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Abstract

Let Φ be the meromorphic function defined e.g. in [2, Ch. XI, Sect. 3]
by

Φ(s) = − ζ ′(s)
sζ(s)

− 1
s− 1

, s = σ + it.

Necessary and sufficient conditions for absence of zeros of ζ(s) in the
half-plane σ > θ, 1/2 ≤ θ < 1 are proposed in terms of the growth of Fourier-
Hermite’s coefficients of the function Φ(1 + ix),−∞ < x < ∞ as well as of
the growth of the Fourier transform of the function exp(−x2/4)Φ(1+ ix/2).
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1. Expansion of holomorphic functions in series
of Hermite polynomials

The region of convergence of a series in Hermite polynomials

∞∑

n=0

anHn(z) (1.1)
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is, in general, a strip of the kind S(τ0) := {z ∈ C : |=z| < τ0}, 0 < τ0 ≤ ∞,
[9, 9.2]. More precisely, let

τ0 = max{0,− lim sup(2n + 1)−1/2 log |(2n/e)n/2an|}, (1.2)

then:
If τ0 = 0, then the series (1.1) diverges at each point of the open set

C \ R. If 0 < τ0 ≤ ∞, then it is absolutely uniformly convergent on each
compact subset of the strip S(τ0) and diverges in the open set C\S(τ0), see
e.g. [8,(IV.3.1), (b)].

The equality (1.2) can be regarded as a formula of Cauchy-Hadamard
type for series in Hermite polynomials. It is a corollary of the asymptotic
formula for these polynomials in the complex plane [9, Th. 8.22.7].

Denote by E(τ′), ′ < τ′ ≤ ∞ the C-vector space of the complex functions
holomorphic in the strip S(τ0) and having there a representation by a series
of the kind (1.1). This space is completely characterized by E. Hille [5]. In
fact, he has proved the following theorem:

Let 0 ≤ τ < ∞ and define

η(τ ;x, y) = x2/2− |x|(τ2 − y2)1/2,−∞ < x < ∞, |y| ≤ τ. (1.3)

Then, a complex function f holomorphic in the strip S(τ0), 0 < τ0 ≤ ∞ is
in the space E(τ′) iff for each τ ∈ [0, τ0),

|f(z)| = O(exp(η(τ ; x, y))), (1.4)

provided z = x + iy ∈ S(τ)(S(0) = R). Moreover, if (1.1) is the Hermite
polynomial expansion of the function f in the strip S(τ0), then

an = (In)−1

∫ ∞

−∞
exp(−x2)Hn(x)f(x) dx, n = 0, 1, 2, . . . , (1.5)

where

In =
√

πn!2n =

+∞∫

−∞
exp(−x2){Hn(x)}2dx, n = 0, 1, 2, . . . . (1.6)

Another approach to the representation of holomorphic functions by
series in Hermite polynomials is proposed in [8]. It is based on the class
G(λ),−∞ < λ ≤ ∞ of entire functions F such that

lim sup
|w|→∞

(2
√
|w|)−1(log |F (w)| − |w|) ≤ −λ. (1.7)
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The above assumption is equivalent to the requirement the estimate

|F (w)| = O(exp(|w| − 2(λ− ε)
√
|w|)), w ∈ C (1.8)

to hold whatever the positive ε may be and, hence, G(λ) is a C-vector space.
The role of this space is cleared up by the following assertion [8,(VI.4.1)]:

Suppose that 0 < τ0 ≤ ∞. A complex function f is in the space E(τ′)
iff the representation

f(z) =
1√
π

∫ ∞

−∞
E(u) exp(−(u− iz)2) du (1.9)

holds in the strip S(τ0), where

E(w) = U(w2) + wV (w2), w ∈ C (1.10)

and the functions U, V are in the space G(τ0).

Denote byR(λ),−∞ < λ ≤ ∞ the C-vector space of the entire functions
of the form (1.11) provided the entire functions U, V are in G(λ). If E ∈
R(λ), then from (1.8) it immediately follows that

lim sup
|w|→∞

(2|w|)−1(log |E(w)| − |w|2) ≤ −λ. (1.11)

Conversely, if the entire function E satisfies (1.10), then it is in the space
R(λ). Indeed, if we define U(w) = (1/2)(E(w1/2) + E(−w1/2)), V (w) =
(1/2)w−1/2(E(w1/2)−E(−w1/2)), then the entire functions U, V are in the
space G(λ) and E(w) = U(w2) + wV (w2). Therefore, the space R(λ) con-
sists of the entire functions E satisfying (1.11) and the above assertion can
be reformulated as follows:

Suppose 0 < τ0 ≤ ∞. A complex function f is in the space E(τ0) iff the
representation (1.9) holds in the strip S(τ0) with function E ∈ R(τ0).

Let us note that as a corollary of (1.9), the inversion formula for the
Fourier transform and the identity theorem for holomorphic functions we
obtain that

E(w) =
1√
π

∫ ∞

−∞
f(x) exp(−(x + iw)2) dx, w ∈ C. (1.12)
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2. Holomorphic extension by means of series
in Hermite polynomials

For a complex function ω defined in an interval (a, b),−∞ ≤ a < b ≤ ∞
is said that it admits a holomorphic extension if there exist a domain D ⊂ C
and a function Ω holomorphic in D such that Ω(x) = ω(x) a.e. (almost
everywhere) in (a, b). It is quite evident that the holomorphic extension is
unique if it exists.

Let W (r, δ)(r > 0, δ < 1) be the class of measurable complex functions

ω(x),−∞ < x < ∞ such that
∫ r

−r
|ω(x)| dx < ∞ and, moreover, the function

exp(−δx2)ω(x) is essentially bounded when |x| ≥ r.
A criterion for existence of holomorphic extension of functions from the

class W (r, δ) is announced without proof, as Theorem 3 in [7]. It says:

Suppose that ω ∈ W (r, δ) and define

an(ω) =
∫ ∞

−∞
exp(−x2)Hn(x)ω(x) dx, n = 0, 1, 2, . . . .

If

τ0(ω) = − lim sup(2n + 1)−1/2 log |(2n/e)−n/2an(ω)| > 0,

then ω has a holomorphic extension. More precisely, there exists a function
Ω ∈ E(τ0(ω)) such that Ω(x) = ω(x) a.e. in (−∞,∞).

In order to justify the validity of the above assertion, first define

a∗n(ω) = (In)−1an(ω), n = 0, 1, 2, . . . ,

where In, n = 0, 1, 2, . . . are given by the equalities (1.6). Then, Stirling’s
formula yields that

− lim sup(2n + 1)−1/2 log |(2n/e)n/2a∗n(ω)|

= − lim sup(2n + 1)−1/2 log |(2n/e)−n/2an(ω)| = τ0(ω).

Further, from the Cauchy-Hadamard formula (1.2) it follows that the
series

Ω(z) =
∞∑

n=0

a∗n(ω)Hn(z)
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is absolutely uniformly convergent on each compact subset of the strip
S(τ0(ω)). That means the function Ω is in the space E(τ0(ω)). Moreover,

a∗n(ω) = (In)−1

∫ ∞

−∞
exp(−x2)Hn(x)Ω(x) dx, n = 0, 1, 2, . . . .

Define a(x) = exp(−x2)(Ω(x)− ω(x)),−∞ < x < ∞, then
∫ ∞

−∞
a(x)Hn(x) dx = 0, n− 0, 1, 2, . . . .

Since deg Hn = n for n = 0, 1, 2, . . ., the system of Hermite’s polynomials
is linearly independent and, hence, it is a basis in the space of algebraic
polynomials. Then, the above equalities yield that

∫ ∞

−∞
a(x)xn dx = 0, n = 0, 1, 2. . . . .

Further, since Ω ∈ E(τ0(ω)), (1.4) yields that |Ω(x)| = O(exp(x2/2)),
−∞ < x < ∞, hence |a(x)| = O(exp(−γx2)) a.e. in (−∞,−r) ∪ (r,∞),
where γ = min(1/2, 1− δ). Therefore, the Fourier transform

â(w) =
∫ ∞

−∞
a(x) exp(iwx) dx

is in fact an entire function. Moreover, the function â and all its derivatives
vanish at the point w = 0. Then, the identity theorem for holomorphic
functions gives that â(w) = 0 for each w ∈ C and the uniqueness property of
the Fourier transform yields that a(x) = 0 a.e. in (−∞,∞), i.e Ω(x) = ω(x)
a.e. in (−∞,∞).

3. The results

A well-known fact is that Riemann’s function ζ(s), s = σ + it has no
zeros on the closed half-plane σ ≥ 1. More precisely, there exists a region
B ⊂ C containing this half-plane and such that ζ(s) 6= 0 for s ∈ B. Hence,
the function

Φ(s) = − ζ ′(s)
sζ(s)

− 1
s− 1

(3.1)

is holomorphic in the region B. Moreover, the integral representation

Φ(s) =
∫ ∞

1

ψ(x)− x

xs+1
dx (3.2)
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holds on the closed half-plane σ ≥ 1, where ψ is one of the Chebyshev func-
tions [2, Sect. 3]. Let us note that the integral in (3.2) is in fact absolutely
uniformly convergent in this half-plane and, moreover, the function Φ is
bounded there. Indeed, since ψ(x)−x = O(x exp(−c(log x)1/2)), c > 0, as
x →∞, see e.g. [4, Sect. 18, (1)], we have that for σ ≥ 1 and −∞ < t < ∞,

|Φ(s)| ≤
∫ ∞

1

|ψ(x)− x|
xσ+1

dx = O

(∫ ∞

1
x−1 exp(−c(log x)1/2) dx

)

= O

(∫ ∞

0
exp(−cx1/2) dx < ∞

)
= O(1).

It turns out that the function

Φ(1 + iz) =
∫ ∞

1

ψ(t)− t

t2+iz
dt, z = x + iy, (3.3)

is holomorphic on the closed half-plane y ≤ 0. Moreover, it is bounded there
and, in particular, on the real axis. Hence, there exist

an(Φ) =
∫ ∞

−∞
exp(−x2)Hn(x)Φ(1 + ix) dx, n = 0, 1, 2, . . . . (3.4)

Define

An(ψ) =
∫ ∞

0
tn exp(−t2/4− t)(ψ(exp t)− exp t) dt, n = 0, 1, 2, . . . , (3.5)

then the equalities

an(Φ) =
√

π(−i)nAn(ψ), n = 0, 1, 2, . . . (3.6)

hold. Indeed,

Φ(1 + ix) =
∫ ∞

1
t−2 exp(−ix log t)(ψ(t)− t) dt,

and after changing the order of integrations, we obtain that for n = 0, 1, 2, . . .,

an(Φ) =
∫ ∞

1
t−2(ψ(t)− t) dt

∫ ∞

−∞
exp(−x2 − ix log t)Hn(x) dx.

Further, Rodrigues’ formula for Hermite’s polynomials gives that
∫ ∞

−∞
exp(−x2 − ix log t)Hn(x) dx =

∫ ∞

−∞
exp(−ix log t)(exp(−x2))(n) dx



HERMITE POLYNOMIALS AND THE . . . 91

= (−i)n(log t)n

∫ ∞

−∞
exp(−x2 − ix log t) dx

= (−i)n(log t)n exp(−(log t)2/4))
∫ ∞

−∞
exp(−(x + i(log t)/2)2) dx.

But
∫ ∞

−∞
exp(−(x + i(log t)/2)2) dx =

∫ ∞

−∞
exp(−x2) dx =

√
π,

hence

an(Φ) =
√

π(−i)n

∫ ∞

1
(log t)n exp(−(log t)2/4)t−2(ψ(t)−t) dt, n = 0, 1, 2, . . . .

Then, changing t by exp t, we come to the equalities (3.6).

Define
τ0(Φ) = − lim sup(2n + 1)−1/2 log |(2n/e)−n/2an(Φ)|,

and
T0(ψ) = − lim sup(2n + 1)−1/2 log |(2n/e)−n/2An(ψ)|,

then, (3.6) yields that
τ0(Φ) = T0(ψ) (3.7)

The first of our results is the following assertion:

(I) The function ζ(s) has no zeros in the half-plane σ > θ, 1/2 ≤ θ < 1
iff T0(ψ) ≥ 1− θ.

Suppose that T0(ψ) ≥ 1− θ, then (3.7) yields that τ0(Φ) ≥ 1− θ and,
hence, the function Φ(1+ ix),−∞ < x < ∞ has a holomorphic extension at
least in the strip S(1− θ). That means Φ(s) has no poles in the half-plane
σ > θ, i.e. ζ(s) 6= 0 in this half-plane.

The assumption that ζ(s) 6= 0 when σ > θ, 1/2 ≤ θ < 1 has as a
corollary that ψ(x) = x + O(xθ log2 x) as x →∞ [4, Sect. 18], i.e.

ψ(x) = x + O(xθ+ε), x →∞ (3.8)

whatever ε ∈ (0, 1 − θ) may be. Hence, the integral in (3.2) is absolutely
uniformly convergent on the closed half-plane σ ≥ θ + ε. That means the
function Φ(s) is analytically continuable in the half-plane σ > θ + ε and,
moreover, it is bounded when σ ≥ θ + ε. Hence, the function Φ(1 + iz)
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is holomorphic in the half-plane y < 1 − θ − ε and bounded on its clo-
sure. By Hille’s theorem, already mentioned, Φ(1 + iz) has an expansion
in series of Hermite polynomials in the strip S(1 − θ − ε) with coefficients
(In)−1an(Φ), n = 0, 1, 2, . . . .. Then, Cauchy-Hadamard’s as well as Stir-
ling’s formula yield that

− lim sup(2n + 1)−1/2 log |(2n/e)n/2(In)−1an(Φ)|
= − lim sup(2n + 1)−1/2 log |(2n/e)−n/2an(Φ)| = τ0(Φ) ≥ 1− θ − ε,

i.e. T0(ψ) ≥ 1− θ − ε whatever the positive ε < 1 − θ may be and, hence,
T0(ψ) ≥ 1− θ.

Now we are going to prove more directly the validity of the inequality
T0(ψ) ≥ 1− θ provided that ζ(s) 6= 0 when σ > θ and thus, to avoid
the whole ”machinary” of Hermite’s series representation of holomorphic
functions including Hille’s theorem. Indeed, from (3.5) and (3.8) it follows
that

|An(ψ)| = O

(∫ ∞

0
tn exp(−t2/4− (1− θ − ε)t) dt

)

= O

(
2n/2

∫ ∞

0
tn exp(−t2/2−

√
2(1− θ − ε)t) dt

)

and the integral representation [1, 8.3,(3)]

Dν(z) =
exp(−z2/4)

Γ(−ν)

∫ ∞

0
t−ν−1 exp(−t2/2− zt) dt, <ν < 0,

of Weber-Hermite’s function Dν(z) gives that

|An(ψ)| = O
(
2n/2Γ(n + 1)D−n−1(

√
2(1− θ − ε))

)
.

Further, Stirling’s formula as well as T.M. Cherry’s asymptotic formula,
[1, 8.4,(5)],

Dν(z) =
1√
2

exp((ν/2) log(−ν)− ν/2− (−ν)1/2z)(1 + O(|ν|−1/2)), (3.9)

| arg(−ν)| ≤ π/2, |ν| → ∞
yield that

(2n/e)−n/2|An(ψ)| = O(exp(−(2n + 2)1/2(1− θ − ε)))
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as n → ∞ and, hence, the inequality T0(ψ) ≥ 1− θ − ε holds for each
positive ε < 1− θ, i.e. T0(ψ) ≥ 1− θ.

It is clear that T0(ψ) ≤ 1/2. Indeed, if T0(ψ) > 1/2, then τ0(Φ) >
1/2, i.e. the function Φ(1 + ix),−∞ < x < ∞ would have a holomorphic
extension in the strip S(τ0(Φ)) which is impossible. Hence, we can allow us
to formulate the following assertion:

(II) Riemann’s hypothesis is true iff T0(ψ) = 1/2.

The next assertion we are going to prove is ”inspired” by the integral
representation (1.9) of the functions from the space E(τ0), 0 < τ0 ≤ ∞.
More precisely:

(III) The function ζ(s) has no zeros in the half-plane σ > θ, 1/2 ≤ θ < 1
iff the Fourier transform of the function

exp(−x2/4)Φ(1 + ix/2),−∞ < x < ∞ (3.10)

is of the form √
2 exp(−u2)E(u), E ∈ R(1− θ). (3.11)

Suppose that ζ(s) 6= 0 when σ > θ, then the function Φ(1 + iz) ∈
E(τ0(Φ)). Hence, the representation

Φ(1 + iz) =
1√
π

∫ ∞

−∞
E(u) exp(−(u− iz)2) du,

holds in the strip S(τ0(Φ)) with E ∈ R(τ0(Φ)). Further, if z = x ∈
(−∞,∞), then (1.12) yields that

E(u) =
1√
π

∫ ∞

−∞
Φ(1 + ix) exp(−(x + iu)2) dx

and, hence,

√
2 exp(−u2)E(u) =

1√
π

∫ ∞

−∞
exp(−x2/4)Φ(1 + ix/2) exp(iux) dx. (3.12)

From (1.12) it follows that λ ≥ µ implies R(λ) ⊂ R(µ). Since T0(ψ) ≥
1− θ and R(τ0(Φ)) = R(T0(ψ)), the entire function E ∈ R(1− θ).
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Conversely, let the Fourier transform of the function (3.10) be of the
form (3.11) with E ∈ R(1 − θ), i.e. (3.12) holds. Then, the inversion
formula for this transform yields that

Φ(1 + ix) =
∫ ∞

−∞
E(u) exp(−(u + ix)2) du,−∞ < x < ∞. (3.13)

Further, since E ∈ R(1− θ), from (1.12) it follows that the integral
∫ ∞

−∞
E(u) exp(−(u + iz)2) du

is, in fact, absolutely and uniformly convergent on the closed strip S(1−θ−ε)
whatever the positive ε < 1 − θ may be. That means the functions Φ(1 +
ix),−∞ < x < ∞ has a holomorphic extension in the strip S(1 − θ) and,
hence the function ζ(s) has no zeros in the half-plane σ > θ. Now, as a
corollary of assertion (III), we can formulate the following one:

(IV) Riemann’s hypothesis is true iff the Fourier transform of the func-
tion exp(−x2/4)Φ(1+ ix/2),−∞ < x < ∞ is of the form

√
2 exp(−u2)E(u)

with E ∈ R(1/2).

Comments

• There is a coefficient criterion an entire function F (w)=
∞∑

n=0

(n!)−1cnwn

to be in the space G(λ) This is true iff lim sup(2
√

n)−1 log |cn| ≤ −λ, [8,
(VI.1.2)]. Further, the representation (1.10) and the coefficient criterion
just mentioned as well as Stirling’s formula yield that the entire function

E(w) =
∞∑

n=0

(n!)−1cnwn is in the space R(λ) iff

lim sup(2n)−1 log(2n/e)n/2|cn| ≤ −λ.

• The asymptotic formula [9, (8.22.7)] for the Hermite polynomials
{Hn(z)}∞n=0 is proved by Liouville-Stekloff’s method when z = x is real.
For the complex case at the end of [9, 8.65] is only mentioned that: ”The
proof of Theorem 8.22.7 can be given along these same lines”.

• An asymptotic formula of Szegö’s type for the Hermite polynomials
in the complex plane is obtained in [6, 3.] as a corollary of a more general
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asymptotic formula of T.M. Cherry’s type for the Weber-Hermite functions
[6, (2.41)].

• The asymptotic formula (3.9) is given in T.M. Cherry’s paper [3],
without any proof or reference.
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