
CLASSIFICATION OF GLOBAL ILLUMINATION
ALGORITHMS

Hristo Lesev

Abstract. This article describes and classifies various approaches for solving
the global illumination problem. The classification aims to show the similarities
between different types of algorithms. We introduce the concept of Light Manager,
as a central element and mediator between illumination algorithms in a
heterogeneous environment of a graphical system. We present results and analysis
of the implementation of the described ideas.

Keywords: Computer Graphics, Global Illumination, Algorithms, Light

Manager
2010 Mathematics Subject Classification: 97R60, 65D18

1. Introduction

The role of global illumination algorithms is to simulate light propagation and
interaction in large scale geometry scenes for the porpoise of image synthesis.
Global illumination involves the processes of light emission, reflection,
redistribution, shadowing and, ultimately, absorption in an environment. These are
physical processes governed by the equations of radiative transfer. These equations
are based on first and second laws of thermodynamics which describes how
thermal energy is conserved and flows from regions of high potential to regions
with low potential [1]. This process can be described using geometrical optics
formalism and physical and wave optics effects can be restricted to the level of
scattering and emission at surfaces. Given the forgoing physical assumptions we
can specify an equation for global illumination.

Let M denote the collection of all surfaces in an environment. Let X be a

space of real-valued functions defined on 2SM × , that is, over all surface points

and angular directions in the unit sphere 2S . Given the surface emission function
Xg∈ , which specifies the origin and directional distribution of emitted light, we

wish to determine the surface radiance function XI ∈ that satisfies

where Ω is the hemisphere of incoming directions, ρ is a directional reflectivity

and x ′′ is a point on a distant surface determined by x and x’. This equation was
introduced by Kajiya [2] and describes how light is propagated through a scene, in
terms of the physical principles discussed above. Virtually all modern

272 Anniversary International Conference REMIA2010

photorealistic rendering architectures are based on this integral equation also
known as the rendering equation [3]. Examined more carefully it becomes clear
that this recursive equation has no analytical solution (except in some relatively
simple cases): to overcome this fact, rendering software must use approximations
to produce visually plausible solutions and this allows the use of many different
algorithms.

2. Light path notation

When describing a light path it is often necessary to distinguish between
different types of surface reflections along the path. Heckbert [4] has introduced a
compact notation for exactly this purpose. Heckbert’s notation classifies different
light paths by vertices in the path and type of event that caused creation of the
vertex. The notation has four types of vertices:

• L - a light source
• E - the eye
• S - a specular reflection
• D - a diffuse reflection

If we want to describe a combination of paths, regular expressions can be
used. As an example L(SD)+DE means a path starting at the light source having
one or more diffuse or specular reflections before being reflected at a diffuse
surface towards the eye.

A global illumination algorithm is expected to model all types of light paths,
that is, it must have L [D|S]*E type.

3. Global illumination algorithms classification

We can classify different global illumination algorithms by the approaches
each of them is taking to solve the rendering equation [5]. This gives us several
categories:

10-12 December 2010, Plovdiv, Bulgaria 273

• Exact - Approximate: depending from using unbiased or biased
approach in solving the equation and how they reduce computational
errors;

• Gathering - Shooting: depending from how they track light paths
direction;

• View dependent - View independent;
• Hybrid: combination from other approaches.

3.1. Exact
Despite the fact that the rendering equation has no exact solution there are

numerical methods that can minimize computational errors and produce result very
close to what is expected. Other way to name them is Brute Force methods,
because they attack the rendering equation directly and try to solve it iteratively,
which consumes too much time and resources working on relatively complex
scenes. On the other hand, because the fact they are solving the equation as a
whole, the exact methods can simulate every aspects of the light path without need
for any modification. Mathematical core of the exact methods is the Monte Carlo
method for solving integral equations. In real life situations the time given for
achieving solution is limited, so when the computation is done there is always
noise introduced in the final result. This noise represents the relative error in the
current algorithm iteration and will be much lower in the next iteration, expected to
eventually disappear after infinitely long time. This fact allows us to call these
methods also “unbiased methods”. From the user’s point of view algorithms based
on exact computational methods are very easy to work with, because of the
relatively small numbers of parameters they depend on and their relatively small
memory footprint. One big disadvantage is that these methods are not adaptive, so
they cannot concentrate very well on specific parts of the rendering equation and in
small time frames they are very noisy. Some light path scenarios are still
problematic, like light coming from the Omni light source.

Some well-known exact methods are: Path tracing, Bi-directional path tracing,
Metropolis light transport [6].

3.2. Approximate
These algorithms use adaptive approach in solving the rendering equation and

concentrate resources in those parts of the equation which are important for the
final image. This fact makes them faster than the exact methods and allows them to
deal in a much easier ways with some light paths that are considered difficult for
the other methods. Approximate algorithms often rely on some visual metric to tell
if the result is accurate enough, so they can finish working. Another advantage is
that they can be interrupted at any time and their result can be cached and used
later to finish the computation without the need to restart work. Because of their
approximate nature these methods introduce computational errors in the final result
which makes them biased and physically incorrect. Because of these errors there
can be visual artifacts in the final image caused by scene configurations that don’t
match the algorithm's visual metric. From user’s point of view these methods are
much more complicated to use because of the many parameters that control the

274 Anniversary International Conference REMIA2010

visual metric. Some well-known approximate methods are: Photon mapping [6],
Irradiance caching.

3.3. Shooting
Shooting algorithms trace a light path starting with vertex L originating from

the light source and aim to finish it with vertex E. Some effects like caustics are
better reproduced using shooting algorithms. One advantage of these algorithms is
that they follow the natural flow of the light energy through space. This can also be
a disadvantage, because often time and resources will be spared to trace the light
path in some scene places that are not be visible from the current point of view and
so won’t have any contribution for the final result. Another disadvantage is that
because the light is shot in the scene as photons with infinitely small radius, scene
regions that are far from the light source will be computed with insufficient
precision, and will need more photons to be shot at them. This is why shooting
algorithms are rarely used to simulate natural light coming from distant objects like
the sun and nonphysical light sources. Some well-known shooting methods are:
Photon mapping, Light tracing.

3.4. Gathering
Gathering algorithms trace light path in the opposite way of shooting ones.

Gathering algorithms starts tracing light paths with vertex E originating in the eye
and tries to finish the path with vertex L in the light source. Thus these algorithms
spend much work on these parts of the scene which are visible. This makes them
more efficient than shooting methods, because every light path they trace will be
part of the final result. Gathering algorithms can simulate very complex light
sources and scene geometry. Some types of light sources are difficult to capture
using gathering algorithms. For example, if the light source is very small, it is
likely to be overlooked by most of the traced rays and this will introduce noise in
the final image. Some well-known gathering methods are: Irradiance caching, Path
tracing.

3.5. View-dependent
These algorithms consider scene surfaces visible from the eye only. These

surfaces can be directly visible or seen through secondary (indirect) reflected
vertex in the light path. So view dependent algorithms spend more time working on
details that will be visible and will have most impact over the final image.
Advantage of these algorithms is that they don't impose any restrictions over scene
geometry representation. Caching is often used to facilitate the work of the view
dependent algorithms. These methods can be adapted to sample more heavily these
parts of the rendering equation which are important for the specific scene and view
point. Their main disadvantage is that when the view changes all computational
work must be started all over again. Some well-known view-dependent algorithms
are: Irradiance caching, Path tracing.

3.6. View-independent
These algorithms calculate light energy flow through the entire scene just

once. The time spend doing these pre-calculations can be very long and can
consume lot of resources but once the work is done the viewer can move freely

10-12 December 2010, Plovdiv, Bulgaria 275

through the scene very fast using cached light information. This is very useful in
real-time graphics applications like games and architectural presentations. Some
disadvantages of view-dependent algorithms are that they must compute light
energy in all of the scene regions without knowing if every region will be visited
ever. Usually these algorithms have special requirements for the geometry
representation of the scene because they are using some kind of finite elements
analysis over the scene geometry to calculate the light flow. View independent
algorithms cannot cache some light paths that depends on the viewer’s position like
specular reflections and these have to be calculated for every new frame of the
simulation. In general, only the diffuse term can be captured by these algorithms.
Some well-known view dependent algorithms are: Radiosity, View-independent
Irradiance Map [7].

3.7. Hybrid
Hybrid algorithms are combinations of previously described algorithms.

These combinations are aimed at removing a specific weakness of a specific
algorithm using ideas and approaches from other GI algorithms. The two
algorithms can communicate through their results and find faster and better
solution. Hybrid algorithms usually work at several passes: during the first pass
one algorithm calculates one part of the light paths and caches the results, on the
next pass the second algorithm computes other types of light paths and uses these
cached results to produce the final image. A disadvantage of hybrid algorithms is
that these combinations between different algorithms are very concrete and usually
the two algorithms have to be redesigned to work with each other. Some well-
known hybrid algorithms are: Photon Map + Irradiance caching (Final gathering)
[6], Radiosity + Irradiance caching.

4. Light manager

As mentioned earlier, the main disadvantage of the modern rendering system
is the strong connection between different components of the system. To eliminate
this flaw in rendering systems design this paper will introduce the concept of Light
Manager. Light Manager is central component of the system which provides a
weak connectivity for other parts of the rendering system.

Most important step in the process for every illumination algorithm is to
generate new ray to trace light energy. Next important thing is to determine the
light path type this ray belongs. In classic rendering systems architecture this is
function of the shading modules which contains information about the surface
visual properties. Here this function is removed from the shaders and is given to
the Light Manager.

The main reason for this is to allow different global illumination algorithms to
work together seamlessly on any part of the rendering equation that can handle
best, without having to know the other algorithms.

When the new algorithm is added to the system the Light Manager should be
informed about which light paths this algorithm can work on. Here under the term

276 Anniversary International Conference REMIA2010

light paths we should not only understand the Heckbert's notation, but also the
sequence of the current ray in the context of the entire light path.

When the system needs to calculate the indirect light reaching some surface
point Light Manager should be called to do the task. If some algorithm (like
Photon mapping and Irradiance Cache) has already cached the indirect illumination
Light Manager should ask that algorithm to approximate the illumination around
this surface point using stored illumination data.

If only a brute force algorithm is available the Light Manager should ask it to
generate new ray and trace it through the scene. This approach guarantees that
every illumination algorithm should communicate only with the Light Manager.
This ensures that we can integrate new illumination algorithms in the rendering
system without the need to know specific details about other illumination
algorithms that are already part of the system. This architecture is driven by the
plug-ins representing different illumination algorithms and allows the user to make
unlimited configurations for how the scene will be illuminated.

Although the algorithms cannot communicate directly with one another, there
are cases in which the order of algorithm execution is highly specific. To avoid any
conflicts, when instantiated, Light Manager should build a graph of dependencies
between algorithms that are registered in the system. Using this graph Light
Manager can call them in the correct order.

The mathematical idea behind Light Manager is to divide the rendering
equation integral into parts which represent direct light, indirect light and
reflections. Let’s have a closer look at how this division can be done as shown by
Jensen [6].

First, the reflectivity function ρ can be represented as a sum of two simpler

functions: specular reflection Sρ and diffuse reflection Dρ .

This process separates high frequency signals (specular reflection) from low

frequency diffuse reflections and gives more control over the noise in the final
image. We can also represent the rendering equation as sum of all light paths
arriving at surface point x. But first we should rewrite the rendering equation in
hemispherical form, where Ω will be the hemisphere area.

Now it is easier to write the sum equation.

10-12 December 2010, Plovdiv, Bulgaria 277

Here ()ω,xLi represents incoming light in point x, ()ω,, xL li is the light

path with only one vertex of type L, which hit directly x, ()ω,, xL ci is the light

path with one or more vertices of type S that reached x and finally ()ω,, xL di

represents indirect illumination in x as light path with one or more vertices of type
D.

Finally we can represent the rendering equation as a sum of four integrals
each of which represents different type of light path.

Light Manager provides explicit interface for the algorithms, so

programmers can specify which part of this equation their algorithm will try
to solve. Another task for it is keeping the sum calculations in the right
order and switching between algorithms. Another advantage of the Light
Manager is that it can be used for further optimization of the rendering
process based on mathematical domain representation.

5. Analysis and results

The ideas described in this paper are implemented by the author in the
rendering system “RayTracer” [8] which is used in training students studying
Informatics at the “Paisii Hilendarski” University of Plovdiv. The system is
developed in C# and uses .Net 2.0 framework. Several global illumination
algorithms were implemented using the Light Manager paradigm and tested in
scenes with heavy geometry and number of light sources. The list of implemented
algorithms includes: Path Tracing, Irradiance Caching, Photon Mapping, and
View-independent Irradiance Map. Through numerous tests Light Manager based
architecture of the “RayTracer” has proved to be easily extendable with plug-ins
and also facilitates the process of transformation of existing global illumination
algorithms to be used as part of the system.

6. Conclusion

We have presented detailed classification of the existing types of algorithms
which solves the global illumination problem in realistic image generation process.
The new concept of Light Manager and its uses was introduced. This concept was
justified mathematically and also from programmer’s point of view. The results
discussed above support the ideas described in this article. For the future, there is

278 Anniversary International Conference REMIA2010

much work to do, using this implementation of the Light Manager will be very
useful to implement an optimization core around it which will have great impact in
the computer graphics domain.

References

[1] M. Planck, “The Theory of Heat Radiation”, New York, Dover Publications,
(1988)

[2] J. Kajiya, "The rendering equation", Siggraph Volume XX, Issue IV, (1986),
pp. 143 – 150

[3] P. Dutre, K. Bala, P. Bekaert, “Advanced Global Illumination Second
Edition”, Wellesley Massachusetts, A K Peters, (2006)

[4] P. Heckbert, “Adaptive radiosity textures for bidirectional ray tracing”, ACM
SIGGRAPH ’90 Proceedings, (1990), pp. 145–154

[5] S. Laszlo, “MONTE-CARLO METHODS IN GLOBAL ILLUMINATION”,
Vienna, Institute of Computer Graphics Vienna University of Technology,
(2000)

[6] H. W. Jensen, “Realistic Image Synthesis Using Photon Mapping”, Natick
Massachusetts, A K Peters, (2001)

[7] H. Lesev, D. Ivanov, “VIEW-INDEPENDENT IRRADIANCE MAP
GENERATION”, Burgas Free University Almanac Vol. XVI, (2007), pp.
250-256

[8] H. Lesev, “PHOTOREALISTIC COMPUTER GRAPHICS IN
INFORMATICS EDUCATION PROCESS”, Conference Education in the
Information Society, (2010), pp. 141-146

Hristo Iliyanov Lesev, PhD student
Faculty of Mathematics and Informatics
University of Plovdiv
236 Bulgaria Blvd.
4003 Plovdiv, Bulgaria
e-mail: hristo.lesev@gmail.com

