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1. Introduction 

 
Let G  be a multiplicative group and let  K  be an associative ring. Denote by 

KG  the free left K -module with a basis G . Then every element KGu∈  has the 
form 

∑ ∈
=

Gg g gu α          ( )Kg ∈α , 

where ( ) { }oGguSupp g ≠∈= α  is a finite set. The subgroup 〉〈 )(uSupp  of 

G , generated by ( )uSupp , is said to be support subgroup of KGu∈ .  

Note that the definition of  KG  implies that the element u  and the element  

∑ ∈
=

Gg g gv β          ( )Kg ∈β  

are equal if and only if   gg βα =  for all Gg∈ . Moreover,  

                                       ∑ ∈
+=+

Gg gg gvu )( βα  

and 

                                       ∑ ∈
=

Gg g gu )(ααα         ( )K∈α . 

For arbitrary elements KGvu ∈,  can be defined a product 

∑ ∑∈ ∈
==

Ghg Gf fhg fghuv
,

γβα , 

where 

∑ =
=

fgh hgf βαγ . 

Since ghhg )())(( αββα =  for all K∈βα , and Ghg ∈, , the product uv  
can be defined by this rule and the distributive law. 

It is easily verified that with the above operations KG  is a ring, which is 
called the group ring of the group G  over the ring K . If K  is commutative, then  
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KG  is algebra over K , and in this case KG  is frequently called a group algebra 
of G  over K . 

Another way of looking at KG  is as set of all functions KGu →:  with 
almost all values ( )gu  equal to zero with pointwize addition 

( )( ) ( ) ( )gvgugvu +=+  and convolution  

                                               ∑ =
=

ghf
fvhuguv )()())(( .  

If G  is a semigroup, then KG  is a semigroup ring. In fact, there exist natural 
and useful extensions of this concept. 
        

2. A brief history 
         

The concept of the group rings is relatively old. This theory is a union of two 
theories – Theory of group and Theory of rings. Thus the history of the group rings 
is an history of groups and rings.  

It is well known that the attention on the permutations was focused in 1730 by 
the work on the algebraic equations of J. L. Lagrange (1736 - 1813), following in 
1799 by P. Ruffini (1765 - 1822) and N. H. Abel (1802 - 1829) in 1826. In his 
classical work in 1830 E. Galois (1811 - 1832) was the first to consider groups and 
subgroups of permutations, using the term group in its modern sense – though 
restricted to permutations – and introducing such concepts as those of normal 
subgroup, solvable group etc. Implicitly, examples of groups are studied also by L. 
Euler (1707 - 1783) and K. F. Gauss (1777 – 1855). 

A. L. Cauchy (1789 - 1857) was a pioneer in understanding the relevance of 
permutation groups as an independent subject. He wrote a series of interesting 
papers about them, in period 1844 -1846. Influenced by Cauchy’s work, in 1854 
Arthur Cayley (1821 - 1895) recognized that the notion of a group could be 
formulated in a more abstract setting and gave the first definition of an abstract 
group in [11]. The paper [11] is considered by several authors as the beginning of 
abstract group theory.  It contains a number of important features: 
       -  Gives an abstract definition of a group in multiplicative notion; 
       -  Introduces the table of an operation;  
       - Shows that there exist two nonisomorphic groups of order four, giving 
explicit examples; 
       -  Shows that there exist two nonisomorphic groups of order six, one at them 
being commutative and other is isomorphic to3S ; 

       - Shows that the order of every element is a divisor of the order of the group. 
The study of rings originated from the theory of polynomials. In the 16th 

century were introduced the complex numbers as a result of the work of Italian 
mathematicians while studying equations of the third degree. A long controversy 
regarding their existence and meaning was raised, and they gradually gained 
acceptance after a geometrical interpretation was given by Caspar Wessel (1745 - 
1818), Jean-Robert Argan (1768 - 1822) and K. F. Gauss (1777 – 1855). However, 
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though better understood, a need for an algebraic system in which the square of a 
“quantity” would actually be equal to -1 was still felt.  

In 1837 W. R. Hamilton (1805 - 1865) gave the first formal theory of complex 
numbers, defining them as ordered pairs of real numbers, just as is done nowadays, 
thus ending almost three hundred years of discussions regarding their legitimacy. 

Moreover, he came to consider elements of the form  
(1)                             dkcjbia +++=α              ( )Rdcba ∈,,, , 
which he called quaternions. It was obvious to him that such elements should be 
added componentwize. The main difficulty was to define the product of two 
elements in a reasonable way. Since this product should have the usual properties 
of a multiplication, such as the distributive law, it is would actually be enough to 
decide how to multiply the symbols i, j, k among themselves. Hamilton also 
assumed implicitly that the product should be commutative. Finally, in October 
1843 he discovered the fundamental laws of the product of quaternions 

                                          1222 −==== ijkkji . 
So Hamilton [24] discovers the first noncommutative algebraic structure in the 
history of mathematics. 

The quaternions are studied also by Gauss, but he does not publish its results. 
Although the theory of determinants began in 18th century with the works of 

G. W. Leibnitz (1646 - 1716) in 1693, C. Maclaurin (1698 - 1746) in 1729 and G. 
Cramer (1704 - 1752) in 1750 in connection with the resolution of linear systems 
of equations, it precedes the explicit formulation of the notion matrix with more of 
100 years. The notion of matrix first is defined by J. J. Silvester (1814 - 1897) in 
1848 and Cayley in 1855 as a convenient notation to express linear systems and 
quadratic forms. In a subsequent paper in 1858 Cayley defines the addition, the 
multiplication by scalars and the product of matrices, studying the properties of 
these operations without explicit mention of connection with hypercomplex 
system. After, Sylvester in 1884 and E. Study (1862 – 1930) in 1889 observe that 

the total  nn×  matrix algebra can be viewed as an 2n -dimensional vector space.   
In 1845 Cayley introduced a new set of numbers, the octionions of the form   

                                   7722110 ... eaeaeaa ++++=α          ( )Rak ∈ , 

where the symbols ie  ( )71 ≤≤ i  are the basic units. The octonions are known as 

Cayley numbers. Hamilton himself realized that it was possible to extend this 
construction even further and he first defined biquaternions, which are elements of 
the form (1), where a, b, c, d are complex numbers. Soon afterwards he introduced 
the hypercomplex systems. These are elements of the form  

nneaeaeaa ++++= ...22110α , 

where again the sum is defined componentwise and the multiplication is 
determined by the distributive law and the formulas 

∑ =
=

n

k kkji ejiee
1

),(α . 

Thus, in fact he introduces the contemporary notions for algebras. 
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These facts were the first steps in the development of the ring theory. In 1871 
Benjamin Pirce (1809 - 1880) gave a classification of algebras known at the time 
and determined 162 algebras of a dimension 6≤n . As tools of his methods of 
classification, B. Pirce introduced some very important ideas in ring theory, such as 
idempotent and nilpotent elements, and the use of idempotents to obtain a 
decomposition of a given algebra.  Impressed by these results both Theodor Molien 
(1861 – 1941) and E. J. Cartan (1869 – 1951) obtained, independently, important 
results regarding the structure theory of finite-dimensional real or complex 
algebras, introducing in this context the  notions of simple and semisimple algebras 
and characterizing the simple algebras as full matrix algebras.  

  The concept of a ring first arose from attempts to prove Fermat’s last 
theorem, starting with Richard Dedekind (1831 - 1916) in the 1880s. The term ring 
was coined by David Hilbert (1862 - 1943) in 1892 for a specific ring. The first 
axiomatic definition of a ring was given by Adolf Fraenkel (1891 - 1965) in 1914. 
In 1921 Emmy Noether (1882 - 1935) gave the first axiomatic foundation of the 
theory of commutative rings.  

The concept of group rings appears implicitly in the paper [11] of A. Cayley 
in 1854, which is considered as the first work in the abstract theory of groups. But 
the concept of group rings was explicitly introduced in 1892 by T. Molien [46].  

In his paper Cayley actually gave the formal construction of the group ring 

3CS  and, in essentially, this way we do today. However, not even the basic notions 

of the theory of rings and algebras, were formulated at this time and this concept 
remained in noticed. T. Molien (Fedor Eduardovich Molin) obtained important 
results regarding the structure of finite-dimensional real and complex algebras, 
introducing the notions of simple and semisimple algebras and characterizing the 
simple algebras as complete matrix algebras. In a subsequent paper [47] in 1897 
Molien obtained important results relating the representability of a given discrete 
group in the form of a homogeneous linear substitution group. In this way, he 
discovered some of the basic results in theory of complex representations of finite 
groups, including the orthogonality relations for group characters.   

The connection between group representation theory and the structure theory 
of algebras – which is obtained through group algebras – was widely recognized 
after the most influential papers of Emmy Noether and Richard Brauer (1901 - 
1977), giving the subject a new impulse. A classic and encyclopedic book on the 
theory of representation of finite groups and associative algebras is the book of 
Ceartis and Reiner [14]. 

Let us remember that Graham Higman (1917-2008) investigated and raised 
important questions about units of integral group rings in [26]. Those questions 
originated from his investigations of the Whitehead torsion in topology. An 
important role in this direction has and the paper [2] of S. D. Berman. 

Later, the subject gained importance of its own after the inclusion of questions 
on group rings in Kaplansky’s famous list of problems [28, 29]. Other important 
facts to stimulate the area where the paper by I. Connell [12] considering ring-
theoretical questions about group rings, it follows the inclusion of chapters on 



10-12 December 2010, Plovdiv, Bulgaria  73 

group rings in the books on ring theory by Lambek [35] and Ribenboim [57], as 
well as the publication of the first book entirely devoted to the subject, by Donald 
S. Passman [51]. 

Several new books on the subject have been published in recent years by A. A. 
Bovdi [5, 6, 7], G. Karpilovsky [30, 32], I. B. S. Passi [50], C. Polcino-Milies and 
S. K. Sehgal [55], K. W. Roggekamp and M. J. Taylor [58], S. K. Sehgal [60, 61]. 
Passman’s “The algebraic structure of group rings” [52] is truly classic and 
encyclopedic. For more detail on the history of group rings and some other 
references see [54, 62, 63]. 

 
3. Some generalizations of group rings 

           
From here on for the sake of brevity, we shall use the terminology of [1, 34]. 
Let KG  be an arbitrary group ring of a group  G  over a ring K  and let H  

be a normal subgroup of G  with a fixed transversal ( ) { }IigHGT i ∈= . Then  

∪ Ii iHgG
∈

=     

and every element KGu∈  can be represented in the form 

                           
iIi i gau ∑ ∈

=        ( )( )KHaHGTg ii ∈∈ , .   

If  

                           
iIi igbv ∑ ∈

=        ( )( )KHbHGTg ii ∈∈ ,  

is an other element of KG , then vu =  if and only if ii ba =  for all Ii∈ . Thus 

KG  is a left free KH -module with a basis ( )HGT . Since H  is a normal 

subgroup of G  and 

kji
g

jijiijiijjii gggbagggbgagbga i ),()())(( )(1 ρσ== − , 

 where 

KHbgbg ig
jiji ∈=− )(1 σ ,    kkjiji Hgggggg ∈= ),(ρ ,      Ik∈ , 

we conclude that the product uv  again is an element of the KH -module KG . 
Observe that the map KHKHgi →:)(σ is an automorphism of KH  and 

),( ji ggρ  is an invertible element of KH  for all Iji ∈, . So we receive a new 

algebraic structure, which can be defined by the following way. 
Let G  be a group and K  a ring with identity. Suppose that are given a 

function ∗→× KGG:ρ and a mapping AutKG →:σ , where ∗K  is the 

multiplicative group of K  and AutK is the group of the automorphisms of K . Let 

GK ∗  be a free left K -module with basis { }GggG ∈= , where every 

element Gg ∈  is a symbol, corresponding to Gg∈ . Thus each element 

GKu ∗∈  is a finite sum of the form 
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∑ ∈
=

Gg g gu α          )( Kg ∈α . 

Moreover, the equality and the addition in GK ∗  are defined componentwize. 
Assume that  

                     ghhghg ),(ρ= ,        gg g )(σαα =       ),,( KGhg ∈∈ α , 

where ∗∈Khg ),(ρ  is an invertible element of K  and )(gσα is the image of 

K∈α under the action of the automorphism AutKg ∈)(σ . Then these 
conditions induce a multiplication 

( )( ) ∑∑∑ = ghhghg g
hghg ),()( ρβαβα σ GKff ∗∈=∑γ , 

where 

∑ =
∈=

fgh

g
hgf Khg ),()( ρβαγ σ . 

When the basis { }GggG ∈=  satisfies the conditions 

(2)                       hgfhgf )()( = ,     αα )()( hghg = ,    K∈α , 

 with these so defined two operations GK ∗  is an associative ring, called crossed 
product of a group G  over a ring K  with system of factors ρ and mapping σ . 

We us also the designations ),,,( σρKG  and GKσ
ρ . 

It is easy to verify that the conditions (2) are equivalent with the conditions 

   ),(),(),(),( )( ghfhghfggf f ρρρρ σ= , ),(),( )()(1)( hghg ghgh ραρα σσσ −= . 

As a special case, if 1),( =hgρ  for all Ghg ∈, , then we get the skew group 

ring GKKG σσ =),1,,( . If 1)( =gσ  for all Gg∈ , then we have the twisted 

group ring GKKG ρρ =)1,,,( . In addition, if we have 1),( =hgρ  and 1)( =gσ  

for all Ghg ∈, , then we obtain the group ring KG . 

      The preceding facts show that every group ring KG  can be regarded as a 
crossed product HGKHKG ∗= , where GH � , i.e. H  is a normal subgroup 

of G . So the methods of the crossed products can be used in the theory of group 
rings. Moreover, if GH � , then in [10] is proved that GK ∗  is a suitable crossed 
product of the quotient group HG  over the subring HK ∗ , i.e. 

( ) HGHKGK ∗∗=∗ . Moreover, if J  is a G -invariant ideal of K , i.e. 

JJ g =)(σ  for all Gg∈ , then )( GKJGJ ∗=∗  is an ideal of GK ∗  and 

( ) ( ) GJKGJGK ∗≅∗∗ )( , where ( ) GJK ∗  is a crossed product of G  over 

the quotient ring JK . At first, these methods are used in [10] and [36]. 
Classically, crossed products of arbitrary finite groups over fields were 

introduced by E. Noether [49, 64] in 1929 in her lectures in Gottingen. Earlier, the 
special case of cyclic algebras was defined by Dickson [16, 17] in 1906 and the 



10-12 December 2010, Plovdiv, Bulgaria  75 

first significant result about them was proved by Wedderburn [65] in 1914. After, 
in the early 1940s N. Jacobson introduces crossed products of finite groups over 
division rings. Although he was working over a division rings, all the essential 
ingredients for the general case appear in his book [27]. However, the crossed 
products of general groups and rings are introduced 20 years later by A. A. Bovdi 
[3, 4]. Namely A. Bovdi at first regards the crossed products as a generalization of 
the group rings.  Now the main results on this area are collected in [31, 53]. 

Other more large generalization of the group rings is the notion group graded 
ring.     

Let G  be an arbitrary multiplicative group. A ring R  is said to be G -graded 

if there is a family { }GgRg ∈  of additive subgroup of R  such that the 

additive group of R  is a direct sum 

∑ ∈
⊕=

Gg gRR  

and ghhg RRR ⊆  for all Ghg ∈, . Moreover, if ghhg RRR =  holds for all Ghg ∈, , 

then R  is said to be strongly G -graded ring. Here the product hg RR is the usual 

module, the product consisting of all finite sums of ring products hgrr  of elements 

gg Rr ∈  and hh Rr ∈ . 

Group-graded rings were introduced by E. C. Dade [15] in 1980 as a formal 
way to deal with finite group representation problems. In addition, group-graded 
rings occur naturally certain Galois theory situations and, of course, they are 
related to crossed products. 

Other generalizations of the crossed products are as called Hopf algebras, ∗C -
algebras, smash products, partial skew group rings, partial crossed products etc. As 
an example we shall define the notion partial skew group ring. 

Let  G  be a multiplicative group and K  be an associative ring with identity. 
A partial action σ of G  on  K  is a collection of ideals )( GgKDg ∈�  and ring 

isomorphisms gg
DDg →−1:)(σ  such that  

         (i)              KD =1  and )1(σ  is the identity map of K ; 

         (ii)             ghg
g

hg
DDDD ∩=∩−

)()( 1
σ ; 

         (iii)            )()()( ghgh aa σσσ =  for all 11 )( −− ∩∈
ghh

DDa . 

Then the partial skew group ring of K  and G  is defined to be the projective left 
K -module  

∑ ∈
⊕=

Gg gpar gDGKσ , 

where the multiplication is defined by the conditions 

ghbahbga g
h

g
ghg

)()( )())((
1

σσ −

=  . 
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It is easy to see, using the conditions (i) – (iii), that ghDhbga ghhg ∈))((  and thus 

the multiplication in GK par
σ  is well defined. So GK par

σ  is a ring, which is not 

always associative. 
The notion of a partial action was been introduced in 1994 by R. Exel [21] in 

the study of ∗C -algebras. More details for partial group rings and partial crossed 
products can be seen in [13, 20, 21, 22]. 

 
4. Main problems and some results 

             
As was market above, the theory of group rings is a product of the theory of 

group and the theory of rings. Thus this theory is a meeting point of various 
algebraic theories. It is worthwhile to mention that group rings are important in 
other branches of mathematics, such as homological algebra, algebraic topology 
and algebraic K -theory, and that during the last decades significant applications 
have been obtained in the theory of error correcting codes which are used in digital 
transmissions, allowing the creation of new codes which are simultaneously 
efficient and reliable. To get an idea about the importance of group rings in 
algebraic research,   it is enough to observe that several great contemporary 
algebraists have worked at some point of their lives in the area, contributing 
fundamentally to its development. Among them we can mention S. A. Amitsur, 
H. Bass, E. Formanek, N. D. Gupta, I. N. Herstein, G, Higman, A. V. Jategaonkar, 
I. Kaplansky, W. May, D. S. Passman, K. W. Roggenkamp, W. Rudin, 
S. K. Sehgal, H. J. Zassenhaus etc. Also in the ex-Soviet Union there was great 
interest in the area of group rings which was represented by such known scientists 
as S. D. Berman, A. A. Bovdi, A. E. Zalesskii and A. V. Mikhalev. It is worth 
noting that S. D. Berman was one of the great specialists in the representation 
theory of groups. 

Conditionally, the problems in the theory of group rings and its 
generalizations we divide in tree parts: Ring-theoretic properties, Group-theoretic 
properties and Problem of the isomorphism. 

In view of the intimate connection with representation theory, it is natural the 
question when the group ring KG  determines the group G. More formally, is it 
true that the isomorphism KHKG ≅  implies that HG ≅ ? A special interest is 
the case when ZK = , the ring of the integers. The first positive results on this 
conjecture were obtained in 1940 by G. Higman [25, 26] for finite abelian groups 
and for the Hamiltonian 2-groups. Until now the problem has not been solved 
completely, but several deep results have been obtained for various classes of 
groups as: finite metabelien groups, symmetric and alternating groups, finite 
groups which are multiplicative groups of some rings, finite nilpotent groups etc. In 
the early seventies, H. J. Zassenhaus formulated various conjectures about units 
and the isomorphism of integral group rings ZG (see [6, 7, 61, 62]. 
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Isomorphic crossed products of some torsion free groups over prime rings are 
investigated only in [4, 41, 45]. The self-injective crossed products are studied in 
[39]. 

The multiplicative group )(KGU  of commutative group rings KG is studied 
by G. Higman, S. Berman, W. May, T. Mollov, N. Nachev (see [7, 30]). The group   

)(KGU  for noncommutative ring KG  is studied by several authors (see [61]). 
The main problem here is to find necessary and sufficient conditions under which 

)(KGU  possess certain group-theoretic properties, for example to be solvable, 

nilpotent, torsion, locally finite, FC -group etc. Other problems are connected with 
free subgroups of )(KGU , dimension subgroups, group identities in )(KGU , Lie 

n -Engel subgroups, atomorphisms of KG  etc. These results are exposed in [6, 7, 
61]. Some results for the multiplicative group of crossed products GK ∗  are 
received in [45]. 

The first completely solved ring-theoretic problems are published by Ian G. 
Connell. In [12] Connell was proved that the group ring KG  satisfies the 
descending chain condition )(DCC  on the left ideals if and only if K  satisfies 

this condition and G  is a finite group. Moreover, KG  is without nilpotent ideals if 
and only if K  is without nilpotent ideals and the order of every finite normal 
subgroup of G  is not zero divisor in K  (see [35, 57]). After that, in [37, 66] the 
authors independently prove that KG  satisfies the DCC  on the principal left 
ideals if and only if K  satisfies this condition and G  is a finite group  

 In the area of the ring-theoretic properties the main problems are connected 
with idempotents, zero divisors, ideals, radicals, polynomials identities, Lie 
identities, rings of quotients, regularity, chain conditions, modules over group rings 
etc. Briefly we may say that all problems in the theory of rings and the theory of 
groups are problems in the theory of group rings and they generalizations. Some of 
these problems are as Fermat’s Last Theorem, whose enunciation are easily 
comprehended, but they solution is very difficult. For example, by the early 1960s 
there had emerged two major and easily comprehended problems, namely: 

1) If K   has no nontrivial zero divisors it is true that KG  also has no proper 
zero divisors for all torsion-free groups G ? 

2) It is true that the rational group ring QG  is semisimple for all groups G ? 
More systematic information on the problems in the theory of group rings and  

the crossed products may be discovered in [63] and [48], respectively. 
Finally, as examples, for an illustration of the theory, we shall indicate only 

some results, which are obtained in University of Plodiv. 
First, we shall recall some definitions. 

Let GKGK σ
ρ=∗  be any crossed product of G  over K . Put 

{ })()(ker KIgGgG ∈∈= σ ,     { })()( KXgGgGinn ∈∈= σ , 
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where )(KI  is the group of the inner automorphisms of K  and )(KX  is the 

group of the X -inner automorphisms of K  (see [51]). It is known that kerG  and 

innG  are normal subgroups of G . Moreover, a subring S  of the ring K is said to 

be G -invariant if Ss g ∈)(σ  for all Ss∈  and Gg∈ . It is easy to verify that  

{ }SsallforssGgSG g ∈=∈= )()( σ  

is a normal subgroup of G . 
In [59] Rudin and Schneider formulated the hypothesis that every central 

idempotent 2ee = of an arbitrary group ring KG  has a finite support subgroup 
〉〈 )(eSupp . First this hypothesis is proved in [8, 9, 10]. For G -graded rings the 

notion support subgroup is defined as for the group rings.  
So in [40] are proved the following theorems. 

Theorem 1 [40]. If R  is a semiprime strongly G -graded ring, then the 
support subgroup of every central algebraic element of R  is a finite normal 
subgroup of G . 

Theorem 2 [40]. If R  is a strongly G -graded ring, then the support subgroup 
of every central idempotent of R  is a finite normal subgroup of G . 

Theorem 3 [40]. All idempotents of a strongly G -graded ring have finite 
support subgroups if and only if they are central, or G  is a locally finite group. 

From these theorems the main results of [8, 9, 10] follow. 
There exists an hypothesis [8] that the group ring KG  over commutative 

domain K  contains non trivial idempotents if and only if the order of some 
element Gg∈  is invertible in K . For finite groups this problem is solved by 
Colleman (see [60]) and for locally nilpotent groups it is solved in [8]. 
E. Formanek [23] shoved that the hypothesis has positive solution and for 
Noetherian groups. For twisted group rings of finite groups over commutative 
domain the problem also has a positive solution [33]. But the general case is open.  

The finite support subgroups of the central idempotents are used for a 
characterization of the biregular group rings. Recall that the ring K  is said to be 
biregular [1], if every principal two-sided ideal of K  is generated by central 
idempotent. Therefore, every simple associative ring K  is biregular.  

In [38] is proved the following 
Theorem 4 [38]. If K  is a commutative ring, then the group ring KG  is 

biregular if and only if G  and K  satisfy the following condition: 
(*)     G  is locally finite, K  is biregular and the order of every element Gg∈  

is an invertible element of K .          
For crossed products the condition (*) is not necessary. So in [43] are funded 

conditions under which GK ∗  is a simple ring, where G  can be an arbitrary 
group. Obviously, such crossed products are biregular. Namely, we have 
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Theorem 5 [43]. If K  has no G -invariant ideals, then GK ∗  is simple if 
and only if kerGK ∗  has no G -invariant ideals.     

Nevertheless, we have the following  
Theorem 6 [38]. Assume that K  satisfies the ACC , or DCC  on the 

principal two-sided ideals. If G and K satisfy the condition (*), then every crossed 
product GK ∗ is biregular. 

Denote by )(KP , )(KL , )(KU , )(KJ  and )(KB , respectively, the lower 
nil radical, the locally nilpotent radical, the upper nil radical, the radical of 
Jacobson and the radical of Braun-McCoy of an associative ring K [1]. Then  

)(KP  ⊆  )(KL  ⊆  )(KU  ⊆ )(KJ  ⊆  )(KB . 
In [19] are proved the following main theorems. 
Theorem 7 [19]. If GKρ  is a twisted group ring of the group G  over the 

ring K  and the order of every torsion element of G  is not a zero divisor in K , 
then  

GKUGKUGKP ρρρ )()()( ⊆⊆ . 

Theorem 8 [19]. Let GK ∗  be a crossed product of a group G  over a prime 
ring K  of characteristic 0≥p . If the subgroup innG  has no p -elements when 

0>p  and 0)( =KU , then 0)( =∗GKU . 

We shall say that the normal subgroup H of the group G controls the ideal 
I of GK ∗  if ))(( GKHKII ∗∗∩= , i. e. the intersection HKI ∗∩  

generates I  as an ideal of GK ∗ . The main result of [42] is the following 
Theorem 9 [42]. Let GK ∗  be any crossed product over the F -algebra K . 

If F  is a G -invariant subfield of K , then )(FG  controls all ideals of GK ∗ . 
Hence we obtain  
Theorem 10 [42]. Let GK ∗  be a crossed product over the F -algebra K  

and let F  be a G -invariant subfield of K  with 0≥= pcharF . 

(i) If H  is a normal subgroup of the group )(FG  such that HFG )(  is a 
solvable group and all factors of its commutator series have no p -elements when 

0>p , then ))(()( GKHKJGKJ ∗∗⊆∗ ; 

(ii) If )(FG  is a locally nilpotent group without p -elements in the case 

0>p , then ))(()( GKKJGKJ ∗⊆∗ . 

A series of other results for the radicals )( GKJ ∗  and )( GKB ∗  are 
obtained in [18, 44, 45]. 

In [33] K. Kolikov studies the ring-theoretical properties of crossed products 
as idempotents, algebraic elements, subrings, ideals, quotient rings, DCC  on the 
left ideals and Lie nilpotent crossed products. He proves that all Lie nilpotent 
crossed products are twisted group rings. In particular, if the characteristic of the 
field K  is not divisor of the order of every torsion element of G  with finite many 
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conjugate elements, then GK ∗  is Lie nilpotent if and only if 1=σ , G  is abelian 
and the factor set ρ  is symmetric. 

The notions for generalized regular near-rings and associative rings are 
studied in [56]. For example, the ring K  is called Nξ -ring if for every element 

Ka∈  there exists an element Kx∈ , such that axa −2  is a central nilpotent 
element of K . Such classes of rings are introduced in 1957 by Y. Ytumi. Rakhnev 
proves that the group ring KG  over a commutative ring K  with finite 
characteristic is Nξ -ring if and only if G  is a torsion abelian group. In [56] 
Rakhnev has obtained also several interesting results for the generalized regular 
near-rings and associative rings. Thus Rakhnev is the first Bulgarian author, which 
studies the near-rings. 

Nowadays research in the theory of group rings and its generalizations is 
rather intense. Consulting the Zentralblatt MATH, one discovers that practically 
each month several articles are published in this area. Moreover, group rings 
occupy an important place in various international conferences both in group 
theory and ring theory. For more information see http://mat.polsl.pl/groups/ and 
http://www.math.wisc.edu/~passman/program.pdf. 
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