HERMITE POLYNOMIALS AND THE ZERO-DISTRIBUTION OF RIEMANN'S ζ-FUNCTION

Peter Rusev

Abstract

Let Φ be the meromorphic function defined e.g. in [2, Ch. XI, Sect. 3] by $$
\Phi(s)=-\frac{\zeta^{\prime}(s)}{s \zeta(s)}-\frac{1}{s-1}, \quad s=\sigma+i t .
$$

Necessary and sufficient conditions for absence of zeros of $\zeta(s)$ in the half-plane $\sigma>\theta, 1 / 2 \leq \theta<1$ are proposed in terms of the growth of FourierHermite's coefficients of the function $\Phi(1+i x),-\infty<x<\infty$ as well as of the growth of the Fourier transform of the function $\exp \left(-x^{2} / 4\right) \Phi(1+i x / 2)$.

AMS Subject Classification 2010: 11M26, 33C45, 42A38 Key Words and Phrases: Hermite polynomials, holomorphic extension, Fourier transform, Riemann's hypothesis

1. Expansion of holomorphic functions in series of Hermite polynomials

The region of convergence of a series in Hermite polynomials

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} H_{n}(z) \tag{1.1}
\end{equation*}
$$

[^0]is, in general, a strip of the kind $S\left(\tau_{0}\right):=\left\{z \in \mathbb{C}:|\Im z|<\tau_{0}\right\}, 0<\tau_{0} \leq \infty$, [9, 9.2]. More precisely, let
\[

$$
\begin{equation*}
\tau_{0}=\max \left\{0,-\lim \sup (2 n+1)^{-1 / 2} \log \left|(2 n / e)^{n / 2} a_{n}\right|\right\}, \tag{1.2}
\end{equation*}
$$

\]

then:
If $\tau_{0}=0$, then the series (1.1) diverges at each point of the open set $\mathbb{C} \backslash \mathbb{R}$. If $0<\tau_{0} \leq \infty$, then it is absolutely uniformly convergent on each compact subset of the strip $S\left(\tau_{0}\right)$ and diverges in the open set $\mathbb{C} \backslash \overline{S\left(\tau_{0}\right)}$, see e.g. [8,(IV.3.1), (b)].

The equality (1.2) can be regarded as a formula of Cauchy-Hadamard type for series in Hermite polynomials. It is a corollary of the asymptotic formula for these polynomials in the complex plane [9, Th. 8.22.7].

Denote by $\mathcal{E}\left(\tau_{l}\right), \prime<\tau_{l} \leq \infty$ the \mathbb{C}-vector space of the complex functions holomorphic in the strip $S\left(\tau_{0}\right)$ and having there a representation by a series of the kind (1.1). This space is completely characterized by E. Hille [5]. In fact, he has proved the following theorem:

Let $0 \leq \tau<\infty$ and define

$$
\begin{equation*}
\eta(\tau ; x, y)=x^{2} / 2-|x|\left(\tau^{2}-y^{2}\right)^{1 / 2},-\infty<x<\infty,|y| \leq \tau \tag{1.3}
\end{equation*}
$$

Then, a complex function f holomorphic in the strip $S\left(\tau_{0}\right), 0<\tau_{0} \leq \infty$ is in the space $\mathcal{E}\left(\tau_{\prime}\right)$ iff for each $\tau \in\left[0, \tau_{0}\right)$,

$$
\begin{equation*}
|f(z)|=O(\exp (\eta(\tau ; x, y))) \tag{1.4}
\end{equation*}
$$

provided $z=x+i y \in \overline{S(\tau)}(S(0)=\mathbb{R})$. Moreover, if (1.1) is the Hermite polynomial expansion of the function f in the strip $S\left(\tau_{0}\right)$, then

$$
\begin{equation*}
a_{n}=\left(I_{n}\right)^{-1} \int_{-\infty}^{\infty} \exp \left(-x^{2}\right) H_{n}(x) f(x) d x, \quad n=0,1,2, \ldots, \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{n}=\sqrt{\pi} n!2^{n}=\int_{-\infty}^{+\infty} \exp \left(-x^{2}\right)\left\{H_{n}(x)\right\}^{2} d x, \quad n=0,1,2, \ldots \tag{1.6}
\end{equation*}
$$

Another approach to the representation of holomorphic functions by series in Hermite polynomials is proposed in [8]. It is based on the class $G(\lambda),-\infty<\lambda \leq \infty$ of entire functions F such that

$$
\begin{equation*}
\limsup _{|w| \rightarrow \infty}(2 \sqrt{|w|})^{-1}(\log |F(w)|-|w|) \leq-\lambda . \tag{1.7}
\end{equation*}
$$

The above assumption is equivalent to the requirement the estimate

$$
\begin{equation*}
|F(w)|=O(\exp (|w|-2(\lambda-\varepsilon) \sqrt{|w|})), \quad w \in \mathbb{C} \tag{1.8}
\end{equation*}
$$

to hold whatever the positive ε may be and, hence, $G(\lambda)$ is a \mathbb{C}-vector space. The role of this space is cleared up by the following assertion [8,(VI.4.1)]:

Suppose that $0<\tau_{0} \leq \infty$. A complex function f is in the space $\mathcal{E}\left(\tau_{\jmath}\right)$ iff the representation

$$
\begin{equation*}
f(z)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} E(u) \exp \left(-(u-i z)^{2}\right) d u \tag{1.9}
\end{equation*}
$$

holds in the strip $S\left(\tau_{0}\right)$, where

$$
\begin{equation*}
E(w)=U\left(w^{2}\right)+w V\left(w^{2}\right), w \in \mathbb{C} \tag{1.10}
\end{equation*}
$$

and the functions U, V are in the space $G\left(\tau_{0}\right)$.
Denote by $\mathcal{R}(\lambda),-\infty<\lambda \leq \infty$ the \mathbb{C}-vector space of the entire functions of the form (1.11) provided the entire functions U, V are in $G(\lambda)$. If $E \in$ $\mathcal{R}(\lambda)$, then from (1.8) it immediately follows that

$$
\begin{equation*}
\limsup _{|w| \rightarrow \infty}(2|w|)^{-1}\left(\log |E(w)|-|w|^{2}\right) \leq-\lambda . \tag{1.11}
\end{equation*}
$$

Conversely, if the entire function E satisfies (1.10), then it is in the space $\mathcal{R}(\lambda)$. Indeed, if we define $U(w)=(1 / 2)\left(E\left(w^{1 / 2}\right)+E\left(-w^{1 / 2}\right)\right), V(w)=$ $(1 / 2) w^{-1 / 2}\left(E\left(w^{1 / 2}\right)-E\left(-w^{1 / 2}\right)\right)$, then the entire functions U, V are in the space $G(\lambda)$ and $E(w)=U\left(w^{2}\right)+w V\left(w^{2}\right)$. Therefore, the space $\mathcal{R}(\lambda)$ consists of the entire functions E satisfying (1.11) and the above assertion can be reformulated as follows:

Suppose $0<\tau_{0} \leq \infty$. A complex function f is in the space $\mathcal{E}\left(\tau_{0}\right)$ iff the representation (1.9) holds in the strip $S\left(\tau_{0}\right)$ with function $E \in \mathcal{R}\left(\tau_{0}\right)$.

Let us note that as a corollary of (1.9), the inversion formula for the Fourier transform and the identity theorem for holomorphic functions we obtain that

$$
\begin{equation*}
E(w)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(x) \exp \left(-(x+i w)^{2}\right) d x, \quad w \in \mathbb{C} \tag{1.12}
\end{equation*}
$$

2. Holomorphic extension by means of series in Hermite polynomials

For a complex function ω defined in an interval $(a, b),-\infty \leq a<b \leq \infty$ is said that it admits a holomorphic extension if there exist a domain $D \subset \mathbb{C}$ and a function Ω holomorphic in D such that $\Omega(x)=\omega(x)$ a.e. (almost everywhere) in (a, b). It is quite evident that the holomorphic extension is unique if it exists.

Let $W(r, \delta)(r>0, \delta<1)$ be the class of measurable complex functions $\omega(x),-\infty<x<\infty$ such that $\int_{-r}^{r}|\omega(x)| d x<\infty$ and, moreover, the function $\exp \left(-\delta x^{2}\right) \omega(x)$ is essentially bounded when $|x| \geq r$.

A criterion for existence of holomorphic extension of functions from the class $W(r, \delta)$ is announced without proof, as Theorem 3 in [7]. It says:

Suppose that $\omega \in W(r, \delta)$ and define

$$
a_{n}(\omega)=\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) H_{n}(x) \omega(x) d x, \quad n=0,1,2, \ldots
$$

If

$$
\tau_{0}(\omega)=-\lim \sup (2 n+1)^{-1 / 2} \log \left|(2 n / e)^{-n / 2} a_{n}(\omega)\right|>0
$$

then ω has a holomorphic extension. More precisely, there exists a function $\Omega \in \mathcal{E}\left(\tau_{0}(\omega)\right)$ such that $\Omega(x)=\omega(x)$ a.e. in $(-\infty, \infty)$.

In order to justify the validity of the above assertion, first define

$$
a_{n}^{*}(\omega)=\left(I_{n}\right)^{-1} a_{n}(\omega), n=0,1,2, \ldots,
$$

where $I_{n}, n=0,1,2, \ldots$ are given by the equalities (1.6). Then, Stirling's formula yields that

$$
\begin{gathered}
-\lim \sup (2 n+1)^{-1 / 2} \log \left|(2 n / e)^{n / 2} a_{n}^{*}(\omega)\right| \\
=-\lim \sup (2 n+1)^{-1 / 2} \log \left|(2 n / e)^{-n / 2} a_{n}(\omega)\right|=\tau_{0}(\omega)
\end{gathered}
$$

Further, from the Cauchy-Hadamard formula (1.2) it follows that the series

$$
\Omega(z)=\sum_{n=0}^{\infty} a_{n}^{*}(\omega) H_{n}(z)
$$

is absolutely uniformly convergent on each compact subset of the strip $S\left(\tau_{0}(\omega)\right)$. That means the function Ω is in the space $\mathcal{E}\left(\tau_{0}(\omega)\right)$. Moreover,

$$
a_{n}^{*}(\omega)=\left(I_{n}\right)^{-1} \int_{-\infty}^{\infty} \exp \left(-x^{2}\right) H_{n}(x) \Omega(x) d x, \quad n=0,1,2, \ldots
$$

Define $a(x)=\exp \left(-x^{2}\right)(\Omega(x)-\omega(x)),-\infty<x<\infty$, then

$$
\int_{-\infty}^{\infty} a(x) H_{n}(x) d x=0, \quad n-0,1,2, \ldots .
$$

Since deg $H_{n}=n$ for $n=0,1,2, \ldots$, the system of Hermite's polynomials is linearly independent and, hence, it is a basis in the space of algebraic polynomials. Then, the above equalities yield that

$$
\int_{-\infty}^{\infty} a(x) x^{n} d x=0, \quad n=0,1,2 \ldots \ldots
$$

Further, since $\Omega \in \mathcal{E}\left(\tau_{0}(\omega)\right)$, (1.4) yields that $|\Omega(x)|=O\left(\exp \left(x^{2} / 2\right)\right)$, $-\infty<x<\infty$, hence $|a(x)|=O\left(\exp \left(-\gamma x^{2}\right)\right)$ a.e. in $(-\infty,-r) \cup(r, \infty)$, where $\gamma=\min (1 / 2,1-\delta)$. Therefore, the Fourier transform

$$
\hat{a}(w)=\int_{-\infty}^{\infty} a(x) \exp (i w x) d x
$$

is in fact an entire function. Moreover, the function \hat{a} and all its derivatives vanish at the point $w=0$. Then, the identity theorem for holomorphic functions gives that $\hat{a}(w)=0$ for each $w \in \mathbb{C}$ and the uniqueness property of the Fourier transform yields that $a(x)=0$ a.e. in $(-\infty, \infty)$, i.e $\Omega(x)=\omega(x)$ a.e. in $(-\infty, \infty)$.

3. The results

A well-known fact is that Riemann's function $\zeta(s), s=\sigma+i t$ has no zeros on the closed half-plane $\sigma \geq 1$. More precisely, there exists a region $B \subset \mathbb{C}$ containing this half-plane and such that $\zeta(s) \neq 0$ for $s \in B$. Hence, the function

$$
\begin{equation*}
\Phi(s)=-\frac{\zeta^{\prime}(s)}{s \zeta(s)}-\frac{1}{s-1} \tag{3.1}
\end{equation*}
$$

is holomorphic in the region B. Moreover, the integral representation

$$
\begin{equation*}
\Phi(s)=\int_{1}^{\infty} \frac{\psi(x)-x}{x^{s+1}} d x \tag{3.2}
\end{equation*}
$$

holds on the closed half-plane $\sigma \geq 1$, where ψ is one of the Chebyshev functions [2, Sect. 3]. Let us note that the integral in (3.2) is in fact absolutely uniformly convergent in this half-plane and, moreover, the function Φ is bounded there. Indeed, since $\psi(x)-x=O\left(x \exp \left(-c(\log x)^{1 / 2}\right)\right), \quad c>0$, as $x \rightarrow \infty$, see e.g. [4, Sect. 18, (1)], we have that for $\sigma \geq 1$ and $-\infty<t<\infty$,

$$
\begin{gathered}
|\Phi(s)| \leq \int_{1}^{\infty} \frac{|\psi(x)-x|}{x^{\sigma+1}} d x=O\left(\int_{1}^{\infty} x^{-1} \exp \left(-c(\log x)^{1 / 2}\right) d x\right) \\
=O\left(\int_{0}^{\infty} \exp \left(-c x^{1 / 2}\right) d x<\infty\right)=O(1)
\end{gathered}
$$

It turns out that the function

$$
\begin{equation*}
\Phi(1+i z)=\int_{1}^{\infty} \frac{\psi(t)-t}{t^{2+i z}} d t, \quad z=x+i y \tag{3.3}
\end{equation*}
$$

is holomorphic on the closed half-plane $y \leq 0$. Moreover, it is bounded there and, in particular, on the real axis. Hence, there exist

$$
\begin{equation*}
a_{n}(\Phi)=\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) H_{n}(x) \Phi(1+i x) d x, \quad n=0,1,2, \ldots \tag{3.4}
\end{equation*}
$$

Define

$$
\begin{equation*}
A_{n}(\psi)=\int_{0}^{\infty} t^{n} \exp \left(-t^{2} / 4-t\right)(\psi(\exp t)-\exp t) d t, \quad n=0,1,2, \ldots \tag{3.5}
\end{equation*}
$$

then the equalities

$$
\begin{equation*}
a_{n}(\Phi)=\sqrt{\pi}(-i)^{n} A_{n}(\psi), \quad n=0,1,2, \ldots \tag{3.6}
\end{equation*}
$$

hold. Indeed,

$$
\Phi(1+i x)=\int_{1}^{\infty} t^{-2} \exp (-i x \log t)(\psi(t)-t) d t
$$

and after changing the order of integrations, we obtain that for $n=0,1,2, \ldots$,

$$
a_{n}(\Phi)=\int_{1}^{\infty} t^{-2}(\psi(t)-t) d t \int_{-\infty}^{\infty} \exp \left(-x^{2}-i x \log t\right) H_{n}(x) d x
$$

Further, Rodrigues' formula for Hermite's polynomials gives that

$$
\int_{-\infty}^{\infty} \exp \left(-x^{2}-i x \log t\right) H_{n}(x) d x=\int_{-\infty}^{\infty} \exp (-i x \log t)\left(\exp \left(-x^{2}\right)\right)^{(n)} d x
$$

$$
\begin{gathered}
=(-i)^{n}(\log t)^{n} \int_{-\infty}^{\infty} \exp \left(-x^{2}-i x \log t\right) d x \\
\left.=(-i)^{n}(\log t)^{n} \exp \left(-(\log t)^{2} / 4\right)\right) \int_{-\infty}^{\infty} \exp \left(-(x+i(\log t) / 2)^{2}\right) d x
\end{gathered}
$$

But

$$
\int_{-\infty}^{\infty} \exp \left(-(x+i(\log t) / 2)^{2}\right) d x=\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) d x=\sqrt{\pi}
$$

hence
$a_{n}(\Phi)=\sqrt{\pi}(-i)^{n} \int_{1}^{\infty}(\log t)^{n} \exp \left(-(\log t)^{2} / 4\right) t^{-2}(\psi(t)-t) d t, n=0,1,2, \ldots$.
Then, changing t by $\exp t$, we come to the equalities (3.6).
Define

$$
\tau_{0}(\Phi)=-\lim \sup (2 n+1)^{-1 / 2} \log \left|(2 n / e)^{-n / 2} a_{n}(\Phi)\right|,
$$

and

$$
T_{0}(\psi)=-\lim \sup (2 n+1)^{-1 / 2} \log \left|(2 n / e)^{-n / 2} A_{n}(\psi)\right|,
$$

then, (3.6) yields that

$$
\begin{equation*}
\tau_{0}(\Phi)=T_{0}(\psi) \tag{3.7}
\end{equation*}
$$

The first of our results is the following assertion:
(I) The function $\zeta(s)$ has no zeros in the half-plane $\sigma>\theta, 1 / 2 \leq \theta<1$ iff $T_{0}(\psi) \geq 1-\theta$.

Suppose that $T_{0}(\psi) \geq 1-\theta$, then (3.7) yields that $\tau_{0}(\Phi) \geq 1-\theta$ and, hence, the function $\Phi(1+i x),-\infty<x<\infty$ has a holomorphic extension at least in the strip $S(1-\theta)$. That means $\Phi(s)$ has no poles in the half-plane $\sigma>\theta$, i.e. $\zeta(s) \neq 0$ in this half-plane.

The assumption that $\zeta(s) \neq 0$ when $\sigma>\theta, 1 / 2 \leq \theta<1$ has as a corollary that $\psi(x)=x+O\left(x^{\theta} \log ^{2} x\right)$ as $x \rightarrow \infty[4$, Sect. 18], i.e.

$$
\begin{equation*}
\psi(x)=x+O\left(x^{\theta+\varepsilon}\right), \quad x \rightarrow \infty \tag{3.8}
\end{equation*}
$$

whatever $\varepsilon \in(0,1-\theta)$ may be. Hence, the integral in (3.2) is absolutely uniformly convergent on the closed half-plane $\sigma \geq \theta+\varepsilon$. That means the function $\Phi(s)$ is analytically continuable in the half-plane $\sigma>\theta+\varepsilon$ and, moreover, it is bounded when $\sigma \geq \theta+\varepsilon$. Hence, the function $\Phi(1+i z)$
is holomorphic in the half-plane $y<1-\theta-\varepsilon$ and bounded on its closure. By Hille's theorem, already mentioned, $\Phi(1+i z)$ has an expansion in series of Hermite polynomials in the strip $S(1-\theta-\varepsilon)$ with coefficients $\left(I_{n}\right)^{-1} a_{n}(\Phi), n=0,1,2, \ldots$. Then, Cauchy-Hadamard's as well as Stirling's formula yield that

$$
\begin{gathered}
-\lim \sup (2 n+1)^{-1 / 2} \log \left|(2 n / e)^{n / 2}\left(I_{n}\right)^{-1} a_{n}(\Phi)\right| \\
=-\lim \sup (2 n+1)^{-1 / 2} \log \left|(2 n / e)^{-n / 2} a_{n}(\Phi)\right|=\tau_{0}(\Phi) \geq 1-\theta-\varepsilon,
\end{gathered}
$$

i.e. $T_{0}(\psi) \geq 1-\theta-\varepsilon$ whatever the positive $\varepsilon<1-\theta$ may be and, hence, $T_{0}(\psi) \geq 1-\theta$.

Now we are going to prove more directly the validity of the inequality $T_{0}(\psi) \geq 1-\theta$ provided that $\zeta(s) \neq 0$ when $\sigma>\theta$ and thus, to avoid the whole "machinary" of Hermite's series representation of holomorphic functions including Hille's theorem. Indeed, from (3.5) and (3.8) it follows that

$$
\begin{aligned}
& \left|A_{n}(\psi)\right|=O\left(\int_{0}^{\infty} t^{n} \exp \left(-t^{2} / 4-(1-\theta-\varepsilon) t\right) d t\right) \\
& =O\left(2^{n / 2} \int_{0}^{\infty} t^{n} \exp \left(-t^{2} / 2-\sqrt{2}(1-\theta-\varepsilon) t\right) d t\right)
\end{aligned}
$$

and the integral representation $[1,8.3,(3)]$

$$
D_{\nu}(z)=\frac{\exp \left(-z^{2} / 4\right)}{\Gamma(-\nu)} \int_{0}^{\infty} t^{-\nu-1} \exp \left(-t^{2} / 2-z t\right) d t, \quad \Re \nu<0
$$

of Weber-Hermite's function $D_{\nu}(z)$ gives that

$$
\left|A_{n}(\psi)\right|=O\left(2^{n / 2} \Gamma(n+1) D_{-n-1}(\sqrt{2}(1-\theta-\varepsilon))\right) .
$$

Further, Stirling's formula as well as T.M. Cherry's asymptotic formula, [1, 8.4,(5)],

$$
\begin{gather*}
D_{\nu}(z)=\frac{1}{\sqrt{2}} \exp \left((\nu / 2) \log (-\nu)-\nu / 2-(-\nu)^{1 / 2} z\right)\left(1+O\left(|\nu|^{-1 / 2}\right)\right) \tag{3.9}\\
|\arg (-\nu)| \leq \pi / 2, \quad|\nu| \rightarrow \infty
\end{gather*}
$$

yield that

$$
(2 n / e)^{-n / 2}\left|A_{n}(\psi)\right|=O\left(\exp \left(-(2 n+2)^{1 / 2}(1-\theta-\varepsilon)\right)\right)
$$

as $n \rightarrow \infty$ and, hence, the inequality $T_{0}(\psi) \geq 1-\theta-\varepsilon$ holds for each positive $\varepsilon<1-\theta$, i.e. $T_{0}(\psi) \geq 1-\theta$.

It is clear that $T_{0}(\psi) \leq 1 / 2$. Indeed, if $T_{0}(\psi)>1 / 2$, then $\tau_{0}(\Phi)>$ $1 / 2$, i.e. the function $\Phi(1+i x),-\infty<x<\infty$ would have a holomorphic extension in the strip $S\left(\tau_{0}(\Phi)\right)$ which is impossible. Hence, we can allow us to formulate the following assertion:
(II) Riemann's hypothesis is true iff $T_{0}(\psi)=1 / 2$.

The next assertion we are going to prove is "inspired" by the integral representation (1.9) of the functions from the space $\mathcal{E}\left(\tau_{0}\right), 0<\tau_{0} \leq \infty$. More precisely:
(III) The function $\zeta(s)$ has no zeros in the half-plane $\sigma>\theta, 1 / 2 \leq \theta<1$ iff the Fourier transform of the function

$$
\begin{equation*}
\exp \left(-x^{2} / 4\right) \Phi(1+i x / 2),-\infty<x<\infty \tag{3.10}
\end{equation*}
$$

is of the form

$$
\begin{equation*}
\sqrt{2} \exp \left(-u^{2}\right) E(u), \quad E \in \mathcal{R}(1-\theta) \tag{3.11}
\end{equation*}
$$

Suppose that $\zeta(s) \neq 0$ when $\sigma>\theta$, then the function $\Phi(1+i z) \in$ $\mathcal{E}\left(\tau_{0}(\Phi)\right)$. Hence, the representation

$$
\Phi(1+i z)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} E(u) \exp \left(-(u-i z)^{2}\right) d u
$$

holds in the strip $S\left(\tau_{0}(\Phi)\right)$ with $E \in \mathcal{R}\left(\tau_{0}(\Phi)\right)$. Further, if $z=x \in$ $(-\infty, \infty)$, then (1.12) yields that

$$
E(u)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \Phi(1+i x) \exp \left(-(x+i u)^{2}\right) d x
$$

and, hence,

$$
\begin{equation*}
\sqrt{2} \exp \left(-u^{2}\right) E(u)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left(-x^{2} / 4\right) \Phi(1+i x / 2) \exp (i u x) d x \tag{3.12}
\end{equation*}
$$

From (1.12) it follows that $\lambda \geq \mu$ implies $\mathcal{R}(\lambda) \subset \mathcal{R}(\mu)$. Since $T_{0}(\psi) \geq$ $1-\theta$ and $\mathcal{R}\left(\tau_{0}(\Phi)\right)=\mathcal{R}\left(T_{0}(\psi)\right)$, the entire function $E \in \mathcal{R}(1-\theta)$.

Conversely, let the Fourier transform of the function (3.10) be of the form (3.11) with $E \in \mathcal{R}(1-\theta)$, i.e. (3.12) holds. Then, the inversion formula for this transform yields that

$$
\begin{equation*}
\Phi(1+i x)=\int_{-\infty}^{\infty} E(u) \exp \left(-(u+i x)^{2}\right) d u,-\infty<x<\infty . \tag{3.13}
\end{equation*}
$$

Further, since $E \in \mathcal{R}(1-\theta)$, from (1.12) it follows that the integral

$$
\int_{-\infty}^{\infty} E(u) \exp \left(-(u+i z)^{2}\right) d u
$$

is, in fact, absolutely and uniformly convergent on the closed strip $\overline{S(1-\theta-\varepsilon)}$ whatever the positive $\varepsilon<1-\theta$ may be. That means the functions $\Phi(1+$ $i x),-\infty<x<\infty$ has a holomorphic extension in the strip $S(1-\theta)$ and, hence the function $\zeta(s)$ has no zeros in the half-plane $\sigma>\theta$. Now, as a corollary of assertion (III), we can formulate the following one:
(IV) Riemann's hypothesis is true iff the Fourier transform of the function $\exp \left(-x^{2} / 4\right) \Phi(1+i x / 2),-\infty<x<\infty$ is of the form $\sqrt{2} \exp \left(-u^{2}\right) E(u)$ with $E \in \mathcal{R}(1 / 2)$.

Comments

- There is a coefficient criterion an entire function $F(w)=\sum_{n=0}^{\infty}(n!)^{-1} c_{n} w^{n}$ to be in the space $G(\lambda)$ This is true iff $\lim \sup (2 \sqrt{n})^{-1} \log \left|c_{n}\right| \leq-\lambda$, $[8$, (VI.1.2)]. Further, the representation (1.10) and the coefficient criterion just mentioned as well as Stirling's formula yield that the entire function $E(w)=\sum_{n=0}^{\infty}(n!)^{-1} c_{n} w^{n}$ is in the space $\mathcal{R}(\lambda)$ iff

$$
\lim \sup (2 n)^{-1} \log (2 n / e)^{n / 2}\left|c_{n}\right| \leq-\lambda
$$

- The asymptotic formula $[9,(8.22 .7)]$ for the Hermite polynomials $\left\{H_{n}(z)\right\}_{n=0}^{\infty}$ is proved by Liouville-Stekloff's method when $z=x$ is real. For the complex case at the end of $[9,8.65]$ is only mentioned that: "The proof of Theorem 8.22.7 can be given along these same lines".
- An asymptotic formula of Szegö's type for the Hermite polynomials in the complex plane is obtained in $[6,3$.$] as a corollary of a more general$
asymptotic formula of T.M. Cherry's type for the Weber-Hermite functions [6, (2.41)].
- The asymptotic formula (3.9) is given in T.M. Cherry's paper [3], without any proof or reference.

Acknowledgements. This paper is partially supported under Project D ID 02 / 25 / 2009 "Integral Transform Methods, Special Functions and Applications", by National Science Fund - Ministry of Education, Youth and Science, Bulgaria.

References

[1] H. Bateman, A. Erdélyi, Higher Transcendental Functions, Vol. II. McGraw-Hill Company, 1953.
[2] K. Chandrasekharan, Introduction to Analytic Number Theory. Springer, 1968.
[3] T.M. Cherry, Expansion in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2), 8 (1949), 50-65.
[4] H. Davenport, Multiplicative Number Theory. Markham Publishing Company, 1967.
[5] E. Hille, Contribution to the theory of Hermitian series: II. The representation problem. Trans. Amer. Math. Soc. 47 (1940), 80-94.
[6] P. Rusev, On the asymptotics of the Weber-Hermite function in the complex plane. Fract. Calc. Appl. Anal. 1, No 2 (1998), 151-166.
[7] P. Rusev, Holomorphic extension by means of series in Jacobi, Laguerre and Hermite polynomials. C.R. Acad. Bulg. Sci. 51, No 5-6 (1998), 13-16.
[8] P. Rusev, Classical Orthogonal Polynomials and Their Associated Functions in Complex Domain. Bulgarian Academic Monographs 10, "Marin Drinov" Acad. Publishing House, 2005.
[9] G. Szegö, Orthogonal Polynomials. AMS Colloquium publications 23, AMS, 1939.

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
"Acad. G. Bontchev" Str., Block 8
Sofia 1113-BULGARIA
e-mail: pkrusev@math.bas.bg

[^0]: (c) 2010, FCAA. All rights reserved.

