ON COMPOSITIONS IN EQUIAFFINE SPACE

Ivan Badev

Abstract. In an equiaffine space $E_{q^{N}}$ using the connection $\Gamma_{\alpha \beta}^{\sigma}$ define with projective tensors $\stackrel{n}{a}_{\alpha}^{\beta}$ and $\stackrel{m}{a_{\alpha}^{\beta}}$ the connections ${ }^{l} \Gamma_{\alpha \beta}^{\sigma},{ }^{2} \Gamma_{\alpha \beta}^{\sigma}$ and ${ }^{3} \Gamma_{\alpha \beta}^{\sigma}$. For the spaces ${ }^{1} A_{N},{ }^{2} A_{N}$ and ${ }^{3} A_{N}$, with coefficient of connection ${ }^{l} \Gamma_{\alpha \beta}^{\sigma},{ }^{2} \Gamma_{\alpha \beta}^{\sigma}$ and ${ }^{3} \Gamma_{\alpha \beta}^{\sigma}$ respectively, we proved that the affinor of composition and the projective affinors have equal covariant derivatives. It follows that the connection ${ }^{3} \Gamma_{\alpha \beta}^{\sigma}$ is equaffine as well, and the connections $\Gamma_{\alpha \beta}^{\sigma}$ and ${ }^{3} \Gamma_{\alpha \beta}^{\sigma}$ are projective to each other. In the case where $E_{q^{N}}$ and ${ }^{3} A_{N}$ have equal Ricci tensors, we find the fundamental n vector ε.

In [4] compositions with structural affinor a_{α}^{β} are studied. Space containing compositions with symmetric connection and Weyl connection are studied in [6] and [7] respectively.

Keywords: equiaffine space, composition, Cartesian, Chebichevian, geodesic 2010 Mathematics Subject Classification: 53Bxx, 53B05, 53B10, 53B15

1. Preliminaries

Let in differentiable manifold X_{N} consider field of affinor a_{α}^{β} satisfying

$$
\begin{equation*}
a_{\alpha}^{\beta} a_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma} . \tag{1}
\end{equation*}
$$

In X_{N} the n-vector $\varepsilon_{i_{1} \ldots i_{n}}$ defines equiaffine connection $\Gamma_{\alpha \beta}^{\sigma}$ by

$$
\begin{equation*}
\Gamma_{\alpha}=\Gamma_{\alpha \beta}^{\beta}=\partial_{\alpha} \ln \varepsilon, \tag{2}
\end{equation*}
$$

where $\varepsilon=\varepsilon_{1,2, \ldots, n}$ is the fundamental n -vector of the space $\varepsilon_{i_{1} \ldots i_{n}}[1, \mathrm{p} .150]$. Denote by $E_{q^{N}}$ the space in which $\Gamma_{\alpha \beta}^{\sigma}$ is given. The affinor a_{α}^{β}, for which (1) and

$$
\begin{equation*}
a_{\beta}^{\sigma} \nabla_{[\alpha} a_{\sigma]}^{\nu}-a_{\alpha}^{\sigma} \nabla_{[\beta} a_{\sigma]}^{\nu}=0 \tag{3}
\end{equation*}
$$

hold, defines the composition $X_{n} \times X_{m},(m+n=N, m=n+1, \ldots, N)$ in $E_{q^{N}}$ [2], [3].

Through any point of the space of compositions $E_{q^{N}}\left(X_{n} \times X_{m}\right)$ there are two positions $-P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ of the base manifolds X_{N} and X_{N}. Assume that $E_{q^{N}}\left(X_{n} \times X_{m}\right)$ has integrable structure.

The projective tensors $\stackrel{n}{a}_{\alpha}^{\beta}$ and $\stackrel{m}{a}_{\alpha}^{\beta}$ are defined by [3]:

$$
\begin{equation*}
\stackrel{n}{a_{\alpha}^{\beta}}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}+a_{\alpha}^{\beta}\right), \quad \stackrel{m}{a_{\alpha}^{\beta}}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}-a_{\alpha}^{\beta}\right) \tag{4}
\end{equation*}
$$

and satisfy

$$
\begin{array}{rlr}
n_{\alpha}^{\beta} a_{\beta}^{\sigma}=a_{\alpha}^{\sigma}, & a_{\alpha}^{\beta} a_{\beta}^{\sigma}=a_{\alpha}^{\sigma}, & { }^{n} a_{\alpha}^{\beta} a_{\beta}^{\sigma}=a_{\alpha}^{\sigma} \tag{5}\\
a_{\alpha}^{\beta} a_{\beta}^{\sigma}=-a_{\alpha}^{\sigma}, & { }^{n} a_{\alpha}^{\beta}+a_{\alpha}^{\beta}=\delta_{\alpha}^{\beta}, & a_{\alpha}^{\beta} a_{\beta}^{m}=0 .
\end{array}
$$

The projective tensors transform the vectors of their positions into themselves, and the vectors of transversal positions into zero vectors.

Any vector $v^{\alpha} \in E_{q^{N}} \quad\left(X_{n} \times X_{m}\right)$ has the following representation

$$
v^{\alpha}=\stackrel{n}{a_{\sigma}^{\alpha}} v^{\sigma}+{ }_{a_{\sigma}^{\alpha}}^{\alpha} \nu^{\sigma}=\stackrel{n}{v^{\alpha}}+v^{\alpha},
$$

where $v^{n}=a_{\sigma}^{\alpha} v^{\sigma} \in P\left(X_{n}\right)$ and $v^{\alpha}=a_{\sigma}^{\alpha} v^{\sigma} \in P\left(X_{m}\right)$. For any covariant vector, we can find the projections onto $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ [5].

From (4) and (5), for $\stackrel{n}{\Gamma}_{\alpha}=\stackrel{n}{a}_{\alpha}^{\sigma} \Gamma_{\sigma}$ and $\stackrel{m}{\Gamma}_{\alpha}=\stackrel{m}{a}_{\alpha}^{\sigma} \Gamma_{\sigma}$, it follows that

$$
\begin{equation*}
\Gamma_{\alpha}=\stackrel{n}{\Gamma}_{\alpha}+\stackrel{m}{\Gamma}_{\alpha} . \tag{6}
\end{equation*}
$$

In [3] the invariant characteristics of special composition in multi-dimensional spaces are obtained from affinor a_{α}^{β} and projective tensors.

The composition $X_{n} \times X_{m}$ is Cartesian $(C-C)$, if the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ translate parallely along any line of the space. The composition is Chebichevian (Ch-Ch), if the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ translate parallely along $P\left(X_{m}\right)$ and $P\left(X_{n}\right)$ respectively. The composition is geodesic $(G-G)$, if the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ translate parallely along $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ respectively. These conditions are characterized by:

$$
\begin{array}{ll}
\nabla_{\sigma} a_{\alpha}^{\beta}=0 & C-C \\
\nabla_{[\sigma} a_{\alpha]}^{\beta}=0 & C h-C h \\
a_{\beta}^{\sigma} \nabla_{\alpha} a_{\sigma}^{v}+a_{\alpha}^{\sigma} \nabla_{\sigma} a_{\beta}^{v}=0 & G-G \tag{8}
\end{array}
$$

Composition is $C-C h(C h-C)$, if the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ translate parallely along $P\left(X_{n}\right)\left(P\left(X_{m}\right)\right)$.The composition is $X_{n}-C\left(C-X_{m}\right)$, if the position $P\left(X_{m}\right)\left(P\left(X_{n}\right)\right)$ translates parallely along any line of the space. The composition is $C h-X_{m}\left(X_{n}-C h\right)$, if the position $P\left(X_{n}\right)\left(P\left(X_{m}\right)\right)$ translates parallely along $P\left(X_{m}\right)\left(P\left(X_{n}\right)\right)$. The composition is $G-X_{m}\left(X_{n}\right.$ $G)$, if the positions $P\left(X_{n}\right)\left(P\left(X_{m}\right)\right)$ translate parallely along $P\left(X_{n}\right)\left(P\left(X_{m}\right)\right)$. These conditions are characterized by:

$$
\begin{array}{ll}
a_{\alpha}^{\sigma} \nabla_{\sigma} a_{\beta}^{v}=0\left({ }^{n} a_{\alpha}^{\sigma} \nabla_{\sigma} a_{\beta}^{v}=0\right) & C-C h(C h-C) \\
a_{\alpha}^{\sigma} \nabla_{\sigma} a_{\beta}^{v}=0\left({ }^{n} a_{\alpha}^{\sigma} \nabla_{\sigma} a_{\beta}^{v}=0\right) & X_{n}-C\left(C-X_{m}\right) \\
m_{\alpha}^{\sigma} a^{v} a_{\beta}^{v} \nabla_{\sigma} a_{v}^{\rho}=0\left(a_{\alpha}^{\sigma} a_{\beta}^{v} \nabla_{\sigma} a_{v}^{\rho}=0\right) & C h-X_{m}\left(X_{n}-C h\right) \\
a_{\alpha}^{\sigma}{ }^{n} a_{\beta}^{v} \nabla_{\sigma} a_{v}^{\rho}=0\left(m_{\alpha}^{\sigma} a_{\beta}^{v} \nabla_{\sigma}^{m} a_{v}^{\rho}=0\right) & G-X_{m}\left(X_{n}-G\right)
\end{array}
$$

2. EQUIAFFINE SPACES OF COMPOSITIONS

Consider the following connections :

$$
\begin{align*}
& { }^{1} \Gamma_{\alpha \beta}^{\sigma}=\Gamma_{\alpha}{ }_{\beta}^{\sigma}+\stackrel{n}{a_{\alpha}^{\sigma}} \stackrel{n}{\Gamma}_{\beta}+{\stackrel{n}{a}{ }_{\beta}^{\sigma}{ }^{\sigma} \Gamma_{\alpha},}^{{ }^{2} \Gamma_{\alpha \beta}^{\sigma}=\Gamma_{\alpha \beta}^{\sigma}+{ }^{\sigma}{ }_{\alpha}^{\sigma}{ }_{\alpha}^{\sigma}{ }_{\beta}^{m}+{ }_{a}^{m}{ }_{\beta}^{\sigma}{ }^{\sigma}{ }^{m},} \tag{14}\\
& { }^{3} \Gamma_{\alpha \beta}^{\sigma}=\frac{1}{2}\left({ }^{1} \Gamma_{\alpha \beta}^{\sigma}+{ }^{2} \Gamma_{\alpha \beta}^{\sigma}\right) . \tag{15}
\end{align*}
$$

Connection ${ }^{3} \Gamma_{\alpha \beta}^{\sigma}$ is called the average connection of ${ }^{1} \Gamma_{\alpha \beta}^{\sigma}$ and ${ }^{2} \Gamma_{\alpha \beta}^{\sigma}$ [1, p.164].
Suppose $E_{q^{N}},{ }^{1} A_{N},{ }^{2} A_{N}$ and ${ }^{3} A_{N}$ are spaces with coefficients of connection $\Gamma_{\alpha \beta}^{\sigma},{ }^{1} \Gamma_{\alpha \beta}^{\sigma},{ }^{2} \Gamma_{\alpha \beta}^{\sigma}$ and ${ }^{3} \Gamma_{\alpha \beta}^{\sigma}$ respectively. Let $\nabla,{ }^{1} \nabla,{ }^{2} \nabla,{ }^{3} \nabla$ be the covariant derivatives in the spaces $E_{q^{N}},{ }^{1} A_{N},{ }^{2} A_{N}$ and ${ }^{3} A_{N}$, respectively. By (1) $E_{q^{N}}$, ${ }^{1} A_{N},{ }^{2} A_{N}$ and ${ }^{3} A_{N}$ are spaces of compositions $X_{n} \times X_{m}(m+n=N)$ [2], [3].

Theorem 1. The covariant derivatives of the affinor a_{α}^{β} of composition in $E_{q^{N}},{ }^{1} A_{N},{ }^{2} A_{N}$ and ${ }^{3} A_{N}$ are equal.

Proof. According to (14) we have

$$
\begin{gathered}
{ }^{1} \nabla_{\alpha} a_{\beta}^{\sigma}-\nabla_{\alpha} a_{\beta}^{\sigma}=a_{\beta}^{v}\left({ }^{1} \Gamma_{\alpha}{ }_{v}^{\sigma}-\Gamma_{\alpha v}^{\sigma}\right)-a_{v}^{\sigma}\left({ }^{1} \Gamma_{\alpha \beta}^{v}-\Gamma_{\alpha \beta}^{v}\right) \\
=a_{\beta}^{v}\left({ }^{n} a_{\alpha}^{\sigma} \stackrel{n}{\Gamma}_{v}+\stackrel{n}{a}_{v}^{\sigma}{ }^{n} \alpha\right)-a_{v}^{\sigma}\left(\stackrel{n}{a}_{\alpha}^{v} \stackrel{n}{\Gamma}_{\beta}+\stackrel{n}{a}_{\beta}^{v} \stackrel{n}{\Gamma}_{\alpha}\right)
\end{gathered}
$$

From (5) and (6) it follows that

$$
\begin{align*}
& { }^{1} \nabla_{\alpha} a_{\beta}^{\sigma}-\nabla_{\alpha} a_{\beta}^{\sigma}=\stackrel{n}{a}_{\alpha}^{\sigma} \stackrel{n}{\Gamma}_{\beta}+\stackrel{n}{a}_{\beta}^{\sigma} \stackrel{n}{\Gamma}_{\alpha}-\stackrel{n}{a}_{\alpha}^{\sigma} \stackrel{n}{\Gamma}_{\beta}-\stackrel{n}{a}_{\beta}^{\sigma} \stackrel{n}{\Gamma}_{\alpha}=0 \text {,i.e. } \\
& { }^{1} \nabla_{\alpha} a_{\beta}^{\sigma}=\nabla_{\alpha} a_{\beta}^{\sigma} \tag{17}
\end{align*}
$$

Using (15) we obtain

$$
\begin{aligned}
& \left.{ }^{2} \nabla_{\alpha} a_{\beta}^{\sigma}-\nabla_{\infty} a_{\beta}^{\sigma}=a_{\beta}^{v}\left({ }^{2} \Gamma_{\alpha}{ }_{v}^{\sigma}-\Gamma_{\alpha}{ }_{\nu}^{\sigma}\right)-a_{v}^{\sigma}{ }^{2} \Gamma_{\alpha}{ }_{\beta}^{v}-\Gamma_{\alpha}{ }_{\beta}^{v}\right) \\
& =a_{\beta}^{v}\left(\stackrel{m}{a_{\alpha}^{\sigma}} \stackrel{m}{\Gamma}_{v}+\stackrel{m}{a_{v}^{\sigma}}{ }_{\Gamma}^{m}\right)-a_{v}^{\sigma}\left({ }_{\alpha}^{m}{ }_{\alpha}^{v} \stackrel{m}{\Gamma}_{\beta}+\stackrel{m}{a}_{\beta}^{v} \stackrel{m}{\Gamma}_{\alpha}\right),
\end{aligned}
$$

Similarly from (5) and (6) we establish,

$$
\begin{align*}
& { }^{2} \nabla_{\alpha} a_{\beta}^{\sigma}-\nabla_{\alpha} a_{\beta}^{\sigma}=-\stackrel{m}{a}_{\alpha}^{\sigma} \stackrel{m}{\Gamma}_{\beta}-\stackrel{m}{a}_{\beta}^{\sigma} \stackrel{m}{\Gamma}_{\alpha}+\stackrel{m}{a}_{\alpha}^{\sigma} \stackrel{m}{\Gamma}_{\beta}+\stackrel{m}{a}_{\beta}^{\sigma} \stackrel{m}{\Gamma}_{\alpha}=0, \text { i.e. } \\
& { }^{2} \nabla_{\alpha} a_{\beta}^{\sigma}=\nabla_{\alpha} a_{\beta}^{\sigma} \tag{18}
\end{align*}
$$

From (17) and (18) it follows that $\nabla_{\alpha} a_{\beta}^{\sigma}={ }^{1} \nabla_{\alpha} a_{\beta}^{\sigma}={ }^{2} \nabla_{\alpha} a_{\beta}^{\sigma}$. From the last equations and according to (16) we have

$$
\begin{align*}
& { }^{3} \nabla_{\alpha} a_{\beta}^{\sigma}=\frac{1}{2}\left({ }^{1} \nabla_{\alpha} a_{\beta}^{\sigma}+{ }^{2} \nabla_{\alpha} a_{\beta}^{\sigma}\right)=\nabla_{\alpha} a_{\beta}^{\sigma}, \text { i.e. } \\
& \nabla_{\alpha} a_{\beta}^{\sigma}={ }^{1} \nabla_{\alpha} a_{\beta}^{\sigma}={ }^{2} \nabla_{\alpha} a_{\beta}^{\sigma}={ }^{3} \nabla_{\alpha} a_{\beta}^{\sigma} \tag{19}
\end{align*}
$$

Corollary 1. If one of the spaces $E_{q^{N}},{ }^{1} A_{N},{ }^{2} A_{N}$ or ${ }^{3} A_{N}$ has integrability of the structure, then the others also have integrability of the structure.

Corollary 1 follows from (1) and (19).
Corollary 2. The projective tensors $\stackrel{n}{a_{\alpha}^{\beta}}$ and $\stackrel{m}{a}_{\alpha}^{\beta}$ have equal covariant derivative in $E_{q^{N}},{ }^{1} A_{N},{ }^{2} A_{N}$ and ${ }^{3} A_{N}$.

Corollary 2 follows from (4) and (19).
Corollary 3. If the composition $X_{n} \times X_{m}$ is some of $C-C, C h-C h, G-$ $G, G-C h, C h-G, X_{n}-C, C-X_{m}, X_{n}-C h, C h-X_{m}, X_{n}-G$, or $G-$ X_{m} in one of the spaces $E_{q^{N}},{ }^{1} A_{N},{ }^{2} A_{N},{ }^{3} A_{N}$, then it is of the same kind in the rest of these spaces.

Corollary 3 follows from the invariant characteristics, corollaries 1 and 2.

Theorem 2. Connections $\Gamma_{\alpha \beta}^{\sigma}$ and ${ }^{3} \Gamma_{\alpha \beta}^{\sigma}$ are projective between each other.
Proof. From (14) and (15), taking into account (4) we have

$$
\begin{aligned}
& { }^{1} \Gamma_{\alpha \beta}^{\sigma}=\Gamma_{\alpha \beta}^{\sigma}+\frac{1}{2}\left(\delta_{\alpha}^{\sigma}+a_{\alpha}^{\sigma}\right) \Gamma_{\beta}^{n}+\frac{1}{2}\left(\delta_{\beta}^{\sigma}+a_{\beta}^{\sigma}\right) \Gamma_{\alpha}^{n}, \\
& { }^{2} \Gamma_{\alpha \beta}^{\sigma}=\Gamma_{\alpha \beta}^{\sigma}+\frac{1}{2}\left(\delta_{\alpha}^{\sigma}-a_{\alpha}^{\sigma}\right){ }^{m} \Gamma_{\beta}+\frac{1}{2}\left(\delta_{\beta}^{\sigma}-a_{\beta}^{\sigma}\right) \Gamma_{\alpha}^{m} .
\end{aligned}
$$

From (16) we obtain

$$
{ }^{3} \Gamma_{\alpha \beta}^{\sigma}=\frac{1}{2}\left({ }^{1} \Gamma_{\alpha \beta}^{\sigma}+{ }^{2} \Gamma_{\alpha \beta}^{\sigma}\right)=\frac{1}{4} \delta_{\alpha}^{\sigma}\left(\Gamma_{\beta}^{n}+\Gamma_{\beta}^{m}\right)+\frac{1}{4} \delta_{\beta}^{\sigma}\left(\Gamma_{\alpha}^{n}+\Gamma_{\alpha}^{m}\right),
$$

And taking into account (6) we establish

$$
\begin{equation*}
{ }^{3} \Gamma_{\alpha \beta}^{\sigma}=\Gamma_{\alpha \beta}^{\sigma}+\frac{1}{4}\left(\delta_{\alpha}^{\sigma} \Gamma_{\beta}+\delta_{\beta}^{\sigma} \Gamma_{\alpha}\right) . \tag{20}
\end{equation*}
$$

Thus between $\Gamma_{\alpha \beta}^{\sigma}$ and ${ }^{3} \Gamma_{\alpha \beta}^{\sigma}$ there exists projective correspondence. The vector of the projective transformation is

$$
p_{\alpha}=\frac{1}{N+1}\left({ }^{3} \Gamma_{\alpha}-\Gamma_{\alpha}\right)=\frac{1}{N+1} \frac{N+1}{4}\left(\delta_{\alpha}^{\beta} \Gamma_{\beta}+\delta_{\beta}^{\beta} \Gamma_{\alpha}\right)=\frac{1}{4} \Gamma_{\alpha} .
$$

Theorem 3. The space ${ }^{3} A_{N}$, with coefficient of connection ${ }^{3} \Gamma_{\alpha \beta}$ is equiaffine.
Proof. For the tensor of affine transformation, from (6) and (16) we have:

$$
\begin{equation*}
T_{\alpha \beta}^{\sigma}={ }^{3} \Gamma_{\alpha \beta}^{\sigma}-\Gamma_{\alpha \beta}^{\sigma}=\frac{1}{4}\left(\delta_{\alpha}^{\sigma} \Gamma_{\beta}+\delta_{\beta}^{\sigma} \Gamma_{\alpha}\right) . \tag{21}
\end{equation*}
$$

Denote by $R_{\alpha \beta \sigma}$. ${ }^{v}$ and ${ }^{3} R_{\alpha \beta \sigma}$. the tensors of the curvature of $E_{q^{N}}$ and ${ }^{3} A_{N}$ respectively. The following equation holds [1, p.133]

$$
{ }^{3} R_{\alpha \beta \sigma .}{ }^{v}=R_{\alpha \beta \sigma .}{ }^{v}+2 \nabla_{[\alpha} T_{\beta] \sigma^{+}}^{v} 2 T_{\rho[\alpha}^{v} T_{\beta] \sigma}^{\rho} .
$$

For the Ricci tensors $R_{\beta \sigma}$ and ${ }^{3} R_{\beta \sigma}$ of $E_{q^{N}}$ and ${ }^{3} A_{N}$ respectively, after contracting the above equality along the indices α and v we obtain

$$
\begin{aligned}
& { }^{3} R_{\beta \sigma}=R_{\beta \sigma}+2 \nabla_{[\alpha} T_{\beta] \sigma}^{\alpha}+2 T_{\rho[\alpha}^{\alpha} T_{\beta] \sigma}^{\rho} \\
& \quad=R_{\beta \sigma}+\nabla_{\alpha} T_{\beta \sigma}{ }^{\alpha}-\nabla_{\beta} T_{\alpha \sigma}{ }^{\alpha}+T_{\rho}{ }_{\alpha}^{\alpha} T_{\beta}{ }^{\alpha}{ }_{\sigma}-T_{\rho}{ }_{\beta}^{\alpha} T_{\alpha \sigma}{ }^{\rho} .
\end{aligned}
$$

Thus taking into account $\nabla_{\sigma} \Gamma_{\beta}=\nabla_{\beta} \Gamma_{\sigma}$ and (21) we establish

$$
\begin{equation*}
{ }^{3} R_{\beta \sigma}=R_{\beta \sigma}+\frac{N-1}{4}\left(\frac{1}{4} \Gamma_{\beta} \Gamma_{\sigma}-\nabla_{\sigma} \Gamma_{\beta}\right) . \tag{22}
\end{equation*}
$$

The tensor $R_{\beta \sigma}$ of the equiaffine space $E_{q^{N}}$ is symmetric [1, p.150], i.e. the right hand side of (22) is symmetric. Thus the Ricci tensor ${ }^{3} R_{\beta \sigma}$ is symmetric as
well. From (9) it follows that the coefficients of connection of ${ }^{3} A_{N}{ }^{3} \Gamma_{\alpha \beta}$ are symmetric. A space with symmetric connection, having symmetric Ricci tensor, then the space is equiaffine i.e. ${ }^{3} A_{N}$ is equiaffine.

Example. Given coordinate system $u^{\alpha}(\alpha=1,2, \ldots, n+m=N)$ in $E_{q^{N}}$, we want to find is the fundamental n-vector of the space $E_{q^{N}}$, whenever Ricci tensors of $E_{q^{N}}$ and ${ }^{3} A_{N}$ are equal. From (22), for the coefficients of connection we have:

$$
\Gamma_{\beta} \Gamma_{\sigma}-4 \Gamma_{\beta \sigma}=0
$$

From where we obtain

$$
\begin{equation*}
\Gamma=-4 \ln \left|u_{1}+\ldots+u_{n}+\ldots+u_{N}\right| . \tag{23}
\end{equation*}
$$

Thus, taking into account (2), for the fundamental n-vector of the space $E_{q^{N}}$ we establish

$$
\varepsilon=\left(u_{1}+\ldots+u_{n}+\ldots+u_{N}\right)^{-4}
$$

References

[1] A. Norden, Affinely Connected Spaces. GRFML, Moskow, 1976 (in Russian).
[2] A. Norden, Spaces of Cartesian compositions. Mathematics, 4(1963), 117-128 (in Russian).
[3] A. Norden, G. Timoffev. Invariant tests of the Special compositions in multivariate spaces Mathematics, 8(1972), 81-89 (in Russian).
[4] K. Yano, Affine Connections in an Almost Product Space, Kodai Math., Seminar Reports, v.11,1,1959, 1-24.
[5] Timofeev G., Invariant tests of the special compositions in Weyl's spaces. Mathemstics 1(1976), 87-99
[6] G. Zlatanov, One Transformations of Connections of Spaces of Compositions. vol.54, 10(2001), 19-24.
[7] G. Zlatanov, B.Tcareva, Transformation of spaces of compositions.Plovdiv Univ. Sci. Works. Math. 35(3)(2007), 205-211.

Ivan Badev
Technical University-Sofia, Branch Plovdiv
25 Tzanko Djustabanov Street
4000 Plovdiv
e-mail: ivanbadev@abv.bg

