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1. Introduction

Let G be a multiplicative group and IeiK be an associative ring. Denote by

KG the free leftK -module with a basi& . Then every element € KG has the
form

u=zgeeagg (ageK),
where Supp(u)z {g eG ‘ a, # o} is a finite set. The subgrouupp(u)) of

G, generated b)BJpp(u), is said to be support subgroupwé& KG .
Note that the definition ofKG implies that the element and the element

V:zgeeﬁgg ('BQEK)

are equal if and only if o, = f; for all g € G. Moreover,

Uu+v= dee(ag +5,)9
and

au:zgeG(aag)g (aeK).
For arbitrary elements,v e KG can be defined a product

UV:Zg,heGagﬁhgh:ZfeGyff !

7+ :zgh=fag'8h .
Since (ag)(ph) = (ef)gh for all «,f € K andg,he G, the productuv
can be defined by this rule and the distributive. la

It is easily verified that with the above operatoG is a ring, which is
called the group ring of the group over the ringK . If K is commutative, then

where
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KG is algebra oveK , and in this cas&KG is frequently called a group algebra
of G overK.

Another way of looking atkKG is as set of all functionsi:G — K with
almost all values u(g) equal to =zero with pointwize addition

(u + V)(g) = u(g)+ v(g) and convolution
(W)(@) =2, _uthv(f).

If G is a semigroup, theKG is a semigroup ring. In fact, there exist natural
and useful extensions of this concept.

2. A brief history

The concept of the group rings is relatively ol@lisTtheory is a union of two
theories — Theory of group and Theory of rings. §the history of the group rings
is an history of groups and rings.

It is well known that the attention on the permiatas was focused in 1730 by
the work on the algebraic equations of J. L. Lageafl736 - 1813), following in
1799 by P. Ruffini (1765 - 1822) and N. H. Abel @28- 1829) in 1826. In his
classical work in 1830 E. Galois (1811 - 1832) weesfirst to consider groups and
subgroups of permutations, using the term grougsirmodern sense — though
restricted to permutations — and introducing suohcepts as those of normal
subgroup, solvable group etc. Implicitly, exampdégroups are studied also by L.
Euler (1707 - 1783) and K. F. Gauss (1777 — 1855).

A. L. Cauchy (1789 - 1857) was a pioneer in understgnthe relevance of
permutation groups as an independent subject. Hdewa series of interesting
papers about them, in period 1844 -1846. Influermedauchy’s work, in 1854
Arthur Cayley (1821 - 1895) recognized that theiorotof a group could be
formulated in a more abstract setting and gavefitee definition of an abstract
group in [11]. The paper [11] is considered by savauthors as the beginning of
abstract group theory. It contains a number ofortgnt features:

- Gives an abstract definition of a grooprultiplicative notion;

- Introduces the table of an operation;

- Shows that there exist two nonisomorphiougs of order four, giving
explicit examples;

- Shows that there exist two nonisomormrmups of order six, one at them
being commutative and other is isomorphi&fo

- Shows that the order of every elementds/esor of the order of the group.

The study of rings originated from the theory ofypomials. In the 18
century were introduced the complex numbers assaltref the work of Italian
mathematicians while studying equations of thedtidegree. A long controversy
regarding their existence and meaning was raised, they gradually gained
acceptance after a geometrical interpretation visaengoy Caspar Wessel (1745 -
1818), Jean-Robert Argan (1768 - 1822) and K. ruis841777 — 1855). However,
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though better understood, a need for an algebyaiem® in which the square of a
“quantity” would actually be equal to -1 was stdlt.

In 1837 W. R. Hamilton (1805 - 1865) gave the fistnal theory of complex
numbers, defining them as ordered pairs of realbaus) just as is done nowadays,
thus ending almost three hundred years of discussegarding their legitimacy.

Moreover, he came to consider elements of the form
1) o =a+bi+g+dk (a,b,c,deR),
which he called quaternions. It was obvious to k@t such elements should be
added componentwize. The main difficulty was toirtefthe product of two
elements in a reasonable way. Since this produmildhave the usual properties
of a multiplication, such as the distributive latvis would actually be enough to
decide how to multiply the symbols i, j, k amongeriselves. Hamilton also
assumed implicitly that the product should be conative. Finally, in October
1843 he discovered the fundamental laws of theymwtoof quaternions

iZ=j?=k*=ijk=-1.
So Hamilton [24] discovers the first noncommutatalgebraic structure in the
history of mathematics.

The quaternions are studied also by Gauss, bubé® bt publish its results.

Although the theory of determinants began in 1&htary with the works of
G. W. Leibnitz (1646 - 1716) in 1693, C. Maclau¢i698 - 1746) in 1729 and G.
Cramer (1704 - 1752) in 1750 in connection with tagolution of linear systems
of equations, it precedes the explicit formulatidrihe notion matrix with more of
100 years. The notion of matrix first is defined hyJ. Silvester (1814 - 1897) in
1848 and Cayley in 1855 as a convenient notatioexjwess linear systems and
quadratic forms. In a subsequent paper in 1858 egagéfines the addition, the
multiplication by scalars and the product of masicstudying the properties of
these operations without explicit mention of cortreec with hypercomplex
system. After, Sylvester in 1884 and E. Study (186930) in 1889 observe that

the total nx N matrix algebra can be viewed asfhndimensional vector space.
In 1845 Cayley introduced a new set of numberspttienions of the form
a=a,+a6+ae +..+ae (a eR),
where the symbolg (1si < 7) are the basic units. The octonions are known as

Cayley numbers. Hamilton himself realized that &swpossible to extend this
construction even further and he first defined bigmnions, which are elements of
the form (1), where a, b, ¢, d are complex nhumdeosn afterwards he introduced
the hypercomplex systems. These are elements &dritme

a=3a,+ae+ae +..+a.6,
where again the sum is defined componentwise ared rthultiplication is
determined by the distributive law and the formulas

ge =y ol je.

Thus, in fact he introduces the contemporary netion algebras.
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These facts were the first steps in the developmktite ring theory. In 1871
Benjamin Pirce (1809 - 1880) gave a classificabbmlgebras known at the time
and determined 162 algebras of a dimensiof6. As tools of his methods of
classification, B. Pirce introduced some very intaot ideas in ring theory, such as
idempotent and nilpotent elements, and the usedefmpotents to obtain a
decomposition of a given algebra. Impressed bsethesults both Theodor Molien
(1861 — 1941) and E. J. Cartan (1869 — 1951) obtaimdependently, important
results regarding the structure theory of finitsensional real or complex
algebras, introducing in this context the notiohsimple and semisimple algebras
and characterizing the simple algebras as fullimatgebras.

The concept of a ring first arose from attempisptove Fermat's last
theorem, starting with Richard Dedekind (1831 -@)dh the 1880s. The term ring
was coined by David Hilbert (1862 - 1943) in 1892 & specific ring. The first
axiomatic definition of a ring was given by Adolfdenkel (1891 - 1965) in 1914.
In 1921 Emmy Noether (1882 - 1935) gave the fisdbmatic foundation of the
theory of commutative rings.

The concept of group rings appears implicitly ie faper [11] of A. Cayley
in 1854, which is considered as the first workha abstract theory of groups. But
the concept of group rings was explicitly introddde 1892 by T. Molien [46].

In his paper Cayley actually gave the formal cardion of the group ring

CS, and, in essentially, this way we do today. Howewet even the basic notions

of the theory of rings and algebras, were formualaiethis time and this concept
remained in noticed. T. Molien (Fedor Eduardoviclolis) obtained important
results regarding the structure of finite-dimenaloreal and complex algebras,
introducing the notions of simple and semisimpligebtas and characterizing the
simple algebras as complete matrix algebras. labgexjuent paper [47] in 1897
Molien obtained important results relating the esgntability of a given discrete
group in the form of a homogeneous linear substitugroup. In this way, he
discovered some of the basic results in theoryoaigiex representations of finite
groups, including the orthogonality relations foogp characters.

The connection between group representation thaodythe structure theory
of algebras — which is obtained through group algeb- was widely recognized
after the most influential papers of Emmy Noethed &ichard Brauer (1901 -
1977), giving the subject a new impulse. A classid encyclopedic book on the
theory of representation of finite groups and asdive algebras is the book of
Ceartis and Reiner [14].

Let us remember that Graham Higman (1917-2008)siimyated and raised
important questions about units of integral groungs in [26]. Those questions
originated from his investigations of the Whitehetmision in topology. An
important role in this direction has and the pdgeof S. D. Berman.

Later, the subject gained importance of its owaratte inclusion of questions
on group rings in Kaplansky’s famous list of prab&e[28, 29]. Other important
facts to stimulate the area where the paper byohn€ll [12] considering ring-
theoretical questions about group rings, it follothe inclusion of chapters on
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group rings in the books on ring theory by Lamba¥][and Ribenboim [57], as
well as the publication of the first book entirelgvoted to the subject, by Donald
S. Passman [51].

Several new books on the subject have been publishrecent years by A. A.
Bovdi [5, 6, 7], G. Karpilovsky [30, 32], I. B. assi [50], C. Polcino-Milies and
S. K. Sehgal [55], K. W. Roggekamp and M. J. Taj&d], S. K. Sehgal [60, 61].
Passman’s “The algebraic structure of group rinf2] is truly classic and
encyclopedic. For more detail on the history ofugraings and some other
references see [54, 62, 63].

3. Some generalizations of group rings

From here on for the sake of brevity, we shallthesterminology of [1, 34].
Let KG be an arbitrary group ring of a grou@ over a ringK and letH

be a normal subgroup & with a fixed transversal (G/H )= {gi|i el } Then

G = Uiel Hg'
and every element € KG can be represented in the form

u=Y_a09, (g eT(G/H) a<kH ).

v=3,.bg (g eT(G/H) hekH )
is an other element dKG, thenu=V if and only if & =b for all i €| . Thus
KG is a left free KH -module with a basisT(G/H). Since H is a normal
subgroup ofG and
(ag)(b;9;) =a(gb,g)g.9; =ab’ p(g;,9,)9,
where
gb g =b7"eKH, gg9,=p(9.9,)9,€Hg,, kel,
we conclude that the produclv again is an element of thKH -module KG.
Observe that the map(g,):KH — KH is an automorphism ofKH and
p(9;,9;) is an invertible element oKH for all i, j €l . So we receive a new

algebraic structure, which can be defined by tileviong way.
Let G be a group andK a ring with identity. Suppose that are given a

function p:GxG — K"and a mappingo :G — AutK, where K* is the
multiplicative group ofK and AutK is the group of the automorphisms I§f. Let
K+G be a free leftK -module with basisC_-}:{ g|geG } where every

element ge G is a symbol, corresponding t@G. Thus each element
ue K *G is a finite sum of the form
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u= zgeGagg (a4 €K).

Moreover, the equality and the addition Ki*G are defined componentwize.
Assume that

gh=p(g.hgh, Ga=a"@g (g,heG, ackK),
where p(g,h) e K* is an invertible element oK and a°@is the image of

a € Kunder the action of the automorphismr(g) € AutK . Then these
conditions induce a multiplication

Ca,a) X AR)=Y e, BOp(g.gh =Y 7, f eK*G,

yf :zgh=fag ﬁ(g)p(g’h) eK.
When the basi§ = { J|geG } satisfies the conditions

(2) f(gh)=(fo)h, g(ha)=(Gh)ar, ac<K,
with these so defined two operatioKs* G is an associative ring, called crossed
product of a grougs over a ringK with system of factorso and mappingo .

We us also the designatio(&,K, p,o) and K;’G .
It is easy to verify that the conditions (2) are@ieglent with the conditions
p(f,9)p(fg,h) = p(g,h)7 " p(f,gh), @™ = p(g,h)*a" ™ p(g,h).
As a special case, ip(g,h) =1 for allg,h e G, then we get the skew group
ring (G,KLo)=K?G. If o(g)=1 for all ge G, then we have the twisted

where

group ring (G, K, p.1) =K G . In addition, if we haveo(g,h) =1 ando(g) =1
for allg,h e G, then we obtain the group ring§G .

The preceding facts show that every group rik@ can be regarded as a
crossed producKG = KH *G/H , whereH < G, i.e. H is a normal subgroup
of G. So the methods of the crossed products can likingbe theory of group
rings. Moreover, ifH < G, then in [10] is proved thaf * G is a suitable crossed
product of the quotient groupG/H over the subring K*H, i.e.
K*G =(K * H)* G/H . Moreover, if J is a G-invariant ideal of K, i.e.
J°9 =7 for all geG, then J*xG=J(K+*G) is an ideal of K+*G and
(K*G)/(3*G) =(K/J)*G, where(K/J)*G is a crossed product & over
the quotient ringk/J . At first, these methods are used in [10] and.[36]

Classically, crossed products of arbitrary finiteoups over fields were
introduced by E. Noether [49, 64] in 1929 in hattlees in Gottingen. Earlier, the
special case of cyclic algebras was defined by $20k[16, 17] in 1906 and the
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first significant result about them was proved bgdiferburn [65] in 1914. After,
in the early 1940s N. Jacobson introduces crossedupts of finite groups over
division rings. Although he was working over a dien rings, all the essential
ingredients for the general case appear in his §adk However, the crossed
products of general groups and rings are introd@fegears later by A. A. Bovdi
[3, 4]. Namely A. Bovdi at first regards the cra$groducts as a generalization of
the group rings. Now the main results on this areacollected in [31, 53].

Other more large generalization of the group riisghe notion group graded
ring.

Let G be an arbitrary multiplicative group. A ring is said to beG -graded

if there is a family{ Ry ‘ geG } of additive subgroup ofR such that the

additive group ofR is a direct sum

R = deGC—D Rg
and Rth c Rgh for allg,h e G. Moreover, if Rg& = Rgh holds for allg,he G,
then R is said to be strongl{s -graded ring. Here the produ& R, is the usual

module, the product consisting of all finite sunfising productsrr, of elements

r, € R, andr, e R,.

Group-graded rings were introduced by E. C. Dad# i1 1980 as a formal
way to deal with finite group representation profde In addition, group-graded
rings occur naturally certain Galois theory sitoasi and, of course, they are
related to crossed products.

Other generalizations of the crossed products sacakded Hopf algebra;” -
algebras, smash products, partial skew group ripaysial crossed products etc. As
an example we shall define the notion partial sgesup ring.

Let G be a multiplicative group an& be an associative ring with identity.

A partial actiono of G on K is a collection of ideal®, <K (g € G) and ring

isomorphismso(Q) : Dg,1 — D, such that

() D, =K ando (1) is the identity map oK ;
(ii) (Dg,l N D)@ = D, "Dy,

a(ho(g) _ fo(gh)

(iii) a P =a’% forall ae D.n D(gh),l.

Then the partial skew group ring 8 and G is defined to be the projective left
K -module

KgarG = ZQEG@ Dgg !
where the multiplication is defined by the condigo

(a,0)(8,) = (3,"® )" gh .
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It is easy to see, using the conditions (i) —,(tiat (agg)(bhﬁ) € Dgh@ and thus

the multiplication in K, G is well defined. SoK7, G is a ring, which is not

ar ar
always associative.
The notion of a partial action was been introduicetl994 by R. Exel [21] in

the study ofC" -algebras. More details for partial group rings @adtial crossed
products can be seen in [13, 20, 21, 22].

4. Main problems and some results

As was market above, the theory of group rings psaaluct of the theory of
group and the theory of rings. Thus this theoryaisneeting point of various
algebraic theories. It is worthwhile to mentionttiggoup rings are important in
other branches of mathematics, such as homologigabra, algebraic topology
and algebraicK -theory, and that during the last decades sigmifiegplications
have been obtained in the theory of error corrgatimdes which are used in digital
transmissions, allowing the creation of new coddsclv are simultaneously
efficient and reliable. To get an idea about thgarance of group rings in
algebraic research, it is enough to observe seatral great contemporary
algebraists have worked at some point of theirslivie the area, contributing
fundamentally to its development. Among them we p@mntion S. A. Amitsur,
H. Bass, E. Formanek, N. D. Gupta, I. N. Herst@nHigman, A. V. Jategaonkar,
I. Kaplansky, W. May, D. S. Passman, K. W. Roggemka W. Rudin,
S. K. Sehgal, H. J. Zassenhaus etc. Also in th&aaxet Union there was great
interest in the area of group rings which was regméed by such known scientists
as S. D. Berman, A. A. Bovdi, A. E. Zalesskii and A Mikhalev. It is worth
noting that S. D. Berman was one of the great spsts in the representation
theory of groups.

Conditionally, the problems in the theory of grouings and its
generalizations we divide in tree parts: Ring-tlediorproperties, Group-theoretic
properties and Problem of the isomorphism.

In view of the intimate connection with represeiotatheory, it is natural the
guestion when the group rinkG determines the group G. More formally, is it
true that the isomorphisrtKG =~ KH implies thatG =~ H ? A special interest is
the case wherK = Z, the ring of the integers. The first positive fléswn this
conjecture were obtained in 1940 by G. Higman P, for finite abelian groups
and for the Hamiltonian 2-groups. Until now the geon has not been solved
completely, but several deep results have beenneotafor various classes of
groups as: finite metabelien groups, symmetric altdrnating groups, finite
groups which are multiplicative groups of some siffinite nilpotent groups etc. In
the early seventies, H. J. Zassenhaus formulatedugaconjectures about units
and the isomorphism of integral group ring& (see [6, 7, 61, 62].
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Isomorphic crossed products of some torsion fregmg over prime rings are
investigated only in [4, 41, 45]. The self-injedierossed products are studied in
[39].

The multiplicative grougJ (KG) of commutative group rings KG is studied
by G. Higman, S. Berman, W. May, T. Mollov, N. Nagh(see [7, 30]). The group
U (KG) for noncommutative ringkG is studied by several authors (see [61]).

The main problem here is to find necessary andcserfit conditions under which
U (KG) possess certain group-theoretic properties, famgke to be solvable,

nilpotent, torsion, locally finiteFC -group etc. Other problems are connected with
free subgroups df) (KG), dimension subgroups, group identitiedJ{KG), Lie
n-Engel subgroups, atomorphisms I§f5 etc. These results are exposed in [6, 7,
61]. Some results for the multiplicative group abssed productK *G are
received in [45].

The first completely solved ring-theoretic probleare published by lan G.
Connell. In [12] Connell was proved that the grotipg KG satisfies the
descending chain conditiofDCC) on the left ideals if and only iK satisfies

this condition and5 is a finite group. MoreoveKG is without nilpotent ideals if
and only if K is without nilpotent ideals and the order of evéinite normal
subgroup ofG is not zero divisor inK (see [35, 57]). After that, in [37, 66] the
authors independently prove th#tG satisfies theDCC on the principal left
ideals if and only ifK satisfies this condition an@ is a finite group

In the area of the ring-theoretic properties tr@mproblems are connected
with idempotents, zero divisors, ideals, radicgdelynomials identities, Lie
identities, rings of quotients, regularity, chaonditions, modules over group rings
etc. Briefly we may say that all problems in thedty of rings and the theory of
groups are problems in the theory of group ringsthey generalizations. Some of
these problems are as Fermat's Last Theorem, wbkas@ciation are easily
comprehended, but they solution is very difficédor example, by the early 1960s
there had emerged two major and easily comprehgpmbddems, namely:

1) If K has no nontrivial zero divisors it is true th&€ also has no proper

zero divisors for all torsion-free grous?
2) ltis true that the rational group rif@G is semisimple for all group& ?

More systematic information on the problems inttieory of group rings and
the crossed products may be discovered in [63]48i¢ respectively.

Finally, as examples, for an illustration of thedhy, we shall indicate only
some results, which are obtained in University lofiR.

First, we shall recall some definitions.

Let K*G=K?’G be any crossed product & over K. Put
G ={0€Glo(9) €1 (K)}, Gy =lgeGlo(g) e X(K)},
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where | (K) is the group of the inner automorphisms Kf and X (K) is the
group of the X -inner automorphisms oK (see [51]). It is known tha&

G
be G -invariant if @ € S forall s€ S andg € G. It is easy to verify that
G(9)={geG

is a normal subgroup db .

In [59] Rudin and Schneider formulated the hypaghdbat every central
idempotente= e’ of an arbitrary group ringKG has a finite support subgroup
(Supp(e)) . First this hypothesis is proved in [8, 9, 10]r K6 -graded rings the

notion support subgroup is defined as for the gmings.
So in [40] are proved the following theorems.

Theorem 1[40]. If R is a semiprime stronghyG -graded ring, then the
support subgroup of every central algebraic elen®dnfR is a finite normal
subgroup ofG .

Theorem 2[40]. If R is a stronglyG -graded ring, then the support subgroup
of every central idempotent d&® is a finite normal subgroup @b .

Theorem 3 [40]. All idempotents of a stronglys -graded ring have finite
support subgroups if and only if they are centrals is a locally finite group.

From these theorems the main results of [8, 9fdl@jw.

There exists an hypothesis [8] that the group @ over commutative
domain K contains non trivial idempotents if and only ifettorder of some
elementg € G is invertible in K. For finite groups this problem is solved by
Colleman (see [60]) and for locally nilpotent grsupt is solved in [8].
E. Formanek [23] shoved that the hypothesis hagtiymssolution and for
Noetherian groups. For twisted group rings of éngroups over commutative
domain the problem also has a positive solutioh. [BGt the general case is open.

The finite support subgroups of the central iderepts are used for a
characterization of the biregular group rings. Hetbat the ringK is said to be
biregular [1], if every principal two-sided ideaf KK is generated by central
idempotent. Therefore, every simple associativg Knis biregular.

In [38] is proved the following

Theorem 4[38]. If K is a commutative ring, then the group rikds is
biregular if and only ifG and K satisfy the following condition:

(*) G islocally finite, K is biregular and the order of every elemerg € G
is an invertible element dk .

For crossed products the condition (*) is not nsass So in [43] are funded
conditions under whichK *G is a simple ring, wherds can be an arbitrary
group. Obviously, such crossed products are biegghlamely, we have

and

ker

are normal subgroups & . Moreover, a subrindg of the ring K is said to

inn

s°@ =5 for all se S}
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Theorem 5[43]. If K has noG -invariant ideals, therK *G is simple if
and only if K *G, . has noG -invariant ideals.

Nevertheless, we have the following

Theorem 6 [38]. Assume thatK satisfies the ACC, or DCC on the
principal two-sided ideals. 16 and K satisfy the condition (*), then every crossed
productK * G s biregular.

Denote byP(K), L(K), U(K), J(K) and B(K), respectively, the lower
nil radical, the locally nilpotent radical, the wgwmil radical, the radical of
Jacobson and the radical of Braun-McCoy of an aatee ring K [1]. Then

P(K) c L(K) = U(K) = J(K) = B(K).
In [19] are proved the following main theorems.
Theorem 7[19]. If KpG is a twisted group ring of the group over the

ring K and the order of every torsion element(@fis not a zero divisor irK ,
then

P(K),G cU(KpG) cU(K)pG.

Theorem 8[19]. Let K *G be a crossed product of a gro over a prime
ring K of characteristicp > 0. If the subgroupG_, has no p-elements when
p>0 andU(K)=0, thenU(K*G)=0.

We shall say that the normal subgrotbof the groupG controls the ideal
lof KxG if I=(InK=*H)(K*G), i. e. the intersectionl "K*H
generated as an ideal oK *G. The main result of [42] is the following

Theorem 9[42]. Let K*G be any crossed product over the-algebraK .
If F is aG -invariant subfield ofK , thenG(F) controls all ideals oK *G .

Hence we obtain
Theorem 10[42]. Let K*G be a crossed product over tlie-algebra K
and letF be aG -invariant subfield ofK with charF = p>0.

(i) If H is a normal subgroup of the gro@(F) such thatG(F)/H is a
solvable group and all factors of its commutataresehave nop -elements when
p>0,thenJ(K*G)c J(K*H)(K*G);

(i) If G(F) is a locally nilpotent group withoup -elements in the case
p>0,thenJ(K*G) c J(K)(K*G).

A series of other results for the radicalfK *G) and B(K *G) are

obtained in [18, 44, 45].

In [33] K. Kolikov studies the ring-theoretical grerties of crossed products
as idempotents, algebraic elements, subrings,sdgabtient ringsDCC on the
left ideals and Lie nilpotent crossed products. pleves that all Lie nilpotent
crossed products are twisted group rings. In paeic if the characteristic of the
field K is not divisor of the order of every torsion elemef G with finite many

inn
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conjugate elements, thef =G is Lie nilpotent if and only ifoc =1, G is abelian
and the factor sep is symmetric.

The notions for generalized regular near-rings asdociative rings are
studied in [56]. For example, the rinl§ is called &N -ring if for every element

ac K there exists an elemente K, such thata’x—a is a central nilpotent
element ofK . Such classes of rings are introduced in 1957 bytdMmi. Rakhnev
proves that the group ringKG over a commutative ringK with finite
characteristic iséN -ring if and only if G is a torsion abelian group. In [56]

Rakhnev has obtained also several interesting teeful the generalized regular
near-rings and associative rings. Thus Rakhneweiditst Bulgarian author, which
studies the near-rings.

Nowadays research in the theory of group rings iémdyeneralizations is
rather intense. Consulting the Zentralblatt MATHheodiscovers that practically
each month several articles are published in thém.aMoreover, group rings
occupy an important place in various internationahferences both in group
theory and ring theory. For more information $ep://mat.polsl.pl/groupsand
http://www.math.wisc.edu/~passman/program.pdf
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