

APPLICATION OF SUBORDINATION PRINCIPLE TO LOG-HARMONIC α -SPIRALLIKE MAPPINGS

Melike Aydoğan ¹, Yaşar Polatoğlu ²

We dedicate this paper to the 70th anniversary of Professor Srivastava

Abstract

Let H(D) be the linear space of all analytic functions defined on the open unit disc $D=\{z\in C:|z|<1\}$. A sense preserving logharmonic mapping is the solution of the non-linear elliptic partial differential equation $\overline{f}_{\overline{z}}=w(z)f_z(\overline{f}_f)$ where $w(z)\in H(D)$ is the second dilatation of f such that |w(z)|<1 for all $z\in D$. It has been shown that if f is a non-vanishing logharmonic mapping, then f can be expressed as $f(z)=h(z).\overline{g(z)}$, where h(z) and g(z) are analytic in D with the normalization $h(0)\neq 0$, g(0)=1. If f vanishes at z=0 but it is not identically zero, then f admits the representation $f=z.|z|^{2\beta}h(z)\overline{g(z)}$, where $Re\beta>-\frac{1}{2}$ and h(z), g(z) are analytic in D with the normalization $h(0)\neq 0$, g(0)=1. [1], [2], [3]. The class of all logharmonic mappings is denoted by S_{LH}^* .

The aim of this paper is to give an application of the subordination principle to the class of spirallike logharmonic mappings which was introduced by Abdulhadi and Hengartner [1].

MSC 2010: 30C45, 30C55

Key Words and Phrases: analytic function, log-harmonic mapping, spirallike function

^{© 2010,} FCAA – Diogenes Co. (Bulgaria). All rights reserved.

1. Introduction

Let $H(\mathbb{D})$ be the linear space of all analytic functions defined in the open unit disc $D = \{z \in C : |z| < 1\}$. A sense preserving log-harmonic mapping is a solution of the non-linear elliptic partial differential equation

$$\frac{\overline{f_{\overline{z}}}}{\overline{f}} = w(z)\frac{f_z}{f},\tag{1}$$

where w(z) is the second dilatation of f and $w(z) \in H(D)$, |w(z)| < 1 for every $z \in D$. It has been shown that if f is non vanishing logharmonic mapping, then f can be expressed as

$$f(z) = h(z)\overline{g(z)},\tag{2}$$

where h(z) and g(z) are analytic in D with the normalization $h(0) \neq 0$, g(0) = 1. On the other hand if f vanishes at z = 0, but it is not identically zero, then f admits the following representation

$$f = z. |z|^{2\beta} h(z) \overline{g(z)}, \tag{3}$$

where $Re\beta > -\frac{1}{2}$, h(z) and g(z) are analytic in the open disc D with the normalization $h(0) \neq 0$, g(0) = 1. Also we note that the univalent logharmonic mapping have been studied extensively (see [1], [2], [3]) and the class of univalent logharmonic mappings is denoted by S_{LH} .

Let $f = zh(z)\overline{g(z)}$ be a univalent logharmonic mapping. We say that f is a starlike logharmonic mapping if

$$\frac{\partial \arg f(re^{i\theta})}{\partial \theta} = Re \frac{zf_z - \overline{z}f_{\overline{z}}}{f} > 0$$

for all $z \in D$, and the class of all starlike logharmonic mappings is denoted by ST^*_{LH} .

Let $\varphi(z)$ be analytic in D and let α be a real number such that $|\alpha| < \frac{\pi}{2}$. If $\varphi = 0$, $\varphi'(0) \neq 0$ and if

$$Re(e^{i\alpha}z\frac{\varphi'(z)}{\varphi(z)}) > 0,$$
 (4)

then $\varphi(z)$ is univalent (see [5]) and is said to be spirallike. Under these conditions we have

$$e^{i\alpha}z\frac{\varphi'(z)}{\varphi(z)} = Q(z),$$
 (5)

where ReQ(z) > 0 and $Q(0) = e^{i\alpha}$. Defining $P(z) = Q(z) \sec \alpha - i \tan \alpha$, we may write

$$z\frac{\varphi'(z)}{\varphi(z)} = e^{-i\alpha}[P(z)\cos\alpha + i\sin\alpha],\tag{6}$$

where ReP(z) > 0, P(0) = 1. The class of spirallike functions is denoted by S_{α}^* . In particular with $\alpha = 0$, S_0^* coincides with the class of normalized starlike functions. The relationship between S_{α}^* and S_0^* is indicated in the following lemma.

LEMMA 1.1. $f(z) \in S_{0,p}$ if and only if there is a $g(z) \in S_{0,p}$ such that

$$\left[\frac{f(z)}{z}\right]^{\exp(i\alpha)} = \left[\frac{g(z)}{z}\right]^{\cos\alpha},\tag{7}$$

where the branches are chosen so that each side of the equation has the value 1, when z = 0.

On the other hand, in the paper by Abdulhadi and Muhanna [3], the following theorem was proved.

THEOREM 1.2. Let $f(z)=z.h(z).\overline{g(z)}$ be a logharmonic mapping in D, $0 \notin hg(D)$. Then $f \in ST^*_{LH}$ if and only if $\varphi(z)=z\frac{h(z)}{g(z)} \in ST^*$.

Finally, let Ω be the family of functions $\phi(z)$ which are analytic in D and satisfying the conditions $\phi(0) = 0$ $|\phi(z)| < 1$ for every $z \in D$ and let $s_1(z) = z + a_2 z^2 + a_3 z^3 + ...$, $s_2(z) = z + b_2 z^2 + b_3 z^3 + ...$ be analytic functions in D. We say that $s_1(z)$ is subordinate to $s_2(z)$ if $s_1(z) = s_2(\phi(z))$ for some function $\phi(z) \in \Omega$ and every $z \in D$ and denote by $s_1(z) \prec s_2(z)$.

2. Main results

Considering Lemma 1.1 and Theorem 1.2 together, we obtain the following lemma.

LEMMA 2.1. $\phi(z) \in S_{\alpha}^*$ if and only if there is a $f(z) = zh(z)\overline{g(z)} \in ST_{LH}^*$ such that

$$\left(\frac{\phi(z)}{z}\right)^{e^{i\alpha}} = \left(\frac{h(z)}{g(z)}\right)^{\cos\alpha},\tag{8}$$

where the branches are chosen so that both sides of the equation has the value 1, when z = 0.

Theorem 2.2. Using Lemma 2.1, we have the following equality

$$e^{i\alpha}z.\frac{\phi'(z)}{\phi(z)} = \cos\alpha[1 + z\frac{h'(z)}{h(z)} - z\frac{g'(z)}{g(z)}] + i\sin\alpha.$$
 (9)

Proof. We have:

$$f = z. |z|^{2\beta} h(z)\overline{g(z)} \Rightarrow \frac{zf_z}{f} = \beta + 1 + z\frac{h'(z)}{h(z)}; \overline{z}f_{\overline{z}} = \beta + \overline{z}\frac{\overline{g'(z)}}{\overline{g(z)}}; \quad (10)$$

$$w(z) = \frac{\overline{f}_{\overline{z}}}{\overline{f}} \frac{f}{f_z} = \frac{\overline{\beta} + z \frac{g'(z)}{g(z)}}{1 + \beta + z \frac{h'(z)}{h(z)}}.$$
 (11)

In the equality (11) if we take $\beta = 0$, then we obtain:

$$w(z) = \frac{z \frac{g'(z)}{g(z)}}{1 + z \frac{h'(z)}{h(z)}}.$$
 (12)

Therefore, we have w(0) = 0, |w(z)| < 1, and then we can say that w(z)satisfies the conditions of the Schwarz lemma, and

$$1 - w(z) = \frac{1 + z \frac{h'(z)}{h(z)} - z \frac{g'(z)}{g(z)}}{1 + z \frac{h'(z)}{h(z)}}$$
(13)

$$1 - w(z) = \frac{1 + z \frac{h'(z)}{h(z)} - z \frac{g'(z)}{g(z)}}{1 + z \frac{h'(z)}{h(z)}}$$

$$\frac{w(z)}{1 - w(z)} = \frac{z \frac{g'(z)}{g(z)}}{1 + z \frac{h'(z)}{h(z)} - z \frac{g'(z)}{g(z)}}.$$
(13)

Using equalities (9), (10), equalities (13) and (14) can be written in the following form

$$1 - w(z) = \frac{\frac{1}{\cos \alpha} \left[z \frac{\phi'(z)}{\phi(z)} - i \sin \alpha \right]}{z \frac{f_z}{f}},\tag{15}$$

$$1 - w(z) = \frac{\frac{1}{\cos \alpha} \left[z \frac{\phi'(z)}{\phi(z)} - i \sin \alpha \right]}{z \frac{f_z}{f}},$$

$$\frac{w(z)}{1 - w(z)} = \frac{z \frac{\overline{f_z}}{\overline{f}}}{\frac{1}{\cos \alpha} \left[e^{i\alpha} z \frac{\phi'(z)}{\phi(z)} - i \sin \alpha \right]}.$$
(15)

Using the subordination principle, these equalities can be written as

$$\frac{\frac{1}{\cos\alpha}\left[z\frac{\phi'(z)}{\phi(z)} - i\sin\alpha\right]}{z\frac{f_z}{f}} \prec 1 - z,\tag{17}$$

$$\frac{\frac{1}{\cos\alpha} \left[z \frac{\phi'(z)}{\phi(z)} - i \sin\alpha \right]}{z \frac{f_z}{f}} \prec 1 - z, \tag{17}$$

$$\frac{z \frac{f_z}{f}}{z \frac{1}{\cos\alpha} \left[e^{i\alpha} z \frac{\phi'(z)}{\phi(z)} - i \sin\alpha \right]} \prec \frac{z}{1 - z}. \tag{18}$$

On the other hand, since the transformations 1-z and $\frac{z}{1-z}$ map |z|=r onto the discs with centers $c_1(r)=(1,0), c_2(r)=(\frac{r^2}{1-r^2})$ and radius $\rho_1(r)=r$ $\rho_2(r)=\frac{r}{1-r^2}$ respectively, using the subordination principle then we have:

$$\left| \frac{\frac{1}{\cos \alpha} \left[z \frac{\phi'(z)}{\phi(z)} - i \sin \alpha \right]}{z \frac{f_z}{z}} - 1 \right| \le r; \left| \frac{z \frac{\overline{f}_{\overline{z}}}{\overline{f}}}{\frac{1}{\cos \alpha} \left[e^{i\alpha} z \frac{\phi'(z)}{\phi(z)} - i \sin \alpha \right]} - \frac{r^2}{1 - r^2} \right| \le \frac{r}{1 - r^2}. \tag{19}$$

After simple calculations, from equalities (19) we get the following theorem. The inequalities (19) can be written in the form, respectively:

$$\frac{\left|\frac{1}{\cos\alpha}(e^{i\alpha}z\frac{\phi'(z)}{\phi(z)} - i\sin\alpha)\right|}{1 - r} \le \left|\frac{zf_z}{f}\right| \le \frac{\left|\frac{1}{\cos\alpha}(e^{i\alpha}z\frac{\phi'(z)}{\phi(z)} - i\sin\alpha)\right|}{1 + r}, \quad (20)$$

$$\left| \frac{zf_{\overline{z}}}{f} \right| \le \frac{r \left| \frac{1}{\cos \alpha} \left(e^{i\alpha} z \frac{\phi'(z)}{\phi(z)} - i \sin \alpha \right) \right|}{1 - r}.$$
 (21)

On the other hand we have:

$$p(z) = \frac{1}{\cos \alpha} \left(e^{i\alpha} z \frac{\phi'(z)}{\phi(z)} - i \sin \alpha \right) \Rightarrow \left| p(z) - \frac{1 + r^2}{1 - r^2} \right| \le \frac{2r}{1 - r^2} \Rightarrow \left| \frac{1}{\cos \alpha} \left(e^{i\alpha} z \frac{\phi'(z)}{\phi(z)} - i \sin \alpha \right) - \frac{1 + r^2}{1 - r^2} \right| \le \frac{2r}{1 - r^2} \Rightarrow$$

$$\frac{(\cos \alpha - |\sin \alpha|) - (\cos \alpha + |\sin \alpha|)r}{1 + r} \le \left| z \frac{\phi'(z)}{\phi(z)} \right| \le \frac{(\cos \alpha + |\sin \alpha|) - (\cos \alpha - |\sin \alpha|)r}{1 - r} \tag{22}$$

$$\frac{1}{\cos\alpha} \left| z \frac{\phi'(z)}{\phi(z)} \right| - \left| \tan\alpha \right| \le \left| \frac{1}{\cos\alpha} (e^{i\alpha} z \frac{\phi'(z)}{\phi(z)} - i \sin\alpha) \right| \le \frac{1}{\cos\alpha} \left| z \frac{\phi'(z)}{\phi(z)} \right| + \left| \tan\alpha \right|. \tag{23}$$

Using the inequalities (22) and (23) in the inequalities (20) and (21), and after the simple calculations, we get

$$F_1(r,\alpha) \le \left| \frac{zf_z}{f} \right| \le F_2(r,\alpha),$$

$$F_1(r,\alpha) = \frac{(\cos \alpha - |\sin \alpha| - \cos \alpha |\tan \alpha|) - (\cos \alpha + |\sin \alpha| + \cos \alpha |\tan \alpha|)r}{(1 - r^2)\cos \alpha},$$

$$F_2(r,\alpha) = \frac{(\cos\alpha + |\sin\alpha| + \cos\alpha |\tan\alpha|) + (\cos\alpha - |\sin\alpha| - \cos\alpha |\tan\alpha|)r}{(1 - r^2)\cos\alpha}$$

$$\left| \frac{zf_{\overline{z}}}{f} \right| \le F_3(r, \alpha), \tag{24}$$

$$F_3(r,\alpha) = \frac{r[(\cos\alpha + |\sin\alpha| + \cos\alpha |\tan\alpha|) + (\cos\alpha - |\sin\alpha| - \cos\alpha |\tan\alpha|)r]}{(1-r)^2\cos\alpha}.$$

So, we have the following theorem.

Theorem 2.3 Let $f=zh(z)\overline{g(z)}$ be logharmonic spirallike function then

$$F_1(r,\alpha) \le \left| \frac{zf_z}{f} \right| \le F_2(r,\alpha),$$

 $\left| \frac{zf_{\overline{z}}}{f} \right| \le F_3(r,\alpha).$

Proof. Using Theorem 2.2, we get the result.

References

- Z. Abdulhadi and W.Hengartner, Spirallike logharmonic mappings. Complex Variables Theory Appl. 9 (1987), 121-130.
- [2] Z. Abdulhadi and W.Hengartner, One pointed univalent logharmonic mappings. J. Math. Anal. Appl. 203, No 2 (1996), 333-351.
- [3] Z. Abdulhadi and Y.A.Muhanna, Starlike log-harmonic mappings of order α . J. Inequl. Pure Appl. Math. 7, No 4 (2006), Article 123.
- [4] Z. Abdulhadi, Close to starlike logharmonic mappings. Internat J.Math and Math. Sci. 19, No 3 (1996), 563-574.
- [5] Z. Abdulhadi, Typically real logharmonic mappings. *Internat J.Math and Math. Sci.* 31, No 1 (2002), 1-9.
- [6] Z. Abdulhadi and D. Bshouty, Univalent functions in H. \overline{H} . Trans. Amer. Math. Soc. **305**, No 2 (1988), 841-849.
- [7] T. Basgoze and F.R. Keogh, The Hardy class of a spirallike function and its derivative. *Proc. of the Amer. Math. Soc.* **26**, No 2 (Oct. 1970), 266-269.
- ¹ Department of Computer Engineering Faculty of Computer Engineering and Architecture Yeni Yuzyil University Ayazma Road No 26, Topkapı, İstanbul, TURKEY e-mail: melike.aydoqan@yeniyuzyil.edu.tr

Received: GFTA, August 27-31, 2010

² Department of Mathematics and Computer Sciences İstanbul Kültür University 34156, Bakirköy, İstanbul, TURKEY e-mail: y.polatoqlu@iku.edu.tr