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Abstract

The paper deals with an analog of Tricomi boundary value problem
for a partial differential equation of mixed type involving a diffusion equa-
tion with the Riemann-Liouville partial fractional derivative and a hyper-
bolic equation with two degenerate lines. By using the properties of the
Gauss hypergeometric function and of the generalized fractional integrals
and derivatives with such a function in the kernel, the uniqueness and ex-
istence of a solution of the considered problem are proved, and its explicit
solution is established in terms of the new special function.

Mathematics Subject Classification 2010 : 35M10, 35R11, 26A33, 33C05,
33E12, 33C20

Key Words and Phrases: partial differential equation of mixed type,
fractional integrals and derivatives, Gauss hypergeometric function, Mittag-
Leffler functions, generalized hypergeometric series

1. Introduction

The fractional calculus is widely applied to investigation of partial dif-
ferential equations of mixed type and hyperbolic type with generations;
see [13], [16] and [18, Sections 41-42]. A series of papers [1], [3], [6], [7],
[8] were devoted to study of various modifications of parabolic-hyperbolic
equations in which hyperbolic equation has a generate line and an equation
of parabolic type is replaced by the equation

c© 2010, FCAA. All rights reserved.
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uxx −Dα
0+, yu = 0 (y > 0; 0 < α < 1). (1.1)

Here Dα
0+, y is the partial Riemann-Liouville fractional derivative of order α

of a function u(x, y) with respect to the second variable [18, Section 24.1]:

(
Dα

0+,yu
)
(x, y) =

∂

∂y

1
Γ(1− α)

y∫

0

u(x, t)
(y − t)α

dt (0 < α < 1, y > 0). (1.2)

Our article deals with the mixed type equation involving equation (1.1)
and a hyperbolic equation of the second kind having two generate lines:

xuxx + yuyy + pux + quy = 0
(

y < 0; 0 < p <
1
2
, q <

1
2
, q ≤ p

)
. (1.3)

We consider equation (1.1) in the quadrate domain D+ = {(x, y) : 0 <
x < 1, 0 < y < 1}, and equation (1.3) in the domain D− lying in the lower
half-plane y < 0 and bounded by the characteristics AC : x + y = 0 and
BC :

√
x+

√−y = 1 of equation (1.3) and by the segment (0, 1) of the line
y = 0, with A(0, 0), B(1, 0) and C

(
1
4 ,−1

4

)
. Let D be the union of D+, the

segment J = (0, 1) and D−: D = D+
⋃

J
⋃

D−.
For equations (1.1) and (1.3) we study the following boundary value

problem being an analog of the Tricomi problem: find a solution u(x, y) of
equations (1.1) and (1.3) satisfying the boundary conditions

u(0, y) = ϕ0(y), u(1, y) = ϕ1(y) (0 < y < 1), (1.4)

u|AC = 0
(

0 ≤ x ≤ 1
4

)
, (1.5)

and the transmission conditions

lim
y→0+

y1−αu(x, y) = lim
y→0−

u(x, y) (0 ≤ x ≤ 1), (1.6)

lim
y→0+

y1−α
(
y1−αu(x, y)

)
y

= − lim
y→0−

(−y)quy(x, y) (0 < x < 1). (1.7)

Here ϕ0(y) and ϕ1(y) are given functions such that

y1−αϕ0(y), y1−αϕ1(y) ∈ C([0, 1]), ϕ0(0) = ϕ1(0) = 0. (1.8)

We shall seek a solution u(x, y) of the above problem in the space of
two times differentiable functions u(x, y) on the domain D such that

y1−αu(x, y) ∈ C(D+), u(x, y) ∈ C(D−), uxx ∈ C(D+ ∪D−),
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uyy ∈ C(D−), y1−α
(
y1−αu

)
y
∈ C

(
D+ ∪ {(x, y) : 0 < x < 1, y = 0}) .

(1.9)
For solving the above problem we need the following generalized frac-

tional integro-differential operators with the Gauss hypergeometric function
F (a, b; c; z), defined for real α, β, η and x > 0 by

(
Iα,β,η
0+ f

)
(x)=





x−α−β

Γ(α)

x∫
0

(x− t)α−1F
(
α + β,−η; α; 1− t

x

)
f(t)dt (α > 0),

(
d
dx

)n
(
Iα+n,β−n,η−n
0+ f

)
(x) (α ≤ 0, n = [−α] + 1);

(1.10)
in particular, (

I0,0,η
0+ f

)
(x) = f(x). (1.11)

The operators in (1.10) were introduced in [17] (see also [18, Section
23.2, 18.1]). If α > 0, then

(
Iα,−α,η
0+ f

)
(x) =

(
Iα
0+f

)
(x),

(
I−α,α,η
0+ f

)
(x) =

(
Dα

0+f
)
(x), (1.12)

where Iα
0+ and Dα

0+ are the operators of the Riemann-Liouville fractional
integration and differentiation of order α > 0 [18, Section 2.3]:

(
Iα
0+f

)
(x) =

1
Γ(α)

x∫

0

(x− t)α−1f(t)dt (α > 0, x > 0), (1.13)

(
Dα

0+g
)
(x) =

(
d

dx

)n 1
Γ(n− α)

x∫

0

(x− t)n−α−1g(t)dt (α > 0, n = [α] + 1),

(1.14)
and [α] means the integral part of α.

2. Uniqueness of the solution

Suppose that the above original problem has the solution. We introduce
the notation

lim
y→0+

y1−αu(x, y) = τ1(x), lim
y→0−

u(x, y) = τ2(x), (2.1)

lim
y→0+

y1−α
(
y1−αu(x, y)

)
y

= ν1(x), lim
y→0−

(−y)quy(x, y) = ν2(x). (2.2)
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It is known [15, Section 4.2.1] that the solution of equation (1.1) in the
domain D+, satisfying conditions in (1.4) and the condition

lim
y→0+

y1−αu(x, y) = τ1(x) (0 ≤ x ≤ 1) (2.3)

is given by the formula

u(x, y) =
∫ y

0
Gt(x, y; 1, s)ϕ0(s)ds

−
∫ y

0
Gt(x, y; 1, s)ϕ1(s)ds + Γ(α)

∫ 1

0
G(x, y; t, 0)τ1(t)dt, (2.4)

where

G(x, y; t, s) =
(y − s)β−1

2

×
∞∑

n=−∞

[
e1,β
1,β

(
−|x− t + 2n|

(y − s)β

)
− e1,β

1,β

(
−|x + t + 2n|

(y − s)β

)]
, β =

α

2
, (2.5)

e1,β
1,β(z) =

∞∑

k=0

zk

k!Γ(β − βk)
(β < 1).

Remark 1. Function e1,β
1,β(z) can be expressed in terms of the Wright

function ϕ(γ, δ; z) defined for γ > 0 and complex δ ∈ C by [5, 18.1(27)]

ϕ(γ, δ; z) =
∞∑

k=0

zk

k!Γ(γk + δ)
,

namely
e1,β
1,β(z) = ϕ(−β, β; z).

Note that for γ > −1, ϕ(γ, δ; z) is an entire function of z ∈ C; see [11,
Section 1.11].

It is also known (for example, see [6], [7]) that the functional relation
between τ1(x) and ν1(x) transferred from the parabolic part D+ to the line
y = 0 has the form

ν1(x) =
1

Γ(1 + α)
τ ′′1 (x). (2.6)

Let us find the relation between τ2(x) and ν2(x) transferred from the
hyperbolic part D− to the line y = 0.

The solution of the second Darboux problem for equation (1.3) in the
hyperbolic part D− with the data
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u|AC = 0
(

0 ≤ x ≤ 1
4

)
, lim

y→0−
(−y)quy(x, y) = ν2(x) (0 < x < 1) (2.7)

is given by the formula (see [12])

u(x, y) = γ(η + ξ)
1
2
−p

ξ∫

0

ν̃2(t)tp−
1
2 F

(
p− 1

2 , 3
2 − p; 3

2 − q; σ
)

[(ξ − t)(η − t)]q−
1
2

dt. (2.8)

Here
ξ =

√
x−√−y, η =

√
x +

√−y, ν̃2(t) = ν2(t2), (2.9)

σ =
(t− ξ)(η − t)

2t(ξ + η)
, γ =

22q+p− 1
2 Γ

(
q + 1

2

)

Γ(2q)Γ
(

3
2 − q

) . (2.10)

By using the relation [4, 2.11(25)]

F (a, 1− a; c; −z) = (1 + z)c−1(
√

1 + z +
√

z)2−2a−2c

×F

[
c + a− 1, c− 1

2
; 2c− 1; 4

√
z(1 + z)(

√
1 + z +

√
z)−2

]

with a = p− 1
2 , b = 3

2 − p, c = 3
2 − q and z = −σ and setting η = ξ, we have

F

(
p− 1

2
,

3
2
− p;

3
2
− q; σ

)

=
[
(ξ + t)2

4tξ

] 1
2
−q (

ξ

t

)q−p

F

(
p− q, 1− q; 2− 2q;

ξ2 − t2

ξ2

)
. (2.11)

Setting η = ξ in (2.8) and using (2.9)-(2.11), we find

u(x, 0) ≡ u(ξ2, ξ2)

=γ22q−p−1/2ξ2q−2p

∫ ξ

0
ν̃2(t)t2p−1(ξ2−t2)1−2qF

(
p−q, 1−q; 2−2q;

ξ2−t2

ξ2

)
dt

=γ22q−p−1/2xq−p

∫ √
x

0
ν2

(
t2

)
t2p−1

(
x−t2

)1−2q
F

(
p−q, 1−q; 2−2q; 1− t2

x

)
dt.

Making the change s = t2, we obtain

u(x, 0)=γ22q−p−3/2xq−p

∫ x

0
(x−s)1−2qF

(
p−q, 1−q; 2−2q; 1− s

x

)
sp−1ν2(s)ds,
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which according to (1.10) with α = 2− 2q > 0, β = p + q− 2 and η = q− 1
yields

u(x, 0) = γ22q−p−3/2Γ(2− 2q)
(
I2−2q,p+q−2,q−1
0+ tp−1ν2(t)

)
(x). (2.12)

Using the Gauss-Legendre duplication formula for the gamma function
[4, 1.2(15)]

Γ(2z) =
22z−1

√
π

Γ(z)Γ
(

z +
1
2

)
,

and taking into account the meaning of γ in (2.10) we have

γ22q−p−3/2Γ(2− 2q) =
Γ(1− q)

Γ(q)
≡ k1. (2.13)

By (2.1) u(x, 0) = τ2(x), and thus, in accordance with (2.13), equation
(2.12) take the form

τ2(x) = k1

(
I2−2q,p+q−2,q−1
0+ ν2(t)tp−1

)
(x). (2.14)

By applying the equality [4, 2.9(2)]

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z), (2.15)

it is directly verified the formula
(
Iα,β,η
0+ tβ−ηϕ

)
(x) =

(
Iα,η,β
0+ ϕ

)
(x) (α > 0).

By this relation, (2.14) can be represented as

τ2(x) = k1

(
I2−2q,q−1,p+q−2
0+ ν2(t)

)
(x). (2.16)

Differentiating both sides of (2.16) with respect to x, we have

τ ′2(x) = k1
d

dx

(
I2−2q,q−1,p+q−2
0+ ν2(t)

)
(x),

or, according to (1.10) with α = 1− 2q < 0, β = q and η = p + q − 2,

τ ′2(x) = k1

(
I1−2q,q,p+q−1
0+ ν2(t)

)
(x).

Applying operator I2q−1,−q, p−q
0+ to both sides of this relation, on the basis

of the formula [18, Section 23.2, 18.2]
(
Iα,β,η
0+

(
Iγ,δ,α+η
0+ ϕ

)
(t)

)
(x) =

(
Iα+γ,β+δ,η
0+ ϕ

)
(x) (γ > 0) (2.17)
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and (1.10), we have

k1ν2(x) =
(
I2q−1,−q,p−q
0+ τ ′2(t)

)
(x) =

d

dx

(
I2q,−q−1,p−q−1
0+ τ ′2(t)

)
(x)

=
d

dx

x1−q

Γ(2q)

x∫

0

(x− t)2q−1F

(
1 + q − p, q − 1; 2q; 1− t

x

)
τ ′2(t)dt. (2.18)

By using the relation [4, 2.9(4)]

F (a, b; c; z) = (1− z)−bF

(
c− a, b; c;

z

z − 1

)
, (2.19)

we have

F

(
1 + q − p, q − 1; 2q; 1− t

x

)
=

(
t

x

)1−q

F

(
q + p− 1, q − 1; 2q;

t− x

t

)
.

Therefore equation (2.18) can be rewritten in the form

k1ν2(x)

=
1

Γ(2q)
lim
ε→0

d

dx

x−ε∫

0

(x− t)2q−1F

(
q + p− 1, q − 1; 2q;

t− x

t

)
t1−qτ ′2(t)dt.

(2.20)
There holds the following preliminary assertion.

Lemma 1. If a function τ2(x) has a positive maximum (respectively a
negative minimum) at the point x = ξ ∈ (0, 1), then ν2(ξ) < 0 (respectively
ν2(ξ) > 0).

P r o o f. Following A.V. Bitsadze, chose an arbitrary point x0 such that
0 < x0 < x, and represent the integral in (2.20) as a sum of two integrals:

d

dx

x−ε∫

0

(x− t)2q−1F

(
q + p− 1, q − 1; 2q;

t− x

t

)
t1−qτ ′2(t)dt

=
d

dx




x0∫

0

(x− t)2q−1F

(
q + p− 1, q − 1; 2q;

t− x

t

)
t1−qτ ′2(t)dt+

+

x−ε∫

x0

(x− t)2q−1F

(
q + p− 1, q − 1; 2q;

t− x

t

)
t1−qτ ′2(t)dt


 .
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Taking a differentiation with respect to x and using the formula [4, 11.2.8(22)]

d

dz

[
zc−1F (a, b; c; z)

]
= (c− 1)zc−2F (a, b; c− 1; z),

we have

d

dx

x−ε∫

0

(x− t)2q−1F

(
q + p− 1, q − 1; 2q;

t− x

t

)
t1−qτ ′2(t)dt

= −(2q − 1)

x0∫

0

(x− t)2q−2F

(
q + p− 1, q − 1; 2q − 1;

t− x

t

)
t−qτ ′2(t)dt

+ε2q−1(x− ε)1−qτ ′2(x− ε)F
(

q + p− 1, q − 1; 2q;
ε

ε− x

)

−(2q − 1)
∫ x−ε

x0

(x− t)2q−2F

(
q + p− 1, q − 1; 2q − 1;

t− x

t

)
t−qτ ′2(t)dt

≡ I1 + I2 + I3. (2.21)

We transform I1 and I3. By integrating by parts and applying (2.19),
we have

I1 = (2q − 1)
∫ x0

0
(x− t)2q−2F

(
q + p− 1, q − 1; 2q − 1;

t− x

t

)
t1−qτ ′2(t)dt

=
(2q − 1)Γ(2q − 1)Γ(p)

Γ(p + q − 1)Γ(q)
xq−1τ2(x) + (2q − 1)[τ2(x0)− τ2(x)]

×(x− x0)2q−2x1−q
0 F

(
q + p− 1, q − 1; 2q − 1;

x0 − x

x0

)

−(2q − 1)(2q − 2)

x0∫

0

τ2(x)− τ2(t)
(x− t)3−2q

F

(
p + q − 2, q − 1; 2q − 2;

t− x

t

)
t1−qdt,

(2.22)
and

I3 = (1− 2q)
∫ x−ε

x0

τ ′2(x)− τ ′2(t)
(x− t)2−2q

t1−qF

(
q + p− 1, q − 1; 2q − 1;

t− x

t

)
dt

+τ ′2(x)x1−q
0 (x− x0)2q−1F

(
p + q, 1 + q; 2q;

x0 − x

x0

)
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− τ ′2(x− ε)(x− ε)1−qε2q−1F

(
p + q, 1 + q; 2q;

ε

ε− x

)
. (2.23)

Substitute (2.22) and (2.23) into (2.21) and take a limit as ε → 0, then
put x = ξ and make a limit as x0 → ξ, from (2.20) we deduce the function
ν2(x) at the point x = ξ in the form

ν2(ξ) =
1
k1

(
I2q−1,−q, p−q
0+ τ ′2(t)

)
(ξ) =

2q − 1
k1Γ(2q)

[
Γ(2q − 1)Γ(p)

Γ(p + q − 1)Γ(q)
ξq−1τ2(ξ)

− (2q − 2)
∫ ξ

0

τ2(ξ)− τ2(t)
(ξ − t)3−2q

F

(
p + q − 2, q − 1; 2q − 2;

t− ξ

t

)
t1−qdt

]
.

(2.24)
This relation, in accordance with (2.15) and the formula [4.2.11(29)]

F (a, b; 2b; z) = (1− z)b−a
(
1− z

2

)a−2b
F

(
b− a

2
, b+

1
2
− a

2
; b+

1
2
;

z2

(2−z)2

)
,

can be represented in the form

ν2(ξ) =
(2q − 1)
k1Γ(2q)

[
Γ(2q − 1)Γ(p)

Γ(p + q − 1)Γ(q)
ξq−1τ2(ξ)

− (2q − 2)

ξ∫

0

τ2(ξ)− τ2(t)
(ξ − t)3−2q

(
t + ξ

2

)2−p−q

tp−1

×F

(
p + q − 1

2
,
p + q − 2

2
; q − 1

2
;
(t− ξ)2

(t + ξ)2

)
dt

]
. (2.25)

Consider the function

g(t) = F

(
p + q − 1

2
,
p + q − 2

2
; q − 1

2
;
(t− ξ)2

(t + ξ)2

)

for t ∈ [0, ξ] (0 < ξ < 1, q ≤ p). Since (ξ−t)2

(ξ+t)2
≤ 1, then g(t) is absolutely

convergent series, and g(t) is continuous for t ∈ [0, ξ]. By [4, 2.1(14)],

g(0) = F

(
p + q − 1

2
,
p + q − 2

2
; q − 1

2
; 1

)
=

Γ
(
q − 1

2

)
Γ(1− p)

Γ
( q−p

2

)
Γ

(
1+q−p

2

) = M ≥ 0,

and g(ξ) = 1.
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Investigating the behavior of g(t) on (0, ξ). Using the differentiation
formula for the Gauss hypergeometric function [4, 2.1(14)]
(

d

dz

)m

F (a, b; c; z) =
(a)m(b)m

(c)m
F (a + m, b + m; c + m; z) (m = 0, 1, 2, · · ·),

where (a)k (a ∈ C, k = 0, 1, 2, · · ·) is the Pochhammer symbol:

(a)0 = 1, (a)m = a(a + 1) · · · (a + m− 1) (m = 1, 2, · · ·), (2.26)

we have

g′(t) =
2(p+q−1)(2−p−q)

2q−1
ξ(ξ−t)
(t+ξ)3

F

(
p+q+1

2
,
p+q

2
; q+

1
2
;
(

t−ξ

t+ξ

)2
)

.

It follows from here that g′(t) > 0 for t ∈ (0, ξ), and thus g(t) is continuous
on [0, ξ] and monotonically increase from M ≥ 0 to the unite. Hence g(t) ≥ 0
for t ∈ [0, ξ].

It follows from (2.25) that ν2(ξ) < 0, and the first statement of lemma is
proved. Similarly the proof in the case when τ2(x) has an negative minimum
at x = ξ. This completes the proof of the lemma.

Lemma 2. If τ1(x) has a positive maximum (respectively negative min-
imum) at the point x = ξ ∈ (0, 1), then ν1(ξ) ≤ 0 (respectively ν1(ξ) ≥ 0).

P r o o f. Lemma 2 follow from relation (2.6).

Using Lemmas 1 and 2, applying the extreme principal for nonlocal
parabolic equation [14] and take transmission conditions (1.7) into account,
we deduce the following statement.

Theorem 1. If there exists a solution u(x, y) of the analog of the
Tricomi problem for equations (1.1) and (1.3) with boundary conditions
(1.4)-(1.5) and transmission conditions (1.6)-(1.7) in the space defined in
(1.8) and (1.9), then this solution u(x, y) is unique.

3. Existence of the solution

We prove the existence of a solution of the original problem for equations
(1.1) and (1.3) in the case p = q. By the first formula in (1.10) equation
(2.14) takes the form

τ2(x) = k1

(
I2−2q,2q−2,q−1
0+ ν2(t)tq−1

)
(x),
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or, according to the first formula in (1.12),

τ2(x) = k1

(
I2−2q
0+ ν2(t)tq−1

)
(x), (3.1)

where I2−2q
0+ is the Riemann-Liouville operator (1.13) and k1 is given by

(2.13). By differentiating both sides of (3.1) twice with respect to x and
using (1.14), we have

τ ′′2 (x) = k1

(
D2q

0+ν2(t)tq−1
)

(x). (3.2)

Let τ1(x) = τ2(x) = τ(x) and ν2(t)tq−1 = ν(t). Then, on the basis of
(1.7) and (2.2), ν1(t) = −t1−qν(t). Thus, taking (2.6) into account, (3.2)
lead to the differential equation of fractional order 2q (0 < 2q < 1)

D2q
0+ν(t) = λt1−qν(t), λ = − Γ(1 + α)

k1
. (3.3)

It was proved in [10] (see also [11, Section 2.4.3]) that the explicit solu-
tion of the homogeneous differential equation of fractional order

Dα
0+y(x) = λxβy(x) (0 < α < 1, β > −α; λ 6= 0, β ∈ R) (3.4)

is given by
y(x) = xα−1E

α,1+ β
α

,1+
(β−1)

α

(
λxα+β

)
. (3.5)

Here Eα,m,l(z) is a special function of the form

Eα,m,l(z) =
∞∑

n=0

cnzn, (3.6)

c0 = 1, cn =
n−1∏

i=0

Γ [α(im + l) + 1]
Γ [α(im + l + 1) + 1]

(n = 1, 2, · · ·), (3.7)

with

α > 0, m > 0, l ∈ R; α(jm + l) 6= 0,−1,−2, · · · (j = 0, 1, 2 · · ·). (3.8)

This function was introduced in [9]. Eα,m,l(z) with α > 0 is an entire
function of z of order 1/α and type m; for example, see [11, Section 1.9]. In
particular, if m = 1, the condition in (3.8) takes the form

α > 0, l ∈ R; α(j + l) 6= 0,−1,−2, · · · ,
and (3.6) is reduced to the classical Mittag-Leffler function [2], [5, Sect.18.1]
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Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β)
(α > 0, β ∈ R), (3.9)

apart from a constant multiplier Γ(αl + 1):

Eα,1,l(z) = Γ(αl + 1) Eα,αl+1(z). (3.10)

Equation (3.3) is the equation (3.4) with

y(x) = ν(x), α = 2q, λ = −Γ(1 + α)
k1

and β = 1− q.

Therefore, by (3.5) its explicit solution is given by

ν(x) = x2q−1E2q, 1+q
2q

, 1
2

(
λx1+q

)
. (3.11)

By substituting (3.11) into (3.1) with τ2(t) = τ1(t) and ν2(t) = t1−qν(t),
we deduce the explicit expression for τ1(x):

τ1(x) = k1

(
I2−2q
0+ t2q−1E2q, 1+q

2q
, 1
2

(
λt1+q

))
(x). (3.12)

Lemma 3. If 0 < q < 1, then there holds

(
I2−2q
0+ t2q−1E2q, 1+q

2q
, 1
2

(
λt1+q

))
(x) = xFq

(
λxq+1

)
, (3.13)

where

Fq(z) =
∞∑

n=0

dnzn, (3.14)

d0 = Γ(2q), dn =
Γ[n(q + 1) + 2q]
Γ[n(q + 1) + 2]

n−1∏

i=0

Γ[i(q + 1) + q + 1]
Γ[i(q + 1) + 3q + 1]

(n = 1, 2, · · ·).

(3.15)

P r o o f. The lemma is proved directly by using (3.6)-(3.7), changing
the orders of integration and summation (being possible because of uniform
convergence of the series) and applying the formula [18, (2.44)]

(
Iα
0+tβ−1

)
(x) =

Γ(β)
Γ(α + β)

xα+β−1 (x > 0; α > 0, β > 0). (3.16)
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By (3.13), τ1(x) in (3.12) is given by

τ1(x) = k1xFq

(
λxq+1

)
. (3.17)

By substituting this relation into (2.4) we obtain the explicit solution u(x, y)
of the original problem

u(x, y) =
∫ y

0
ϕ0(s)Gt(x, y; 1, s)ds−

∫ y

0
ϕ1(s)Gt(x, y; 1, s)ds

+Γ(α)k1

∫ 1

0
G(x, y; t, 0)tFq

(
λtq+1

)
dt, (3.18)

where k1 and λ are defined in (2.13) and (3.3), respectively.

By using formula (3.18), it is directly verified the validity of boundary
conditions (1.4)-(1.5) and transmission conditions (1.6)-(1.7), and also that
the solution u(x, y) of the original problem given by (3.13) belongs to the
space of functions defined in (1.8) and (1.9). This completes the proof of
the existence of the solution of an analog of the original Tricomi problem.
This yields the following result.

Theorem 2. The analogue of the Tricomi problem for equations (1.1)
and (1.3) (for p = q) with boundary conditions (1.4)-(1.5) and transmission
conditions (1.6)-(1.7) has an unique solution u(x, y) in the space defined by
(1.8) and (1.9), and this solution is given by (3.18).

Remark 2. The function Fq(z) defined by (3.14)-(3.15) in Lemma 3
for 0 < q < 1, exists for any q > 0. It yields an example of a new special
entire function of z. Namely, there holds the following assertion.

Lemma 4. If q > 0, then Fq(z) defined by (3.14)-(3.15) is an entire
function of z ∈ C.

P r o o f. By (3.15), we have

dn

dn+1
=

Γ[n(q + 1) + 2q]
Γ[n(q + 1) + 2]

Γ[n(q + 1) + q + 3]
Γ[n(q + 1) + 3q + 1]

Γ[n(q + 1) + 3q + 1]
Γ[n(q + 1) + q + 1]

. (3.19)

By [4, 1.9(4)]],
Γ(z + a)
Γ(z + b)

∼ za−b (|z| → ∞, |arg(z)| < π).

By this formula with z = n(q + 1),
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dn

dn+1
∼ [n(q + 1)]2q (n →∞).

Therefore, if q > 0, then

lim
n→∞

|dn|
|dn+1|

= +∞.

and, in accordance with known convergence principle for power series, the
series in (3.14) is absolutely convergence for any z ∈ C. This completes the
proof of the lemma.

In conclusion, we indicate that Fq(z) with q = 1 and q = 1/2 yields
some special cases of the generalized hypergeometric series pFq(z) defined
for complex ai, bj (i = 1, · · · , p; j = 1, · · · , q) (bj 6= 0,−1,−2, · · ·) by [4,
Sect. 4.1]:

pFq[a1, · · · , ap; b1, · · · , bq; z] =
∞∑

n=0

(a)1 · · · (a)p

(b)1 · · · (b)q

zk

k!
, (3.20)

where (a)i and (b)j (i = 1, · · · , p; j = 1, · · · , q) are given by (2.26), and an
empty product in (3.20), if it occurs, is taken to be one. Using (3.14)-(3.15),
it is directly verified that

F1(z) = 0F1

[
−;

3
2
;
z

4

]
, F1/2(z) = 1F1

[
2
3
;
5
3
;
2
3
z

]
. (3.21)

Note that the first formula in (3.21) can be also rewritten in terms of the
sine and hyperbolic sine functions:

F1

(−z2
)

=
sin z

z
, F1

(
z2

)
=

sinh z

z
. (3.22)
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