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Abstract

In this paper we prove the existence of solutions for fractional impul-
sive differential equations with antiperiodic boundary condition in Banach
spaces. The results are obtained by using fractional calculus’ techniques
and the fixed point theorems.
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1. Introduction

Recently fractional differential equations have arisen in many engineer-
ing and scientific disciplines as the mathematical modelling of systems and
processes in the fields of physics, chemistry, aerodynamics, electro-dynamics
of complex medium, polymer rheology, etc. (see [8], [11]-[13]), involving
derivatives of fractional order. The fractional differential equations also
serve as an excellent tool for the description of hereditary properties of var-
ious materials and processes. The theory of fractional differential equations
has been extensively studied by many authors, among them: Lakshmikan-
tham et al. [17]-[19]. In the paper [21], it is proved the existence of solutions
of abstract differential equations by using semigroup theory and fixed point
theorem. Many partial fractional differential equations can be expressed as
fractional differential equations in some Banach spaces.

c© 2010, FCAA – Diogenes Co. (Bulgaria). All rights reserved.
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The following equation




cDqx(t) = f(t, x(t)), t ∈ J = [0, 1]/t1, t2, ....tk,

∆x(tk) = Ik(x(t−k ), ∆x′(tk) = Jk(x(t−k ) tk ∈ (0, 1), k = 1, 2, 3....p.

x(0) + x′(0) = 0, x(1) + x′(1) = 0,
(1.1)

where cDq denotes the Caputo fractional derivative with 1 < q ≤ 2 was
studied by Ahmad et al. [4] and the existence of positive solutions was
obtained using classical fixed point theorems.

Recently, Alsaedi [1] has studied the integrodifferential equations of frac-
tional order with antiperiodic boundary conditions

{
cDqx(t) = f(t, x(t), Bx(t)), t ∈ [0, T ], 1 < q ≤ 2,

x(0) = −x(T ), x′(0) = −x′(T ),
(1.2)

in general Banach space X with 0 < q < 1. By means of the Krasnoselskii
theorem, existence of solutions has been also obtained.

Subsequently several authors have investigated the problem for different
types of nonlinear differential equations and integrodifferential equations
including functional differential equations in Banach spaces.

Antiperiodic boundary value problems have recently received consid-
erable attention, as antiperiodic boundary conditions appear in numerous
situation, for instance, see [2], [3], [9], [10].

In [2], the existence of solutions to the equation
{

cDqx(t) = f(t, x(t), ), t ∈ [0, T ],
x(0) = −x(T ), x′(0) = −x′(T ), x”(0) = −x”(T ).

(1.3)

is studied. The results are obtained via construction and the contraction
mapping principle and Krasnoselskii’s fixed point theorem. Very recently,
Ahmad et al. [3] have discussed the existence of solutions of fractional
differential equations with antiperiodic boundary condition via the Leray-
Schauder degree theory.

The paper is organized as follows. In Section 2 we introduce some
preliminary results needed in the following sections. In Section 3 we present
an existence result for antiperiodic boundary value problem for fractional
impulsive differential equations in Banach spaces by using the fractional
calculus’ techniques and the Sadovskii fixed point theorem.
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2. Preliminaries

First, we recall some basic definitions.
Consider the set of functions

PC(I, X) = {x : I → X : x ∈ C((tk, tk+1], X), k = 0, . . . , m and there exist
x(t−k ) and x(t+k ), k = 1, . . . ,m with x(t−k ) = x(tk)}.

This set is a Banach space with the norm

‖x‖PC = sup
t∈I

|x(t)|.
Set J ′ := [0, T ]\{t1, . . . , tm}.

For some basic facts about fractional derivatives and fractional calculus,
one can refer to the books [15], [20], [22], [23].

Definition 2.1. ([15], [22]) The fractional (arbitrary) order integral
of the function f ∈ L1([a, b], R+) of order q ∈ R+ is defined by

Iq
af(t) =

∫ t

a

(t− s)q−1

Γ(q)
f(s)ds,

where Γ is the gamma function. When a = 0, we write Iqf(t) = f(t)∗ϕq(t),
where ϕq(t) = tq−1

Γ(q) for t > 0, and ϕq(t) = 0 for t ≤ 0, and ϕq(t) → δ(t) as
q → 0, where δ is the delta function.

Definition 2.2. The Riemann-Liouville fractional integral of order
q > 0, of a function f ∈ Cµ, µ ≥ −1, is defined as

Iqf(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s)ds, q > 0, t > 0

I0f(x) = f(x),

provided that the integral exists.

Definition 2.3. ([15], [22]) The Riemann-Liouville fractional deriva-
tive of order q for a function f(t), is defined by

Dqf(t) =
1

Γ(n− q)

(
d

dt

)n ∫ t

0

f(s)
(t− s)q−n+1

ds,

provided the right-hand side is pointwise defined on (0,∞).

The Riemann-Liouville derivative has certain disadvantages when try-
ing to model real-world phenomena with fractional differential equations.
Therefore, we shall use the modified fractional differential operator cDq

proposed by M. Caputo in his work [8] on the theory of viscoelasticity.
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Definition 2.4. ([14], [22]) The Caputo fractional-order derivative of
f , is defined by

cDqf(t) =
1

Γ(n− q)

∫ t

t0

(t− s)n−q−1f (n)(s)ds, t > t0,

where n = [q] + 1, [q] denotes the integer part of real number q.

Lemma 2.1. ([25]) For q > 0, the general solution of the fractional
differential equation cDqx(t) = 0 is given by

x(t) = c0 + c1t + c2t
2 + ........ + cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, ......, n− 1(n = [q] + 1).
In view of Lemma 2.1, it follows that

IqcDqx(t) = x(t) + c0 + c1t + c2t
2 + ........ + cn−1t

n−1,

for some ci ∈ R, i = 0, 1, 2, ......, n− 1(n = [q] + 1).
Now, we state a known result due to Sadovskii [24].

Theorem 2.2. Let B be a closed, convex and bounded subset of a
Banach space X. If F : B → B is a condensing map, then F has a fixed
point in B.

Lemma 2.3. Let 0 < q ≤ 1 and let h : I ×X ×X → X be continuous.
A function x is a solution of the fractional integral equation

x(t) =





1
Γ(q)

∫ t
0 (t− s)q−1h(s)ds− 1

2

[
1

Γ(q)

∫ T
0 (T − s)q−1h(s)ds

]
if t ∈ [0, t1],

1
Γ(q)

∑k
i=1

∫ ti
ti−1

(ti − s)q−1h(s)ds

+ 1
Γ(q)

∫ t
tk

(t− s)q−1h(s)ds− 1
2

[
1

Γ(q)

∫ T
0 (T − s)q−1h(s)ds

]

+
∑k

i=1 Ii(x(t−i )), if t ∈ (tk, tk+1],
(2.1)

where k = 1, . . . , m, if and only if y is a solution of the fractional impulsive
BVP

cDqx(t) = h(t), t ∈ J ′, (2.2)
∆x|t=tk = Ik(x(t−k )), k = 1, . . . , m, (2.3)

x(0) = −x(T ). (2.4)

P r o o f. Assume that x satisfies (2.2)-(2.4). If t ∈ [0, t1], then
cDqx(t) = h(t).
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Lemma 2.1 implies

x(t) =
1

Γ(q)

∫ t

0
(t− s)q−1h(s)ds− 1

2

[
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds

]
.

If t ∈ (t1, t2], then

x(t) = x(t+1 ) +
1

Γ(q)

∫ t

t1

(t− s)q−1h(s)ds− 1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds

]

= ∆x|t=t1 + x(t−1 ) +
1

Γ(q)

∫ t

t1

(t− s)q−1h(s)ds

− 1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds

]

= I1(x(t−1 )) +
1

Γ(q)

∫ t1

0
(t1 − s)q−1h(s)ds +

1
Γ(q)

∫ t

t1

(t− s)q−1h(s)ds

− 1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds

]
. (2.5)

If t ∈ (t2, t3], then we get

x(t) = x(t+2 ) +
1

Γ(q)

∫ t

t2

(t− s)q−1h(s)ds− 1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds

]

= ∆x|t=t2 + x(t−2 ) +
1

Γ(q)

∫ t

t2

(t− s)q−1h(s)ds

− 1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds

]

= I2(x(t−2 )) + I1(x(t−1 )) +
1

Γ(q)

∫ t1

0
(t1 − s)q−1h(s)ds

− 1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds

]

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1h(s)ds +
1

Γ(q)

∫ t

t2

(t− s)q−1h(s)ds

− 1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds

]
. (2.6)

If t ∈ (tk, tk+1], then again from Lemma 2.1 we get (2.1).
Conversely, assume that x satisfies the impulsive fractional integral

equation (2.1). If t ∈ [0, t1], then x(0) = −x(T ) and using the fact that
cDq is the left inverse of Iq, we get



286 A. Anguraj, P. Karthikeyan

cDqx(t) = h(t), for each t ∈ [0, t1].
If t ∈ [tk, tk+1), k = 1, . . . , m and using the fact that cDqC = 0, where C is
a constant, we get

cDqx(t) = h(t), for each t ∈ [tk, tk+1). (2.7)

Also, we can easily show that

∆x|t=tk = Ik(x(t−k )), k = 1, . . . , m. (2.8)

This completes the proof.

3. Main results

Now consider the first order impulsive boundary value problem for frac-
tional differential equation





cDqx(t) = f(t, x(t), (χx)(t)), t ∈ I = [0, T ], t 6= tk,

∆x
∣∣
t=tk

= Ik(x(t−k )),

x(0) = −x(T ),

(3.1)

where 0 < q < 1, k = 1, . . . , m, 0 < q ≤ 1, cDq is the Caputo fractional
derivative, f : I×X×X → X is a given function and for γ : I×I → [0,∞),

(χx)(t) =
∫ t

0
γ(t, s)x(s)ds,

with γ0 = max
{∫ t

0 γ(t, s)x(s)ds : (t, s) ∈ I × I
}

. Ik : X → X,

0 = t0 < t1 < · · · < tm < tm+1 = T , ∆x|t=tk = x(t+k )− x(t−k ),
x(t+k ) = limh→0+ x(tk +h) and x(t−k ) = limh→0− x(tk +h) represent the right
and left limits of y(t) at t = tk.

We need the following assumptions to prove the existence of solutions
of equation (3.1).

(HA). f : I × X × X → X is continuous and there exist a constants
L > 0,M > 0 such that

‖f(t, x, (χx))−f(t, y, (χy))‖ ≤ L‖x− y‖+ M‖(χx)−(χy)‖ for all x, y ∈ X

and for each t ∈ I. For brevity, let us take η = T q

Γ(q+1) .
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(HB). The functions Ik : X → X are continuous and there exists a
constants M∗ > 0,L∗ > 0 such that

‖Ik(x)− Ik(x)‖ ≤ L∗‖x− x‖ with ‖Ik(x)‖ ≤ M∗

for each x, x ∈ X and k = 1, . . . , m.

(HC). f : I ×X ×X → X is continuous and there exist a function
µ ∈ L1(I, R+) such that

sup ‖f(t, x, (χx))‖ ≤ µ(t), ∀(t, x, (χx)) ∈ I ×X ×X.

Theorem 3.1. If the assumptions (HA), (HB) are satisfied and if
(L + γ0M) ≤ (m + 3

2)/η + mM∗, then equation (3.1) has a unique solution.

P r o o f. F : PC(I, X) → PC(I, X) defined by

F (x)(t) =
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1f(s, x(s), (χx)(s))ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1f(s, x(s), (χx)(s))ds (3.2)

−1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1f(s, x(s), (χx)(s))ds

]
+

∑

0<tk<t

Ik(x(t−k )),

and we have to show that F has a fixed point. This fixed point is then a
solution of the equation (3.1).

Let M1 = supt∈[0,T ] ‖f(t, 0)‖. Then we can show that FBr ⊂ Br, where
Br := {x ∈ PC(I, X) : ‖x‖ ≤ r}. From the assumptions, we have to choose
r ≥ 3[M1(m + 3

2)η + mM∗], then ‖(Fx)(t)‖

≤
∥∥∥∥∥∥

1
Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1f(s, x(s), (χx)(s))ds

∥∥∥∥∥∥

+
∥∥∥∥

1
Γ(q)

∫ t

tk

(t− s)q−1f(s, x(s), (χx)(s))ds

∥∥∥∥

+

∥∥∥∥∥∥
1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1f(s, x(s), (χx)(s))ds

]
+

∑

0<tk<t

Ik(x(t−k ))

∥∥∥∥∥∥
.
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≤ 1
Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1[‖f(s, x(s), (χx)(s)− f(s, 0, 0) + f(s, 0, 0)‖]ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1[‖f(s, x(s), (χx)(s))− f(s, 0, 0) + f(s, 0, 0)‖]ds

+
1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1[‖f(s, x(s), (χx)(s))− f(s, 0, 0) + f(s, 0, 0)‖]ds

]

+
∑

0<tk<t

‖Ik(x(t−k ))‖

≤ 1
Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk−s)q−1[‖f(s, x(s), (χx)(s)))−f(s, 0, 0)‖+‖f(s, 0, 0)‖]ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1[‖f(s, x(s), (χx)(s)))− f(s, 0, 0)‖+ ‖f(s, 0, 0)‖]ds

+
1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1[‖f(s, x(s), (χx)(s)))−f(s, 0, 0)‖+‖f(s, 0, 0)‖]ds

]

+
∑

0<tk<t

‖Ik(x(t−k ))‖

≤ m((L + γ0M)r + M1)T q

Γ(q + 1)
+

((L + γ0M)r + M1)T q

Γ(q + 1)

+
1
2

(L + γ0M)r + M1)T q

Γ(q + 1)
+ mM∗

≤ ((L + γ0M)r + M1)T q

Γ(q + 1)
(m +

3
2
) + mM∗ ≤ r, (3.3)

by the choice of L, M, M∗ and r. Clearly, the fixed point of the operator F
are the solution of the problem (3.1). Thus, F maps Br into itself. Now,
for x, y ∈ PC(I, X), we have ‖(Fx)(t)− (Fy)(t)‖

≤ 1
Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖f(s, x(s), (χx)(s))− f(x, y(s), (χy)(s))‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1‖f(s, x(s), (χx)(s))− f(x, y(s), (χy)(s))‖ds

+
1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1‖f(s, x(s), (χx))− f(x, y(s), (χx))‖ds

]

+
∑

0<tk<t

‖Ik(x(t−k ))− Ik(y(t−k ))‖
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≤ (L + γ0M)
Γ(q)

m∑

k=1

∫ tk

tk−1

(tk − s)q−1‖x(s)− y(s)‖ds

+
(L + γ0M)

Γ(q)

∫ t

tk

(t− s)q−1‖x(s)− y(s)‖ds

+
(L + γ0M)

2

[
1

Γ(q)

∫ T

0
(T − s)q−1‖x(s)− y(s)‖ds

]
+

m∑

k=1

L∗‖x(t−k )− y(t−k )‖

≤ mLT q

Γ(q + 1)
‖x− y‖+

(L + γ0M)T q

Γ(q + 1)
‖x− y‖+

1
2

(L + γ0M)T q

Γ(q + 1)
‖x− y‖

+ mL∗‖x− y‖ ≤
[
(L + γ0M)T q

Γ(q + 1)
(m +

3
2
) + mL∗

]
‖x− y‖. (3.4)

Thus,
‖Fx− Fy‖C ≤ ΛL,m,T,q‖x− y‖,

where ΛL,m,T,q =
[
(L + γ0M)η

(
m + 3

2) + mL∗
)]

. And since ΛL,m,T,q < 1,
F is a contraction mapping and therefore there exists a unique fixed point
x ∈ Br such that Fx(t) = x(t). Any fixed point of F is the solution of the
problem (3.1).

Theorem 3.2. Assume that (HA)− (HC) hold with µ(t)η < 1. Then
the fractional impulsive boundary value problem with antiperiodic condition
of equation (3.1) has at least one solution on I, provided that

µ(t)η + m(µ(t)η + M∗) < 1. (3.5)

P r o o f. For each positive integer r, let

Br : {x ∈ PC(I, X) : ‖x‖ ≤ r, 0 ≤ t ≤ T} ,

then Br, for each r, is a bounded, closed, convex set in PC(I, X). So F
is well defined on Br. We claim that there exists a positive number r such
that FBr ⊆ Br. If it is not true, then for each positive number r, there is
a function xr ∈ Br but Fxr /∈ Br, that is, ‖Fxr(t)‖ > r for some t ∈ [0, T ].
However, on the other hand, we have

r ≤ ‖(Fxr)(t)‖ =
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖f(s, xr(s))‖ds

+
1

Γ(q)

∫ t

tk

(t−s)q−1‖f(s, xr(s))‖ds− 1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1‖f(s, xr(s))‖ds

]

+
∑

0<tk<t

‖Ik(xr(t−k ))‖ ≤ mµ(t)γ + µ(t)rγ +
1
2

[µ(t)rγ] + mrM∗.
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Dividing both sides by r, we get

3
2
µ(t)η + m(µ(t)η + M∗) ≥ 1. (3.6)

This contradicts (3.5). Hence FBr ⊆ Br, for some positive number r.

Now define the operators F1 and F2 on Br as

F1(x)(t) : =
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1f(s, x(s), (χx)))ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1f(s, x(s), (χx)))ds (3.7)

and

F2(x)(t) : =
∑

0<tk<t

Ik(x(t−k ))− 1
2

[
1

Γ(q)

∫ T

0
(T − s)q−1f(s, x(s), (χx))ds

]

(3.8)

We will show that F2 is a contraction mapping and F1 is a compact operator.
It follows from the assumption (H2), F2 is a contraction mapping if mL∗ +
1
2Mγ < 1. The continuity of f implies that the operator F1is continuous.
Also F1 is uniformly bounded on Br as

‖F1(x)‖ ≤ (m + 1)T q

Γ(q + 1)
‖µ‖L1 . (3.9)

Now let us prove that (F1x)(t) is equicontinuous. Let t1, t2 ∈ I, t1 < t2 and
x ∈ Br. Using the fact that f is bounded on the compact set I×Br×χ(Br).
We define (thus sup(s,x,y)∈I×Br×χ(Br) ‖f(t, s, x(s), (χx(s))‖ := c0 < ∞), we
will get

‖F1x(t2)− F1x(t1)‖

=
1

Γ(q)


 ∑

0<tk<t2−t1

(t2 − tk)
∫ tk

tk−1

(tk − s)q−1f(s, x(s), (χx)))ds




+
1

Γ(q)


 ∑

0<tk<t1

(t2 − t1)
∫ tk

tk−1

(t2 − s)q−1f(s, x(s), (χx)))ds



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+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1f(s, x(s), (χx)))ds

+
1

Γ(q)

∫ t1

tk

[(t2 − s)q−1 − (t1 − s)q−1]f(s, x(s), (χx)))ds

≤ c0

Γ(q)


 ∑

0<tk<t2−t1

|(tk−tk−1)q−1(t2−tk)|+
∑

0<tk<t1

|(t2−t1)(tk−tk−1)q−1|



+
c0

Γ(q + 1)
[2(t2 − t1)q + |(t2 − tk)q − (t1 − tk)q|], (3.10)

which does not depend on x. So F1(Br) is relatively compact. As t2 → t1,
the righthand side of the above inequality tends to zero. By the Arzela-
Ascoli theorem, F1 is compact operator. These arguments show that F =
F1 + F2 which is a condensing mapping on Br, and by the Sadovskii fixed
point theorem there exists a fixed point for F on Br, which is a solution of
the problem (3.1). The proof is complete.
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