug-ins use this
API, and so does the plug-in in which the Refaapgent runs.

So, in order to integrate anything into Eclipse, meed to write a plug-in.
That is exactly what we have done. In order to hJ&ADE agent analyzing and
changing the code in the Eclipse Java Editor (whishpart of the Java
Development Tools plug-in), we need to start a JA@Rtainer and put an agent
into it. Behaviors are then added to the agent.aBehs hold the analyzing and
changing logic, have access to and use the othgript’ APIs in order to do their
job. The Refactoring Agent’'s behaviors also haveesas to the JADE API which
can be used to communicate with other agents irsdinge or different containers
and to delegate tasks to them.

After copying the jar file which contains the Refaing Agent into Eclipse’s
“plugins” directory and launching Eclipse, a togdletton appears in on the
toolbar.

When clicked for the first time after launching ek, this toggle button
creates and initializes a JADE container and thiadaring Agent itself, which is
a JADE agent and resides within the container.p&tigve behavior is then added

300 Anniversary International Conference REMIA2010

to the agent: every 5 seconds the agent’'s envirofhmamely the source code in

the active Java editor, is scanned, and a synéaxisrgenerated. For example the
syntax tree is searched for local variables thatdcbe in-lined. Those variables,

which are reassigned a value after initializatiosraot considered.

When found, the local variables that are possibleetin-lined are highlighted
in the editor by changing their background, so that student working with the
Java file could see it.

Also on the left vertical ruler, Refactoring Agenttons appear for every line
that contains either the declaration or a usage laofcal variable suitable for in-
lining. On the right vertical ruler appear markénst when clicked, scroll the
editor to the corresponding line of code. When ahthe icons on the left vertical
ruler are clicked, the corresponding code is sett@nd a dialog with options
appears. The first option is the one offered byRbé&actoring agent.

When double-clicked, this option in-lines the loeatiable - the declaration is
removed and its usages are replaced with its value:

The information used to perform this action likespions in the source code
is obtained from the generated syntax tree.

If the toggle button on the Eclipse’s toolbar isegsed again, the agent's
behavior is suspended until it is pressed oncenaddie highlighting of the code
stops and the icons and markers on the left aid vgrtical rulers disappear.

I mplementation of the Knowledge Base

The knowledge base of the Refactoring Agent is reddunental part of its
architecture. It contains the rule for determinangituation for the application of
refactoring and the implementation of the refacigmnethods.

Each class of the agent’s knowledge base on refagtincludes a code,
which realizes the specific refactoring method, ancbde, by means of which is
made a final evaluation of the possibilities foplgmg the refactoring method (the
evaluation part). The refactoring methods, chosgrthie RAnalizer, are under
investigation. For that purpose there is used traduation part of the classes,
which realize the refactoring methods in the knagkebase. In this way the agent
takes a final decision about which refactoring rodtto use and in which location
in the code, written by the student, to place it.

The current implementation of the RA knowledge bspresented on the
next package diagram (figure 2).

The main package in the knowledge base is calledtém”. It contains the
common functionality for the rules and for the wmfasing’s methods. Each
refactoring method is a set of classes that ext#melsbstract functionality from
the “pattern” package in a way to reach the neeaddactoring behavior. The
refactoring’s method set of classes are put in féerdnt package for each
refactoring method. The implementation of new refang method needs of two
new classes that implement the concrete behavior.

10-12 December 2010, Plovdiv, Bulgaria 301

mattern [fretagent

decompose

- -

~a -

Figure 2: Package diagram of the RA knowledge base

6. Conclusions

The Refactoring Learning Environment, proposedhia teport, will be used
in the Software Engineering Master's Program atvéio University. The
Refactoring Learning Environment enhances the isigatin the software
engineering education. A crucial role in it is mdyby the Refactoring Agent,
which is the cornerstone in the proposed architectDifferent reactions of the
agent lead to different behavior of the studentsci@ing with the Refactoring
Agent’s help which method of refactoring to usetie source code, the students
can evince creativity. This makes the students’cation in refactoring more
efficient as it implements the “Learning-by-doingtrategy. The interaction
between the refactoring agent and the studentrigia part of the agent’s activity,
because this motivates the students to make desibipthemselves [17].

Up to now we have investigated 32 methods for tefagy from M. Fowler’s
book [4], which can be implemented in the curremth@ecture of the RA. In
future, the Refactoring Agent should be augmentéd more logic for locating
portions of source code suitable for refactorind for providing options to resolve
these situations

7. Acknowledgment
Asya Stoyanova-Doycheva wishes to acknowledge thepst of the
Bulgarian National Science Fund for Research Préfet. No.J1002-149/2008.

References

[1] Casais, E., ,Automatic reorganization of objedented hierarchies: a case study”,
Object Oriented Systemg1994), pp. 95-115.

[2] Cinnéide, M., “Automated Application of Designtfeans: A Refactoring Approach,"
Ph.D. thesis, Department of Computer Sciefieaity College, University of Dublin
(2000).

[3] Eclipse, URLhttp://www.eclipse.org

[4] Fowler, M., Refactoring: Improving the Design of Existing Pragrs Addison-
Wesley, 1999.

[5] Instantiations, jFactor (2002), URIww.instantiations.com/jfactor/

302 Anniversary International Conference REMIA2010

[6] Jahnke, J. H., A. Zundorf, “Rewriting poor desfgtterns by good design patterns”,
S. Demeyer and H. Gall, editorBroc. of ESEC/FSE '97 Workshop on Object-
Oriented ReengineeringTechnical University of Vienna, 1997, TechnicabpRrt
TUV-1841-97-10.

[7] Java Agent Development Framewdnitp://jade.tilab.com/

[8] Kataoka, Y., M. D. Ernst, W. G. Griswold, D. Notk “Automated support for
program refactoring using invariantd?roceedings of the International Conference
on Software Maintenand2001), pp. 736-743.

[9] Moore, I., “Automatic inheritance hierarchy resturing and method refactoring”,
Proc. Int'l Conf. OOPSLA '96, ACM SIGPLAN Noti¢#896), pp. 235-250.

[10] Roberts, D., J. Brant, R. Johnson, “A refactoringl for Smalltalk”, Theory and
Practice of Object Syster35(4) (1997), pp. 253-263.

[11] Schulz, B., T. Genssler, B. Mohr, W. Zimmer, “Ow tcomputer aided introduction of
design pattern into object-oriented system§echnology of Object-Oriented
Languages and Systerfi®98), pp. 258-267.

[12] Simon, F., F. Steinbrickner, C. Lewerentz, “Metribased refactoring”Proc.
European Conf. Software Maintenance and Reenging€2001), pp. 30-38.

[13] Software Engineering: Computer Science Educatimh Research Cooperation, URL
http://www?.informatik.hu-berlin.de/swt/intkoop/aHa

[14] Stoyanov, S., D. Mitev, | .Minov, T. Glushkova,esdrning Development Environment
for Software Engineering Selbo 2, In: Proc. of fi8h International Conference on
Database and Expert Systems Application (DEXA 2008 September 2008, Turin,
Italy, pp. 100-104, 2008, ISBN: 978-3-540-85653-5.

[15] Stoyanova-Doycheva A, B. Botev, R. Gospodin®@escription of changes —
Deffractometrie/Reflectometrie — use case AreaSéaird International Workshop
“Software Engineering Education and Reverse Enging& Ohrid, Macedonia, 25-
30 August, 2003.

[16] Stoyanova-Doycheva A, R. Gospodinov, B. Bot@escription of refactorings made
on use case AreaScan, metrics, research about atéohnefactoring tools and future
plans Third International Workshop “Software EnginegriBducation and Reverse
Engineering”, Ohrid, Macedonia, 25-30 August, 2003.

[17] Todorka Glushkova, Asya Stoyanovateraction and adaptation to the specificity of
the subject domains in the system for e-Learnind distance training DelLC,
International Scientific Conference “Informatics scientific knowledge”Varna Free
University “Chernorizets Hrabar”, 26-28 June, 2008

[18] XRef-Tech, XRefactory (2002).URxkref-tech.com/speller/

[19] XCTL, http://www.informatik.hu-
berlin.de/Institut/struktur/softwaretechnikll/intkp/se/XCTL-Man-Adj.htm

Faculty of Mathematics and Informatics
University of Plovdiv

236 Bulgaria Blvd.

4003 Plovdiv, Bulgaria

e-mail: astoyanova@uni-plovdiv.bg

