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1. Introduction

We study the existence of solutions in the spaces Lp(k) (1 ≤ p ≤ ∞) of
linear nonhomogeneous impulsive differential equations with unbounded linear
operator. In Theorem 1 we prove the existence of Lp(k)-solutions. Further we
give an example. We consider a partial impulsive differential equation with
elliptic linear part and reduce it to an ordinary impulsive differential equation.
This ordinary equation satisfy the conditions of Theorem 1 and therefore there
exist Lp(k)-solutions of the considered ordinary equation. By this way, we
establish Lp(k)-solutions also of the given partial impulsive equation.

2. Statement of the problem

Let X be a Banach space with norm ‖.‖ and identity I. By D(T ) ⊂ X
we will denote the domain of the operator T : D(T ) → X.

We consider the following linear nonhomogeneous impulsive differential
equation

(1)
du

dt
= A(t)u + f(t) for t 6= tn

(2) u(t+n ) = Qn(u(tn)) + hn for n = 1, 2, . . . ,

where A(t): D(A(t)) → X (t ∈ R+) and Qn: D(Qn) → D(A(tn)) (n = 1, 2, ...)
are linear unbounded operators. The sets D(A(t)) and D(Qn) (t ≥ 0, n =
1, 2, ...) are dense in X. The function f(.) : R+ → X is continuous and
h =

{
hn

}∞
n=1

is a sequence of elements of X. The points of jump tn satisfy
the following conditions 0 = to < t1 < ... < tn < ..., lim

n→∞ tn = ∞. We set
Q0 = I, h0 = 0.
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Furthermore, we assume that all considered functions are left continuous
and there exist the Cauchy operator U(t, s) (0 ≤ s ≤ t) of the linear ordinary
equation

(3)
du

dt
= A(t)u.

Remark 1. . Sufficient conditions for the existence of U(t, s) can be
found in ([2], [3], [4]).

It is easy to prove that the functions u(t) = V (t, s)ξ for ξ ∈ D(A(s)) with

(4) V (t, s) = U(t, tn)QnU(tn, tn−1)Qn−1 . . . QkU(tk, s)

(0 ≤ s ≤ tk ≤ tn < t) satisfy the linear impulsive Cauchy problem

(5)
du

dt
= A(t)u for t 6= tn

(6) u(t+n ) = Qn(u(tn)) for n = 1, 2, ...

(7) u(s) = ξ.

Let us note that the operator V (t, s) is bounded if one of the following
conditions holds
(B1) QnU(tn, tn−1) are bounded operators (n = 1, 2, ...).
(B2) U(tn+1, tn)Qn are bounded operators (n = 1, 2, ...).

Let the following condition be fulfilled.
(H) There exists a continuous function k( . , . ) : R+ × R+ → R+ such that

‖V (t, s)ξ‖ ≤ k(t, s)‖ξ‖, where 0 ≤ s < t and ξ ∈ D(A(s)).
We introduce the following spaces

Lp(k) =
{

g(.) : R+ → X : sup
t∈R+

t∫

0

k(t, s)‖g(s)‖pds < ∞
}

lp(k) =
{

g =
{
gn

}∞
n=1

⊂ X : sup
t∈R+

∑

0< tn<t

k(t, t+n )‖gn‖p < ∞
}

with norms

‖g‖Lp(k) = sup
t∈R+

( t∫

0

k(t, s)‖g(s)‖pds

) 1
p

, ‖g‖lp(k) = sup
t∈R+

(
t∑

0

k(t, t+n )‖gn‖p

) 1
p

.

We introduce the following conditions.

(H1) There exists constant M1 > 0 such that
t∫
0

k(t, s)ds ≤ M1.

(H2) There exists constant M2 > 0 such that
∑

0< tn<t
k(t, t+n ) ≤ M2.
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3. Main results

Lemma 1. . Let the following conditions be fulfilled:
1. Condition (B1) or (B2) holds.
2. Conditions (H), (H1) and (H2) hold.

Then for any function f∈ Lp(k) and for any sequence h = {hn}∞n=1 ∈ lp(k)
the linear nonhomogeneous impulsive equation (1), (2) has a bounded solution
u(t) (t ∈ R+) such that

(8) u(t) = V (t, 0)u(0) +

t∫

0

V (t, s)f(s)ds +
∑

0< tn<t

V (t, t+n )hn.

Proof: It is immediately verified that the function u(t) is a solution of the
linear nonhomogeneous impulsive equation (1), (2).

We shall estimate the norm of the integral and the sum in (8).
Let q =

p

p− 1
. We use Holder’s inequality. For the norm of the integral

in (8) we obtain the estimate
∥∥∥∥

t∫

0

V (t, s)f(s)ds

∥∥∥∥ ≤
t∫

0

k(t, s)‖f(s)‖ds ≤
t∫

0

k
1
q (t, s)k

1
p (t, s)‖f(s)‖ds ≤

≤
( t∫

0

k(t, s)ds

) 1
q ( t∫

0

k(t, s)‖f(s)‖p
ds

) 1
p

≤ M
1
q

1 ‖f‖Lp(k).

For the norm of the sum in (8) we obtain the estimate
∥∥∥∥

∑
0<tn<t

V (t, t+n )hn

∥∥∥∥ ≤
∑

0<tn<t

k(t, t+n )‖hn‖ ≤
∑

0<tn<t

k
1
q (t, t+n )k

1
p (t, t+n )hn ≤

≤
( ∑

0<tn<t

k(t, t+n )
) 1

q
( ∑

0<tn<t

k(t, t+n )‖hn‖p

) 1
p

≤ M
1
q

2 ‖h‖lp(k).

¤
Lemma 2. . Let the following conditions be fulfilled:

1. Condition (B1) or (B2) holds.
2. Conditions (H) and (H1) hold.

Then the operator G1, defined by the formula

(9) G1f(t) =

t∫

0

V (t, s)f(s)ds

maps Lp(k) into Lp(k) and the following estimate is valid

(10) ‖G1f‖Lp(k) ≤ M1‖f‖Lp(k),
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where
1
p

+
1
q

= 1.

Proof: Let f ∈ Lp(k). From Lemma 1 we have the estimate

(11) ‖G1f(t)‖ ≤ M
1
q

1 ‖f‖Lp(k).

We shall prove G1f ∈ Lp(k). From (11) and condition (H1) we obtain

‖G1f‖Lp(k) = sup
t∈R+

( t∫

0

k(t, s)‖G1f(s)‖p
ds

) 1
p

≤ sup
t∈R+

( t∫

0

k(t, s)M
p
q

1 ‖f‖p
Lp(k)ds

) 1
p

=

= M
1
q

1 ‖f‖Lp(k) sup
t∈R+

( t∫

0

k(t, s)ds

) 1
p

≤ M1‖f‖Lp(k).

Hence inequality (10) holds.
¤

Lemma 3. . Let the following conditions be fulfilled:
1. Condition (B1) or (B2) holds.
2. Conditions (H) and (H2) hold.

Then the operator G2, defined by the formula

(12) G2h(t) =
∑

0<tn<t

V (t, t+n )hn

maps lp(k) into Lp(k) and the following estimate is valid

(13) ‖G2h‖Lp(k) ≤ M
1
p

1 M
1
q

2 ‖h‖lp(k),

where 1
p + 1

q = 1.

Proof: Let h = {hn}∞n=1 be an arbitrary secuence of lp(k). From Lemma 1
we have the estimate

(14) ‖G2h(t)‖ ≤ M
1
q

2 ‖h‖lp(k).

We shall prove G2h ∈ Lp(k). From (14) and condition (H2) we obtain

‖G2h‖Lp(k) = sup
t∈R+

( t∫

0

k(t, s)‖G2h(s)‖p
ds

) 1
p

≤ sup
t∈R+

( t∫

0

k(t, s)M
p
q

2 ‖h‖p
lp(k)ds

) 1
p

=

= M
1
q

2 ‖h‖lp(k) sup
t∈R+

( t∫

0

k(t, s)ds

) 1
p

≤ M
1
q

2 M
1
p

1 ‖h‖lp(k).

Hence inequality (13) holds.
¤
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Theorem 1. . Let the following conditions be fulfilled:
1. Condition (B1) or (B2) holds.
2. Conditions (H), (H1) and (H2) hold.
3. The function V (t, 0)ξ ∈ Lp(k) (t ∈ R+, ξ ∈ D(A(0))).

Then for any function f∈ Lp(k) and for any sequence h = {hn}∞n=1 ∈ lp(k)
the linear nonhomogeneous impulsive equation (1), (2) has in Lp(k) a unique
solution and this solution is bounded.

Proof: Let the function f ∈ Lp(k) and the sequence h = {hn}∞n=1 ∈ lp(k).
Then we write down equality (8) in the form

(15) u(t) = V (t, 0)u(0) + G1f(t) + G2h(t),

where the operators G1 and G2 are defined by (9), (12). From (15), Lemma 2,
Lemma 3 and condition 3 of Theorem 1 it follows that the solution of the linear
nonhomogeneous impulsive equation (1), (2) is in the space Lp(k).

¤
We shall illustrate Theorem 1 by an example from the qualitative theory

of the linear nonhomogeneous partial impulse differential equations.

Example. In this example we consider a partial impulse differential equation
and reduce it to an ordinary impulse differential equation. For this ordi-
nary impulsive differential equation, the conditions of Theorem 1 are fulfilled.
Several notations and results for ordinary differential equations, used in the
example, are given in capite 5 − 7 of [4]. Note the introdution to the theory
of partial impulse differential equations is considered in [1].

Let Ω be a bounded domain with smooth boundary ∂Ω in Rn, Q =
(0,∞)× Ω and Γ = (0,∞)× ∂Ω. We denote

Pn = {(tn, x) : x ∈ Ω}, P =
∞⋃

n=1

Pn,

Λn = {(tn, x) : x ∈ ∂Ω}, Λ =
∞⋃

n=1

Λn.

Consider the linear nonhomogeneous impulse parabolic equation with ini-
tial and smooth conditions

(16)
∂u

∂t
= Ã(t, x, D)u + f̃(t, x), (t, x) ∈ Q \ P

(17) Dαu(t, x) = 0, |α| < m, (t, x) ∈ Γ \ Λ

(18) u(0, x) = v(x), x ∈ Ω

(19) u(t+n , x) = Q̃n(u(tn, x)) + h̃n(x)), x ∈ Ω, n = 1, 2, ... ,
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where
Ã(t, x,D) =

∑

|α|≤2m

aα(t, x)Dα,

Q̃n : D(Q̃n) → D(Ã(tn, x,D)) (n = 1, 2, ...) are linear operators, f̃( . , . ) :
R+ × Rn → R and h̃n(.) : Rn → R are continuous functions.

Let X = Lp(Ω,R) (1 < p < ∞), where

Lp(Ω,R) =
{

v : Ω → R;
∫

Ω

|v(x)|pdx < ∞
}

with norm |v|p =
( ∫

Ω

|v(x)|pdx
) 1

p .

With the family Ã(t, x, D), (t ∈ R+) of strongly elliptic operators we
associate a family of linear operators A(t), (t ∈ R+) acting in X by

A(t)u = Ã(t, x,D)u, for u ∈ D.

This is done as follows D = D(A(t)) = W 2m,p(Ω)
⋂

Wm,p
0 (Ω), (t ∈ R+).

Let v ∈ X. We set

f(t)(x) = f̃(t, x), Qn(u(tn))(x) = Q̃n(u(tn, x)),

hn(x) = h̃n(x), (t ∈ R+, x ∈ Ω),
where Qn : D(Qn) → D are linear operators, the sets D(Qn) ⊂ X lie dense
in X, the function f(.) : R+ → X is continuous and

{
hn

}∞
n=1

⊂ X.
Let U(t, s) is the Cauchy operator of the linear equation

du

dt
= A(t)u.

Sufficient conditions for the validity of the estimate

|U(t, s)|p→p ≤ Ce−k(t−s) (0 ≤ s ≤ t; C, k > 0 constants)

are given in [4].
We shall consider the concrete case when tn = n (n = 1, 2, ...),

f̃(t, x) = e−γtψ(x), Q̃nξ =
kn

C(1 + n2)eC+k
ξ, h̃n(x) = e−αnϕ(x),

where the functions ψ, ϕ ∈ X and α, γ are positive constants.
Then for ξ ∈ X

f(t) = e−γtξ, Q̃nξ =
kn

C(1 + n2)eC+k
ξ, hn = e−αnξ.

Let V (t, s) (0 ≤ s ≤ t) is the Cauchy operator of the linear impulse
equation

du

dt
= A(t)u for t 6= tn

u(t+n ) = Qn(u(tn)) for n = 1, 2, ...
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Then for 0 < s ≤ k < n < t, ξ ∈ D the following estimate is valid

|V (t, s)ξ|p ≤ kte−k(t−s)|ξ|p .

We set k(t, s) = kte−k(t−s).
In this case the conditions of Theorem 1 hold. Hence the ordinary equa-

tion (1), (2) has Lp(k)-solution, which induced Lp(k)-solution of the partial
equation (16)− (19) for any x ∈ Ω.
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