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Abstract

We give a procedure to reduce a hypersingular integral equation, arising
in 2d diffraction problems on cracks in elastic media, to a Fredholm integral
equation of the second kind, to which it is easier and more effectively to
apply numerical methods than to the initial hypersingular equation.
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1. Introduction

A static 2d problem for a crack in elastic media ([6]) in a scalar approx-
imation is described by the following hypersingular integral equation of the
potential theory
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Inly — xfu(y)dty = f(x). x €. (1)

where ny, ny, mean normal vectors at the points x,y of the curve ¢, f(x) €
C*°(¢) and the crack contour ¢ is assumed to be a smooth curve. It may be
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open or closed. For definiteness we suppose that it is open. Let (a,c) and
(b,d) be its end-points. In applications there exist various approximative
approaches applied directly to such equations, see for instance [3]. The goal
of this note is to give a direct closed form reduction of equation (1) to a
Fredholm integral equation of the 2nd kind on an interval of the real axis,
via the well known procedure of determining bounded solutions of singu-
lar integral equations with Cauchy kernel. An application of this or other
numerical method to the obtained Fredholm integral equation is already a
well studied matter.

We do not dwell on details related to the proper interpretation of the
divergent hypersingular integrals, this follows the standard ideas based ei-
ther on the Hadamard finite part or treating the hypersingular integral as a
result of application of a differential operator to the corresponding integral
operator, both ways coinciding in the case under the consideration, we refer
to [5] for details.

2. Notation and preliminaries
In the sequel we denote

x=(z,y), y=(s1), r=y—-x=(s—azt-y), r=]rf

We have o) 1 ( )
nr r-n
Bny 7 oo my) =
and then after easy calculations we obtain
9*(Inr) (ng - ny) + 2cos(r*ny) cos(r’ny)

= - . 2)

OnxOny r2

Therefore, the initial equation (1) takes the form

/(nx -ny) + 2 cos(r’*ny) cos(r ng)
2
,

u(y)dly = —f(x). 3)

L
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3. Reduction of (1) to a Fredholm integral equation

Let y = ¢(x) be the equation of the crack curve ¢ in cartesian coordi-
nates.

3.1. Reduction of (1) to a Fredholm integral equation

Since ny = (¢'(s),—1), we have

1
1+¢'2(s)

(s —2)¢'(s) = (t —y)
14 ¢"(s)

I"ny: 3

and after easy calculations we obtain

cos(r’*‘ny) = r-ny _ sign(s — z) _ ©'(s) — Az, s)
VT T T %(s) VI A%(a,s)

where
Az, s) = M

Similar calculations give

cos(r'ny) = sign(s —z) ¢'(z) — Az, s)
VT VT R@) VIt Azs)

Therefore,

[¢/(@) = Alw )lg/(s) = A9
[+ A%z, )] T+ 2T+ 725)

Note that from (4) it is seen that | cos(r"ny) cos(rny)| < Cr? < Cy(z —s)?
so that the kernel

cos(r’ ny) cos(r"*ny) =

(ng - ny) + 2 cos(r’*ny) cos(r’ ng)

2
_ (ng - ny) N 2cos(r/\ny) cos(r’*ng)
-2 2

has singularity only in the first term. We substitute into (3), take into

account that r = |x — s|y/1 + A?(z, s) and obtain

b
| Sty = fo) o)
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where

(1+¢'(@)¢'(s))(L + A%(x, 5)) + 2[¢' () — A, 5)][¢'(s) — A(x, 5)]

Bz,s) = (L+ A%(2,9) /I + 2@ VI + 92(5)

and for brevity we write
u(s) = ufs,(s)] and  f(s) = fls,(s)].

Note that B(z,z) = Wlﬂ(x)'

3.2. Reduction to a singular integral equation

We rewrite (5) as

/b [(93—13)2 + C(z,s)| u(s)ds = g(x), (6)
where g(z) = — f(2)(1 + ¢"*(2)) and
Cla.s) = Bl(im,_si); 1
is a regular kernel with
B = 5

_ (14 (@)@ () (1 + AP (x, 5)) + 2[¢ () — A(z, 5)][¢'(5) — A(w, 5)]

(14 A%(x,s))?
L V1t eP()
T+¢2%(s)
and Bj(z,x) = 1. Expanding Bj(x, s) by Taylor formula with respect to the
variable s, it is not difficult to show that |By(z,s) — 1| < C(z — 5)? in the
case where B(z, s) is differentiable up to order 3. Then C(z, s) is a bounded
function.

Equation (6) is nothing else but

di;/b Lim + D(z,5)| u(s)ds = g(), (™)
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where D(x, s) is a primitive of the kernel C(z, s) with respect to the variable
x. We may take it, for instance, in the form

D(z,s) = /mC'(xi,s) dxi.

From (6) we have

b
/ :(_SL ds + Ku(z) = G(z) + C, (8)

where G(x) = [ ¢(t) dt and

Q—y

b
Ku(z) = / D(x, t)u(t) dt
a
is an integral operator with a ”good” kernel D(z,t). The constant C' will
be determined from the condition that we look for bounded solutions u(t).

3.3. Reduction to the Fredholm equation
Let

b
Su(z) = 1/ u(t) dt

s t—x
a

be the well known singular integral operator. It is well known ([1], [4]), that
the equation

Su(x) = f(x)
has a unique solution in the class of bounded functions if and only if the
right-hand side f(z) satisfies the condition

b

fyd
) Ji—ab—1)

and under this condition the unique solution is

JE—ab-q) | F(b)dt
v J (t—a)(b—1t)(t —2x)

0

=:87 f(z).  (9)

u(r) =
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Therefore, inverting the singular operator in (8), we arrive at
u(z) + ST Ku(z) = S7'G(z) + S71(O) (10)
under the condition that

bG()+C Kult)

V(t—a)b—1)

The latter condition provides the value of C' (expressed in terms of the
solution u(t)):

b
11 Ku(t) — G(t)
¢ B(z 2) DD

from where

C= dt —

b b
/ s)ds /m Wa/g@)dss/m_ﬁm'

(11)
The integral f \/7 is calculated in terms of the Gauss hyperge-

ometric function F(a b;c; z):

Jotn ] s

1.3
=22F (=,1,5, =22
z<27727 z)?

where z = |/2=2. Making use of formula (9.121.27) from [2], we obtain
/ b
/ = 2arctyg — S.
(t—a)(b—1t) s—a
We denote
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for brevity. Then (11) takes the form

b
b —
C = /E ds——/ arctg i g(s) ds.
s—a

Remark. We calculated the value of the constant C', but in reality
we do not need it, because S~!(C) = 0 for an arbitrary constant, since
S~1(1) = 0, which follows from the known formulas. So we may just forget
about S~1(C) in (10):

u(z) + ST Ku(x) = S71G. (12)

However, we must understand that the solution u(z) of the last equation
will satisfy the ”initial” equation (8) not with C' = 0, but just with the
value C determined above.

Equation (12) is Fredholm integral equation. It has the form

b

M@—/K@ﬁﬁﬂﬁ:F@% (13)

a

where

K(z,t) = V(i —a)( —17/

/C
A/ S—a —8 S—:L‘

and

where

b
T /m(s—@'
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