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Abstract. Some new nonlinear integral inequalities that involve the maxi-
mum of the unknown scalar function of one variable are solved. The considered
inequalities are generalizations of the classical nonlinear integral inequality of
Bihari. The importance of these integral inequalities is defined by their wide
applications in qualitative investigations of differential equations with “max-
ima” and it is illustrated by some direct applications.
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1. Introduction

The integral inequalities that provide explicit bounds on unknown func-
tions play an important role in the development of the theory of differential
and integral equations. For instance, the explicit bounds given by the well-
known Gronwall—Bellman inequality and its nonlinear generalization due to
Bihari ([2], [5]) are used to a considerable extent in the literature. How-
ever, in the situations of qualitative investigations of differential equations
with “maxima” ([1], [3], [6]) totally different types of integral inequalities are
requaired ([4]).

The main purpose of this paper is to solve some nonlinear Bihari-like
inequalities that can be used to study the qualitative behavior of the solutions
of differential equations with “maxima”. Some applications of the obtained
results are also given.

2. Main Results
Let tg, T be fixed points such that 0 <ty < T < oo and h = const > 0.

Definition 1. We will say that a function ¢ € C(R4+,Ry) is from the
class Q if :

(1) g is a nondecreasing function and g(z) > 0 for z > 0;
(17)  g(tx) > tg(z) for 0 <t <1 and z > 0;

(@) g(x) +9(y) = g(a +y) for z, y > 0;

(

w) [ % = 00.

Remark 1. Note the functions g(z) = /x and g(z) = x are from the
class Q.
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Theorem 1. Let the following conditions be fulfilled:

1. The function a € C1([tg, T), Ry ) is nondecreasing and a(t) < t.
2. The functions p, ¢ € C([to,T),Ry) and a, b € C([a(ty),T),Ry).
3. The function k € C([a(to) — h,T),R4).

4. The function g € 2.

5. The function u € C([a(to) — h,T),R4) and satisfies the inequalities

u(t) < k(t) + /t [p(S)g(U(S)) + Q(S)!J(geﬁ@]}f S]U(ﬁ))]ds
(1) alt) 7

+ " [a(s)g(u(s)) + b(S)g(fer[??i}L{, g u(g))} ds fort € [ty,T),
(2) wu(t) <E(t) for t € [a(to) — h, to).
Then for ty <t < t1 the inequality
(3) u(t) < k(t) + e(t)G (0(1) + A(t))
holds, where G~! is the inverse function of
" ds
(4) G(T):/mg(s)’ 0<ro<1
t a(t)
5 At) = S s)|ds a(s) + b(s)|ds,
5) = [ [po)+alas+ [ fats) +000)]
(6) t =sup {T €[to,T) : G(1)+ A(t) € Dom(G™Y) for te [to,f]},
elt) =1+ / §909(59) + i _maxK)] s
(7) max(a(t),to)
b [ e s ( e 50)]ds. v € o).

to
P r o o f: Define a function z : [a(tp) — h,T) — Ry by the equalities

S, [P)9(u(3) + a(s)g (maxee(s—n, o u(€)] ds

2(t) = _|_f:((tt0)) {a(s)g(u(s)) + b(s)g(maxee(s_n, u(g))}ds, t €[ty T)
0, t e [Oé(to) — h,to].

From inequality (1) and the definition of z(¢) we have for ¢ € [a(tg)—h,T)
(8) u(t) < k(t) + 2(t).

Let t € [to,T) : a(t) > to. Then from inequality (8), the definition of the
function z(t), and condition 4 of Theorem 1 it follows the inequality
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" aorguts) + bs)g( max u(e))]as
/ ( )

alto) s€[s—h,s]

(9) < / e [a<s>g(k<s>)+b<s>g( max k(f))}ds

s€[s—h, s]

. /a(t> [G(S)Q(Z(S)Hb(s)g( max z(f))]ds.

alto) s€[s—h, s]

Let t € [to,T) : a(t) < to. Then from the definition of function z(t) we get

/:(t) [a(s)g(u(S)) + b(S)g(ser[gg}); J u({))} ds

(to)
(10) _ /tmax(a(tmo) [a(s)g(k‘(s)) + b(s)g(ser[?%(’ g k(&))] ds

+/a(t) [a<8>9(2<8>)+b(8)g< max z({))]ds.

a(to) s€[s—h, s]
From the definition of function z(t) and inequalities (8), (9), (10) it follows

A0 <)+ [ [p01(:0) + oo max ()]s
11 ’
we /(()) a5l (a10)) + 0001y =(9)]as, v€ o,

(12) z(t) < k(t) for t € [a(ty) — h,to),

where function e(t) is defined by equality (7). Note the function e(t) is non-
decreasing for t € [to,T) and e(tg) = 1.
From inequalities (11), (12), condition 4 of Theorem 1 and ﬁ <1 we

obtain for ¢ € [tp,T") the inequality

3) 252 <1+ /t{t)[p(S)gCg) + q(s)g<maX£€[s h, s )}ds
[ () s i)

From the monotonicity of e(t) we obtain for ¢ € [t, ) and s € [a(to), ]

maxXee(s—p, s 2(§)  maxXees—p, o 2(§) z(€) z(§)
B S ) emies) Sl w e

where the continuous nondecreasing function é : [a(tg) —h,T) — Ry is defined
by

(14)

o Joe(t) for telt,T)
e“)‘{ elto) for 1€ lalto) ~hto] °
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From (13) and (14) follows that for ¢ € [tg,T) the following inequality

e [ () o g, 29
(15) O‘O (s
o [ o () o 28 ) o

Define a function U : [a(tg) — h,T) — Ry by U(t) = 8 Set the right

part of inequality (15) by the function Z : [tp,T) — R4. Note the function
Z(t) is increasing, Z(tp) = 1 and for t € [to,T) the inequality U(t) < Z(t)
holds. Differentiate the function Z(t), use its monotonicity, condition 1 of
Theorem 1, and obtain

(Z(1) < [p(t) + q<t>]g(z<t>) + [a(a(®) +v(a®) |9(Z (a(t)) (a(t))
< 9(2(1)) [p(t) + a(t) + [a(a(t) +b(a()] (a() |-

From definition (4) and inequality (16) it follows that

I

>

i

/

(17) %G( (1) = g((ZZ(Zi) < p(t) +a(t) + [a(a(®) +b(a®) | (a(t)) "

Integrate inequality (17) from ¢ to t for ¢ € [tg,T'), change the variable
17 = a(s) and obtain
t
8 @) <6+ [ fpm+amlans [
to a(to
Since G~1(t) is an increasing function, from inequalities (8), (18) and

U(t) < Z(t), the definitions of the functions U(t) and é(¢) we obtain the
inequality (3).

" [a(n) + b(n)] dn.

O

In the case when the function k(¢) into the right part of inequality (1) is
replaced by a constant we will obtain the following bound for u(t):

Corollary 1. Let the following conditions be fulfilled:

1. The conditions 1 and 2 of Theorem 1 are satisfied.

2. The function ¢ € C([a(to) — h,to], Ry) and ¢(t) > k, k = const > 0.
3. The function g € C(R4, (0,00)) is increasing.

4. The function u € C([a(to) — h,T),R4) and satisfies the inequalities

1 s [ |porstuto) + atsra( e uce))|as

X /a(t) [a(S)g(u(S)) + b(S)g( TPy u(g))]ds for & lto, T),

a(to) §€[s—h, S]

(20) u(t) < o(t) for t € [a(to) — h, to].
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Then for ty <t <ty the inequality
(21) u(t) < G71 (G(k) + A(t))

holds, where A(t) is defined by (5), G~! is the inverse function of G, which is
defined by (4), 0 < ro < k,

to = sup {7’ € [to,T) : G(k)+ A(t) € Dom(G_l) for t e [to,T]}.

Remark 2. In the case when h = 0 and a(t) =t the result of the Corol-
lary 1 reduces to the classical Bihari inequality.

In the nonlinear case when the unknown function is in a power the fol-
lowing result is valid:

Theorem 2. Let the following conditions be fulfilled:

1. The conditions 1, 2 and 4 of Theorem 1 are satisfied.

2. The function ¢ € C([a(to) — h, to], R4).

3. The function k € C([to,T), (0,00)) is nondecreasing and the inequality

M = maXsE[a(to)—h,to} (;5(8) < \"/k‘(to) holds.
4. The function u € C([a(ty) — h,T),R4) and satisfies the inequalities

o) (u(t)) < k(t) +(40 [p(s)g(u(s)) + Q(S)Q(EEI[??I}: J u(f))] ds
* a(to) [G(S)Q(U(S)) + b(s)g(§61[??f)l{, s] U(f)):| a5, t€ [tO’T)
(23)  u(t) < o(t) for t € [a(to) — h, to),

where n = const > 1.
Then for tg <t < t3 the inequality

24) () < V/k(t) + el(t){i (k:(t)> e (G(l) 4 Bi(t) + Bg(t)>}
holds, where ;
a(®) =1+ [ |poa(00) + a0 ( max v(6)) s

E€[s—h, s]

(25) max(a(t), to)
+ /t [a(s)g(d;(s))ds + b(s)g(ger[lsﬂf;; ] w(s)ﬂ ds,
(26)  Bi(t) = i/tt {p(s) (k(s))l:‘n +als) max (k(é)) lq ds,

27)  By(t) = = / " [a(s) (K(s)) ™ +b(s) _max }(K(g))"}ds,

£€[s—h, s

_ _{ V@), te(t,T)
K(t) a { k‘(t(]), te [Oé(to),to) ’ ¢(t) B { M, te [Oéo(to) — h,to]
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G~! is the inverse function of G, defined by equality (4), and

t3 = sup {7’ € [to,T) : G(1) + Bi(t) + Ba(t) € Dom(G™) for t € [tQ,T]}.

P r o o f: Define a function z : [a(ty) — h,T) — Ry by the equalities

S0 (1 [poda () + o)y (maeey g (@) s

=N 20 [aa(u(s) + bs)a(maxeer,n. u(g))]ds), t€ [to,T)

0, t € [a(ty) — h, to].
From inequality (22) and the definition of z(t) we have for ¢ € [to,T)
n (1) YOI
(u(t)" < k(t) (1 +n— k(t)> or u(t) < Vk(t) (1 +n— k(t)) .

Apply Bernoulli’s inequality (1 + x)* < 1 4 ax where 0 < a < 1 and
—1 < z, and observe that

(28) u(t) < \"/k(t)<1+ () > = V@) +2(t) = (1) + 2(t), t € [to, T),

Vk(t)
(29) u(t) < (1) < o(t) +2(t) = ¥ (t) + 2(t), t € [a(to) — h, tol,
(80) max (@) < max Y(§)+ max z(€), s € [a(to), T)-

Similarly to the proof of Theorem 1 we obtain inequalities (9) and (10)

where k(s) is replaced by {/1(s).
Then for ¢ € [tg,T") we get

Vk(t)
A= gm e
1 t k; 1;/n k 1;71 d
o +nt/[p(8)( () ™ 9(2(9)) + a(s) (k(s)) g(ge?géﬁ,s]z@)} g

alt)
1 [ ) (K) T g(60) +06) (K)o max 2(9)] s

n [s—h,s]
a(to)

According to Theorem 2 from (31) and z(t) < ¢(t) for t € [a(to) — h, to]
we get

(32) A1) < el(t){ n /l:((:)) +@ (GO + Bilt) + Ba(r)) }

Substitute bound (32) for z(¢) into the right part of (28) and obtain the
required inequality (24).

O
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3. Applications
We will apply some of the obtained above results to the following system

of differential equations with “maxima*

33 P t, (t), max x(s for t > t,
(%) I O et ) -

with an initial condition
(34) z(t) = ¢(t) for t € [a(to) — h,to],
where z € R”, h > 0 is a constant and ¢ > .

Theorem 3. (Bounds). Let the following conditions be fulfilled:

1. The functions «, 8 € C*([ty, ), R4), a(t) is a nondecreasing function,
B(t) < a(t) <tand 0 < at) — B(t) < h for t > to.

2. The function f € C([tg,00) x R™ x R™ R™) and satisfies for ¢ > ¢t and
z, y € R™ the condition

|7t @, || < POVl + Q) Vvl

where P, B € C([tp,0),R4).

3. The function ¢ € C([a(ty) — h, to], R4).

4. The function x(t; g, ) is a solution of the initial value problem (33),(34)
defined for ¢ > a(tg) — h.

Then the solution x(t; tg, ¢) satisfies for ¢t > ¢y the inequality

35  [Jelito, )| < le(?\/H%?(to)‘ +/tt [P(s)+@(s)}d8>2-

P roof: The function x(t) = x(¢; to, ) satisfies the following integral equation

t
z(t) = p(t +/ s, x(s), max =z ds for t > tg.
O =)+ | J(s als) max - a(6)) 0

Then for the norm of the solution z(t) we obtain for ¢ > t

l2(t)]] < llp(to)] +/

to

(s 2(6) €€l(5), () o(6))]|ds
(36) ’

t t
< llettoll + | PeVIEGIs + [ @), [ max le(e) s

Set u(t) = ||x(t)|| for t € [a(ty) — h,o0). Then from (36) we get for ¢ > ty

B7)  wu(t) < ||<P(to)||+/t P(s)y/u(s)ds + t Q(s) ge[ﬁn(ﬂs%(s)]U(é)dS-
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Change the variable s = a~1(p) in the second integral of (37), use the in-
equality maxee (), a(r)] W(§) < MaXeg(a(t)—h, a(r)) W(E) for t € [to, T) and obtain

t a(t)
39 u(t) < lloll + [ Plo)Valoldo+ [ @l @)@~ (0) [ maxu(€)dp,
to a(to)

Note the conditions of Corollary 1 are satisfied for k = ||¢(to)||, ¢(t) =0
for t € [tg,00), p(t) = P(t), b(s) = Q(a~(s))(a"'(s)) for t € [a(ty), o),
a(t) = 0, g(u) = Vu, Gu) = 2y/u, G (u) = 3u?, Dom(G™!) = Ry and
tQ = OQ.
According to Corollary 1 from inequality (38) we obtain for t > ¢y the
required inequality (35).
O
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