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Abstract

Let ® be the meromorphic function defined e.g. in [2, Ch. XI, Sect. 3]

by
d(s) 1

S sC(s) s—1

Necessary and sufficient conditions for absence of zeros of ((s) in the
half-plane o > 6,1/2 < § < 1 are proposed in terms of the growth of Fourier-
Hermite’s coefficients of the function ®(1 +ix), —oco < & < oo as well as of
the growth of the Fourier transform of the function exp(—x2/4)® (1 +ix/2).
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D(s) =

s =o +1it.

1. Expansion of holomorphic functions in series
of Hermite polynomials

The region of convergence of a series in Hermite polynomials

> anHn(2) (1.1)
n=0
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is, in general, a strip of the kind S(7p) := {2z € C: |Sz| < 19},0 < 19 < o0,
[9, 9.2]. More precisely, let

70 = max{0, — limsup(2n + 1) "2 log |(2n/e)" %a,|}, (1.2)

then:

If 79 = 0, then the series (1.1) diverges at each point of the open set
C\R. If0 < 19 < o0, then it is absolutely uniformly convergent on each
compact subset of the strip S(7y) and diverges in the open set C\ S(7y), see
e.g. [8,(IV.3.1), (b)].

The equality (1.2) can be regarded as a formula of Cauchy-Hadamard
type for series in Hermite polynomials. It is a corollary of the asymptotic
formula for these polynomials in the complex plane [9, Th. 8.22.7].

Denote by £(7),/ < 7 < oo the C-vector space of the complex functions
holomorphic in the strip S(7p) and having there a representation by a series
of the kind (1.1). This space is completely characterized by E. Hille [5]. In
fact, he has proved the following theorem:

Let 0 < 7 < 00 and define
n(rsz,y) = 22/2 — |z|(7? — y*)Y?, —co < 2 < o0, |y| < T (1.3)

Then, a complex function f holomorphic in the strip S(79),0 < 79 < o0 is
in the space E(m;) iff for each T € [0, 7)),

£ (2)] = O(exp(n(7; 2,))), (1.4)

provided z = x + iy € S(7)(S(0) = R). Moreover, if (1.1) is the Hermite
polynomial expansion of the function f in the strip S(7y), then

an = (I,)7! /OO exp(—z?)Hy,(z) f(z)dx, n=0,1,2,..., (1.5)
where
+o00
I, = /mn!2" = / exp(—22){H,(z)}?dz, n=0,1,2,.... (1.6)

Another approach to the representation of holomorphic functions by
series in Hermite polynomials is proposed in [8]. It is based on the class
G(N),—00 < A < oo of entire functions F such that

lim sup(2+/|w|) " (log | F(w)| — |w]) < —A. (1.7)

[w|—o00
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The above assumption is equivalent to the requirement the estimate

|[F(w)] = O(exp(|w| = 2(A = &)y/Jw]), weC (1.8)

to hold whatever the positive € may be and, hence, G()) is a C-vector space.
The role of this space is cleared up by the following assertion [8,(VI.4.1)]:

Suppose that 0 < 19 < co. A complex function f is in the space E(1;)
iff the representation

() = \}7? /oo E(u) exp(—(u — i2)?) du (1.9)
holds in the strip S(p), where
E(w) = U(w?) + wV(w?),w e C (1.10)

and the functions U,V are in the space G(1).

Denote by R()A), —o0o < A < oo the C-vector space of the entire functions
of the form (1.11) provided the entire functions U,V are in G(\). If E €
R(A), then from (1.8) it immediately follows that

lim sup(2|w|) ! (log |[E(w)| — |w|?) < —. (1.11)

|w]—o0

Conversely, if the entire function E satisfies (1.10), then it is in the space
R()\). Indeed, if we define U(w) = (1/2)(E(w'/?) + E(—w'/?)),V(w) =
(1/2)w=Y2(E(w'/?) — E(—w'/?)), then the entire functions U, V are in the
space G(\) and E(w) = U(w?) + wV (w?). Therefore, the space R(\) con-
sists of the entire functions F satisfying (1.11) and the above assertion can
be reformulated as follows:

Suppose 0 < 79 < 00. A complex function f is in the space E(y) iff the
representation (1.9) holds in the strip S(1y) with function E € R(p).

Let us note that as a corollary of (1.9), the inversion formula for the
Fourier transform and the identity theorem for holomorphic functions we
obtain that

E(w) = \/1% /OO f(x) exp(—(x +iw)?)dz, w € C. (1.12)
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2. Holomorphic extension by means of series
in Hermite polynomials

For a complex function w defined in an interval (a,b), —oo < a < b < oo
is said that it admits a holomorphic extension if there exist a domain D C C
and a function © holomorphic in D such that Q(z) = w(x) a.e. (almost
everywhere) in (a,b). It is quite evident that the holomorphic extension is
unique if it exists.

Let W(r,d)(r > 0,0 < 1) be the class of measurable complex functions
T
w(z), —oo < x < oo such that / |w(z)|dx < oo and, moreover, the function
T
exp(—dx?)w(x) is essentially bounded when |x| > r.
A criterion for existence of holomorphic extension of functions from the
class W (r,¢) is announced without proof, as Theorem 3 in [7]. It says:

Suppose that w € W(r,0) and define

an(w) = /OO exp(—2®)Hy(z)w(x)dz, n=0,1,2,....

—0o0

If
7o(w) = — limsup(2n + 1)"?log|(2n/e) " ?a, (w)| > 0,

then w has a holomorphic extension. More precisely, there exists a function
Q € E(1o(w)) such that Q(x) = w(z) a.e. in (—oo, 00).

In order to justify the validity of the above assertion, first define
a(w) = (I,) tan(w),n =10,1,2,...,

where I,,, n = 0,1,2,... are given by the equalities (1.6). Then, Stirling’s
formula yields that

—lim sup(2n + 1)71/2 log ‘(271/6)”/2@2(‘”)’

= —limsup(2n + 1)"%log |(2n/e) " ?a, ()| = 10(w).

Further, from the Cauchy-Hadamard formula (1.2) it follows that the
series
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is absolutely uniformly convergent on each compact subset of the strip
S(79(w)). That means the function € is in the space &(mp(w)). Moreover,

af(w) = (I,) ™! /OO exp(—x?)H, (2)Q(z)dz, n=0,1,2,....

—00

Define a(r) = exp(—2?)(Q(z) — w(z)), —00 < x < oo, then

o
/ a(z)H,(x)dx =0, n—0,1,2,....
—0o0

Since deg H,, = nforn =0,1,2,..., the system of Hermite’s polynomials
is linearly independent and, hence, it is a basis in the space of algebraic
polynomials. Then, the above equalities yield that

/ a(z)xder =0, n=0,1,2.....

Further, since Q € &(m(w)), (1.4) yields that |Q(z)| = O(exp(x?/2)),
—00 < x < oo, hence |a(x)| = O(exp(—vx?)) a.e. in (—oo,—7r) U (r,00),
where v = min(1/2,1 — ¢§). Therefore, the Fourier transform

[o.¢]
a(w) = / a(z) exp(iwx) dx
—00

is in fact an entire function. Moreover, the function a and all its derivatives
vanish at the point w = 0. Then, the identity theorem for holomorphic
functions gives that a(w) = 0 for each w € C and the uniqueness property of
the Fourier transform yields that a(z) = 0 a.e. in (—o0, 0), i.e Q(z) = w(x)
a.e. in (—o0, 00).

3. The results

A well-known fact is that Riemann’s function ((s),s = o + it has no
zeros on the closed half-plane o > 1. More precisely, there exists a region
B C C containing this half-plane and such that ((s) # 0 for s € B. Hence,
the function

B(s) = —i((?) —- L : (3.1)

is holomorphic in the region B. Moreover, the integral representation

O(s) = /100 (js):U dx (3.2)
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holds on the closed half-plane ¢ > 1, where 9 is one of the Chebyshev func-
tions [2, Sect. 3|. Let us note that the integral in (3.2) is in fact absolutely
uniformly convergent in this half-plane and, moreover, the function & is
bounded there. Indeed, since 1 (z) —z = O(x exp(—c(logz)/?)), ¢ >0, as
xr — 00, see e.g. [4, Sect. 18, (1)], we have that for 0 > 1 and —oco < t < o0,

|B(s)] < /10o de =0 </1°O 27" exp(—c(log z)'/?) daz)

o0
=0 </ exp(—cx/?) dx < oo) =0(1).
0
It turns out that the function

Cap(t) —t
D(1+1iz) = / w;liz dt, z=ux+1y, (3.3)
1

is holomorphic on the closed half-plane y < 0. Moreover, it is bounded there
and, in particular, on the real axis. Hence, there exist

an(®) = /00 exp(—2?)H, (2)®(1 +ix)dx, n=0,1,2,.... (3.4)

—00

An (W) = / t" exp(—t?/4—t)(p(expt) —expt)dt, n=0,1,2,..., (3.5)
0
then the equalities

an(®) = Vr(=i)"An(v), n=0,1,2,... (3.6)
hold. Indeed,

B(1 + ix) = /100 12 exp(—iz log )(1(t) — 1) di,

and after changing the order of integrations, we obtain that forn =0,1,2,...,

1 (®) = /1 T2 () — t) dt / " exp(—a? — ixlog ) Hy (x) da

— o0
Further, Rodrigues’ formula for Hermite’s polynomials gives that

o

/ exp(—z? — izlogt)H,(z) dx = / exp(—ixz log t)(exp(—z2))™ dx

—0o0 —00
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= (—4i)"(logt)" /_OO exp(—2? — ixlogt) dzx
= (=) (log )" exp(~(log1)2/4)) | exp(—(a + iflog1)/2)?)da.
But
/_OO exp(—(z 4 i(logt)/2)?) dx = /_00 exp(—z?) dz = /7,
hence

[e o]

an(®) = ﬁ(—z)"/ (logt)™ exp(—(log t)?/4)t 2(yp(t)—t) dt,n = 0,1,2, .. ..

1
Then, changing t by expt, we come to the equalities (3.6).

Define
70(®) = — limsup(2n + 1)"2log |(2n/e) 2, (®)],

and

Ty(1) = —limsup(2n + 1) /2 log |(2n/e) "2 A, (v)],

then, (3.6) yields that
0(®) = To(v) (3.7)

The first of our results is the following assertion:

(I) The function ((s) has no zeros in the half-plane o > 6,1/2 < 6§ < 1
iff To(yp) > 1—6.

Suppose that Tp(y)) > 1 — 6, then (3.7) yields that 79(®) > 1 — 6 and,
hence, the function ®(1+iz), —0o < = < oo has a holomorphic extension at
least in the strip S(1 — @). That means ®(s) has no poles in the half-plane
o >0, 1ie. ((s) # 0 in this half-plane.

The assumption that ((s) # 0 when ¢ > 0,1/2 < 6§ < 1 has as a
corollary that (x) = z + O(2% log? z) as © — oo [4, Sect. 18], i.e.

Y(z) =z + 0", 22— o0 (3.8)

whatever € € (0,1 — 6) may be. Hence, the integral in (3.2) is absolutely
uniformly convergent on the closed half-plane ¢ > 6 + . That means the
function ®(s) is analytically continuable in the half-plane o > 6 + ¢ and,
moreover, it is bounded when o > 6 +¢. Hence, the function ®(1 + iz)
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is holomorphic in the half-plane y < 1 — 8 — ¢ and bounded on its clo-
sure. By Hille’s theorem, already mentioned, ®(1 + iz) has an expansion
in series of Hermite polynomials in the strip S(1 — 6 — &) with coefficients
(I) tan(®),n = 0,1,2,..... Then, Cauchy-Hadamard’s as well as Stir-
ling’s formula yield that

—limsup(2n + 1) "2 log |(2n/e)"?(1,,)) " an(®)]
= —limsup(2n + 1)"Y2log |(2n/e) " 2, (D) = 70(®) > 1 — 0 — &,

ie. To(¢p) > 1 — 0 — £ whatever the positive ¢ < 1 — # may be and, hence,
To(y) > 1—-0.

Now we are going to prove more directly the validity of the inequality
To(1) > 1 — 0 provided that ((s) # 0 when o > 6 and thus, to avoid
the whole "machinary” of Hermite’s series representation of holomorphic
functions including Hille’s theorem. Indeed, from (3.5) and (3.8) it follows
that

An(®)] = O (/Ooo 17 exp(—t2/4 — (1— 6 — e)1) dt)

~0 <2"/2 /OOO £ exp(—12/2 — V3(1 — 0 — o)) dt>

and the integral representation [1, 8.3,(3)]

exp(—22/4

D,(z) = (=) ) /OOO t7 Lexp(—t?/2 — zt)dt, Rv <0,

of Weber-Hermite’s function D, (z) gives that
A, ()] = O (2"/2I‘(n +1)D_ 1 (V2(1— 60— e))) .

Further, Stirling’s formula as well as T.M. Cherry’s asymptotic formula,
[1, 8.4,(5)],

Dy (2) = \}Q exp((v/2) log(—v) = v/2 = (—v)/22)(1+ O(lv[71/?)),  (3.9)

larg(—v)| < 7/2, |v] —

yield that

(2n/e)"?| A ()] = O(exp(—(2n +2)/*(1 - 0 — )))
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as n — oo and, hence, the inequality Tp(¢)) > 1 — 60 — e holds for each
positive e <1 — 6, i.e. To(vh) >1—6.

It is clear that Tp(v) < 1/2. Indeed, if To(v)) > 1/2, then 74(P) >
1/2, i.e. the function ®(1 + ix), —oo < z < oo would have a holomorphic
extension in the strip S(79(®)) which is impossible. Hence, we can allow us
to formulate the following assertion:

(IT) Riemann’s hypothesis is true iff To(v)) = 1/2.

The next assertion we are going to prove is ”inspired” by the integral
representation (1.9) of the functions from the space £(7p),0 < 79 < o0.
More precisely:

(III) The function {(s) has no zeros in the half-plane o > 0,1/2 < 6 < 1
iff the Fourier transform of the function

exp(—22/4)®(1 4 iz /2), —00 < x < o0 (3.10)

is of the form
V2exp(—u?)E(u), EeR(1-6). (3.11)

Suppose that ((s) # 0 when o > 6, then the function ®(1 4 iz) €
E(1o(P)). Hence, the representation

B(1+iz) = \/1% /_OO B(u) exp(—(u — i2)?) du,

holds in the strip S(70(®)) with £ € R(m0(®)). Further, if z = z €
(—00,0), then (1.12) yields that

B(u) = \/17? /_OO B(1 + iz) exp(—(z + iu)?) dz
and, hence,
V2exp(—u?)E(u) = \/1% /_00 exp(—2?/4)®(1 + iz /2) exp(iux) dr. (3.12)

From (1.12) it follows that A > p implies R(A) C R(p). Since Tp(y) >
1 —6 and R(79(®)) = R(To(¢)), the entire function F € R(1 — 0).
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Conversely, let the Fourier transform of the function (3.10) be of the
form (3.11) with E € R(1 — ), i.e. (3.12) holds. Then, the inversion

formula for this transform yields that
O(1+ix) = / E(u) exp(—(u +ix)?) du, —00 < x < 0. (3.13)
Further, since E € R(1 — 6), from (1.12) it follows that the integral

/OO E(u) exp(—(u +1i2)?) du

—00

is, in fact, absolutely and uniformly convergent on the closed strip S(1—60—¢)
whatever the positive ¢ < 1 — 6 may be. That means the functions ®(1 +
iz), —00 < x < oo has a holomorphic extension in the strip S(1 — ) and,
hence the function ((s) has no zeros in the half-plane ¢ > 6. Now, as a
corollary of assertion (III), we can formulate the following one:

(IV) Riemann’s hypothesis is true iff the Fourier transform of the func-
tion exp(—x2/4)®(1 +iz/2), —00 < < 0o is of the form /2 exp(—u?)E(u)
with E € R(1/2).

Comments

oo

e There is a coefficient criterion an entire function F'(w) :Z(n!)_lcnw”

n=0
to be in the space G()\) This is true iff limsup(2y/n) !log|c,| < —A, [8,
(VL.1.2)]. Further, the representation (1.10) and the coefficient criterion

just mentioned as well as Stirling’s formula yield that the entire function
o0

E(w) = Z(n!)*lcnw” is in the space R(\) iff
n=0

lim sup(2n)~log(2n/e)™?|c,| < —A.

e The asymptotic formula [9, (8.22.7)] for the Hermite polynomials
{H,(2)}22, is proved by Liouville-Stekloff’s method when z = z is real.
For the complex case at the end of [9, 8.65] is only mentioned that: ”The
proof of Theorem 8.22.7 can be given along these same lines”.

e An asymptotic formula of Szegd’s type for the Hermite polynomials
in the complex plane is obtained in [6, 3.] as a corollary of a more general
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asymptotic formula of T.M. Cherry’s type for the Weber-Hermite functions
[6, (2.41)].

e The asymptotic formula (3.9) is given in T.M. Cherry’s paper [3],
without any proof or reference.
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