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Abstract. In this paper we propose an optimized algorithm, which is
faster compared to previously described finite difference acceleration scheme,
namely the Modified Super-Time-Stepping (Modified STS) scheme for age-
structured population models with diffusion.
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1. Introduction

The Super-Time-Stepping (STS) scheme is proved to be a simple and very
effective method which accelerates explicit time stepping schemes for parabolic
problems [1]. Even though the method is quite old, it is not known by most
of the people working in the computational PDE world. Pelovska in [11] has
applied it on equations of age-dependent population diffusion. While the an-
alytical properties of such models have been extensively studied since years
(see for instance [3, 4, 7] and the references therein), only several authors
have dealt with the numerical study of age and space dependent population
models. Kim [6], Kim-Park [5] and Milner [9] deal with nonlinear diffusion
models. They propose some mixed numerical algorithms combining finite dif-
ference methods along characteristics and finite element methods in the spa-
tial variables. In the case of linear fertility and mortality functions, Lopez and
Trigiante [8] have developed a finite difference scheme for an age-dependent
model with Dirichlet boundary conditions and linear population flux. Ayati [2]
proposes a numerical method for a nonlinear model with nonlinear diffusion
which allows the use of variable time steps and independent age and time
discretization.

The authors’ goal in this paper is to present an improved version of the
Modified STS scheme (see [11]) adapted for solving an age-dependent popu-
lation model with linear spatial diffusion. Let p(a, t, x) be the density of a
population having age a ∈ [0, a+], where a+ is the maximum age; t ∈ (0, T ]
denotes time, where T is the final time; x ∈ (0, 1) denotes spatial position and
D > 0 is the coefficient of diffusion. Then, following [4], a mathematical model
describing the evolution of the population p(a, t, x) staring at time t = 0 with
initial distribution

(1.1) p(a, 0, x) = p0(a, x), a ∈ [0, a+], x ∈ (0, 1)
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is:

(1.2) pt + pa + µ(a)p = Dpxx, a ∈ [0, a+], t ∈ (0, T ], x ∈ (0, 1),

where µ(a) ≥ 0 is the natural death rate of the species. We add to this model
the birth process

(1.3) p(0, t, x) =
∫ a+

0
β(a)p(a, t, x) da, t ∈ (0, T ], x ∈ (0, 1),

with β(a) ≥ 0 representing the age specific fertility, and the following Dirichlet
conditions on the boundary

(1.4) p(a, t, 0) = p(a, t, 1) = 0, a ∈ [0, a+], t ∈ (0, T ].

Aiming to present a more realistic case where the species are with a finite
life span, we assume the maximum age a+ to be finite (a ∈ [0, a+], where
a+ < +∞) and we require that the survival probability

(1.5) π(a) = e−
∫ a
0 µ(τ)dτ

vanishes at a+.
In order to approximate our model we shall use a first order method com-

bined with the trapezoidal rule for the integral terms. In [10] it is shown that
this creates problems every time when an evaluation of the mortality func-
tion at the right endpoint a+ of the interval is required, since lim

a→a+

µ(a) = ∞.

Following [10] we take

(1.6) u(a, t, x) = π−1(a)p(a, t, x)

and then substituting with the new variable u(a, t, x) in the equations above,
we obtain a reformulation of the discussed model

(1.7)

1)ut + ua = Duxx, a ∈ [0, a+], t ∈ (0, T ], x ∈ (0, 1)

2)u(0, t, x) =
∫ a+

0
β(a)π(a)u(a, t, x) da, t ∈ (0, T ], x ∈ (0, 1)

3)u(a, 0, x) = u0(a, x), a ∈ [0, a+], x ∈ (0, 1)

4)u(a, t, 0) = u(a, t, 1) = 0, a ∈ [0, a+], t ∈ (0, T ]

Using this form of the equations describing our model, we can apply a finite
difference scheme, since the qualitative features of the model are preserved but
there are no more problems with its numerical treatment (see [10] for details).

2. Optimization of the Modified Super-Time-Stepping scheme

The Super-Time-Stepping algorithm [1] is an acceleration method for ex-
plicit schemes for parabolic problems. It relaxes the condition of stability at
the end of each time step that is imposed for the normal explicit scheme and
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demands stability at the end of each super-step ∆T , consisting of K sub-
steps τ1, τ2, . . . , τK with different length. These sub-steps can be found by the
following explicit formula

(2.1) τk = τ

(
(−1 + ν) cos

(
(2k − 1)π

2K

)
+ 1 + ν

)−1

, k = 1, . . . ,K

where τ is the time step for the explicit scheme (2.5), calculated in such a way
that the CFL (stability) condition is satisfied; ν is a number in the interval(

0,
λmin

λmax

]
with λmin and λmax being the smallest and the biggest eigenvalues

respectively of the matrix A in (2.6). It implies that we can take larger time
steps and consequently the total number of steps is reduced which speeds the
computations up, compared with the standard explicit scheme. The inner
steps have no approximation properties and can be chosen explicitly in such
a way that stability is ensured over the super-step and we obtain a maximum
duration of

(2.2) ∆T =
K∑

k=1

τk .

Inspired by the fact that along characteristics in the age-time direction the
governing equation in (1.7) can be treated as parabolic differential equation
(see [11] for details), we proceed as follows introducing some convenient no-
tation. We assume the step size in age identical to the step size in time
and we choose τ > 0 to be the age and time discretization parameter, where
τ =

a+

L
(L is the number of subintervals in age). We assume T is a multiple

of a+, so that we have T = L1a+ = L1Lτ = Nτ , where L1 is an integer

and N is the total number of subintervals in time. Let h =
1
M

be the dis-
cretization step in space, where M is the number of subintervals in space.
Then for each time level tn = nτ , n = 0, . . . , N we have the following grid:
Γ = {(aj , xi) : aj = jτ, j = 0, . . . , L; xi = ih, i = 0, . . . ,M}.With this nota-

tion, we approximate the directional derivative
∂

∂t
+

∂

∂a
, setting

(2.3)
(

∂

∂t
+

∂

∂a

)
u(aj , tn, xi) ≈ Û j+1

i − U j
i

τ
,

where the discrete function U j
i is an approximation of the solution of (1.7) at

time level tn at grid point (aj , xi) and Û j+1
i – at time level tn+1 at grid point

(aj+1, xi).
An approximation of the Laplace operator is given by

(2.4) Uxx =
U j

i−1 − 2U j
i + U j

i+1

h2
.
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Consequently an approximation of problem (1.7) by an Euler explicit scheme
(analogous to the one applied to the heat equation in [1]) is given by

(2.5)

Û j+1
i =

Dτ

h2
U j

i−1 +
(

1− 2Dτ

h2

)
U j

i +
Dτ

h2
U j

i+1,

i = 1, . . . , M − 1; j = 0, . . . , L− 1

Û j+1
0 = Û j+1

M = 0, j = 0, . . . , L− 1

or written in a more convenient form

(2.6) Û j+1 = AU j , j = 0, . . . , L− 1

where A is an (M − 1)× (M − 1) symmetric and three-diagonal matrix.
We couple (2.5) with the trapezoidal rule for the boundary condition

(1.7, 2)

(2.7) Û0
i = τ

L−1∑

j=1

βjπ(aj)Û
j
i +

τ

2

[
β0π(a0)Û0

i + βLπ(aL)ÛL
i

]
, i = 0, . . . , M

At the initial time t = 0 we take U j
i =

p0(aj , xi)
π(aj)

, j = 0, . . . , L, i = 0, . . . , M .

This scheme is easy to be implemented, but it is conditionally stable, i.e. it

is stable if the time step is very small, namely τ ≤ 2
λmax

(λmax being the biggest

eigenvalue of the matrix A in (2.6)). In order to overcome this drawback and
to increase the efficiency of the method while keeping the accuracy at the
same time, we adapt the STS scheme for parabolic problems (see [1]) to the
age-structured model as shown on the graph:

Figure 1. One super-time-step with K = 3 intermediate steps

The figure above shows how one super-time-step looks like. The vertical
and the horizontal axis present the time and the age distributions respectively;
τk, k = 1, . . . , K are the inner-time-steps (on the graph we have taken K = 3).
The similarity between Modified STS and STS is the way to move in time,



10-12 December 2010, Plovdiv, Bulgaria 121

i.e. the super-time-stepping. However, while moving in time, the same steps
in age have to be done. This is the basic difference between STS for parabolic
problems and the modification presented in [11]. In the modified scheme the
solution at the boundary points is calculated, but not at the intermediate
time levels (since it is not needed for the approximation of the solution in the
next time levels – see Figure 1). Since there are age nodes at each time level
(as shown on Figure 1), the “discrete solution” at the kth inner time level
k = 1, . . . , K − 1 is calculated as follows

(2.8)

Û j
i =

Dτk

h2
(U j

i−1 + U j
i+1) +

(
1− 2Dτk

h2

)
U j

i ,

i = 1, . . . , M − 1; j = 0, . . . , s− 1

Û j
0 = Û j

M = 0, j = 0, . . . , s− 1,

where U j
i is the “discrete solution” at the (k−1)st time level and it is considered

as known; s =
a+ K

T
is the number of age-nodes (see Figure 1), which depends

on K, i.e. on the length of one super-step ∆T . The “discrete solution”,
calculated at these inner steps has no approximation properties and it is not
outputted. The approximation only at the end level – K corresponding to
tn+1 time level is used. It is found by formula (2.5), but with time step τK ,
i.e. τ = τK . As we mentioned before at this level the solution at the boundary
point is calculated as well, by formula (2.7) and time step ∆T . This procedure
is repeated until the end of the time interval.

In [11] it is proved that in some cases the Modified STS algorithm can
speed up the explicit scheme more than K2 times. Additional acceleration
of the Modified STS can be achieved when using some of the properties of
its coefficients, namely that the coefficients ck

l , k = 1, . . . , K, l = 0, . . . , k of
the kth inner level, can be obtained by the coefficients ck−1

l of the previous,
(k − 1)st intermediate time level by the following recursive formulas

(2.9)

ck
0 = (1− 2σk) ck−1

0 + 2σkc
k−1
1 ,

ck
l = σk

(
ck−1
l−1 + ck−1

l+1

)
+ (1− 2σk) ck−1

l , l = 1, . . . , k − 1,

ck
k = σkc

k−1
k−1,

where σk =
Dτk

h2
, ck−1

l = 0 for l ≥ k and we assume that in the beginning

c0
0 = 1, c0

l = 0, l ≥ 1.
Using this dependence between ck

l , k = 1, . . . , K, l = 0, . . . , k and ck−1
l

and the fact, that the inner steps have no approximation properties (for the
discrete solution), we can make only steps with length ∆T . Moreover, after
one super step we have the following form of the Modified STS scheme
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(2.10) Û j+1
i = cK

0 U j
i +





i∑

l=1

cK
l (U j

i+l + U j
i−l) +

K∑

l=i+1

cK
l (U j

i+l − U j
l−i),

1 ≤ i ≤ K − 1
k∑

l=1

ck
l (U

j
i−l + U j

i+l), K ≤ i ≤ M −K

M−i∑

l=1

cK
l (U j

i+l + U j
i−l) +

K∑

l=M−i+1

cK
l (U j

i−l − U j
2M−l−i),

M −K + 1 ≤ i ≤ M − 1,

where j = 0, . . . , s− 1 and cK
k , k = 0, . . . ,K can be obtained explicitly by for-

mula (2.9). In this way we present the solution at the new time level tn+1 as a
linear combination of 2K+1 nodes of the previous time level and we reduce the
number of the arithmetical operations we do. Comparing the first equation in
(2.8) and formulas (2.10) we see that the number of multiplications is reduced
from 2K for the Modified STS to K + 1 for the optimized algorithm. This
means that we perform almost 2 times less multiplications (that is much time
consuming arithmetical operation) for K > 1. Thus we save computational
time while keeping the accuracy of the Modified STS scheme.
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