APPLICATION OF SUBORDINATION PRINCIPLE TO LOG-HARMONIC α-SPIRALLIKE MAPPINGS

Melike Aydoğan ${ }^{1}$, Yaşar Polatog̃lu ${ }^{2}$
We dedicate this paper to the $70^{\text {th }}$ anniversary of Professor Srivastava

Abstract

Let $H(D)$ be the linear space of all analytic functions defined on the open unit disc $D=\{z \in C:|z|<1\}$. A sense preserving logharmonic mapping is the solution of the non-linear elliptic partial differential equation $\bar{f}_{\bar{z}}=w(z) f_{z}\left(\frac{\bar{f}}{f}\right)$ where $w(z) \in H(D)$ is the second dilatation of f such that $|w(z)|<1$ for all $z \in D$. It has been shown that if f is a non-vanishing logharmonic mapping, then f can be expressed as $f(z)=h(z) \cdot \overline{g(z)}$, where $h(z)$ and $g(z)$ are analytic in D with the normalization $h(0) \neq 0, g(0)=1$. If f vanishes at $z=0$ but it is not identically zero, then f admits the representation $f=z \cdot|z|^{2 \beta} h(z) \overline{g(z)}$, where $\operatorname{Re} \beta>-\frac{1}{2}$ and $h(z), g(z)$ are analytic in D with the normalization $h(0) \neq 0, g(0)=1$. [1], [2], [3]. The class of all logharmonic mappings is denoted by $S_{L H}^{*}$.

The aim of this paper is to give an application of the subordination principle to the class of spirallike logharmonic mappings which was introduced by Abdulhadi and Hengartner [1].

MSC 2010: 30C45, 30C55 Key Words and Phrases: analytic function, log-harmonic mapping, spi-

 rallike function[^0]
1. Introduction

Let $H(\mathbb{D})$ be the linear space of all analytic functions defined in the open unit disc $D=\{z \in C:|z|<1\}$. A sense preserving log-harmonic mapping is a solution of the non-linear elliptic partial differential equation

$$
\begin{equation*}
\frac{\overline{f_{\bar{z}}}}{\bar{f}}=w(z) \frac{f_{z}}{f} \tag{1}
\end{equation*}
$$

where $w(z)$ is the second dilatation of f and $w(z) \in H(D),|w(z)|<1$ for every $z \in D$. It has been shown that if f is non vanishing logharmonic mapping, then f can be expressed as

$$
\begin{equation*}
f(z)=h(z) \overline{g(z)} \tag{2}
\end{equation*}
$$

where $h(z)$ and $g(z)$ are analytic in D with the normalization $h(0) \neq 0$, $g(0)=1$. On the other hand if f vanishes at $z=0$, but it is not identically zero, then f admits the following representation

$$
\begin{equation*}
f=z .|z|^{2 \beta} h(z) \overline{g(z)} \tag{3}
\end{equation*}
$$

where $\operatorname{Re} \beta>-\frac{1}{2}, h(z)$ and $g(z)$ are analytic in the open disc D with the normalization $h(0) \neq 0, g(0)=1$. Also we note that the univalent logharmonic mapping have been studied extensively (see [1], [2], [3]) and the class of univalent logharmonic mappings is denoted by $S_{L H}$.

Let $f=z h(z) \overline{g(z)}$ be a univalent logharmonic mapping. We say that f is a starlike logharmonic mapping if

$$
\frac{\partial \arg f\left(r e^{i \theta}\right)}{\partial \theta}=R e \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}>0
$$

for all $z \in D$, and the class of all starlike logharmonic mappings is denoted by $S T_{L H}^{*}$.

Let $\varphi(z)$ be analytic in D and let α be a real number such that $|\alpha|<\frac{\pi}{2}$. If $\varphi=0, \varphi^{\prime}(0) \neq 0$ and if

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \alpha} z \frac{\varphi^{\prime}(z)}{\varphi(z)}\right)>0 \tag{4}
\end{equation*}
$$

then $\varphi(z)$ is univalent (see [5]) and is said to be spirallike. Under these conditions we have

$$
\begin{equation*}
e^{i \alpha} z \frac{\varphi^{\prime}(z)}{\varphi(z)}=Q(z) \tag{5}
\end{equation*}
$$

where $\operatorname{Re} Q(z)>0$ and $Q(0)=e^{i \alpha}$. Defining $P(z)=Q(z) \sec \alpha-i \tan \alpha$, we may write

$$
\begin{equation*}
z \frac{\varphi^{\prime}(z)}{\varphi(z)}=e^{-i \alpha}[P(z) \cos \alpha+i \sin \alpha] \tag{6}
\end{equation*}
$$

where $\operatorname{Re} P(z)>0, P(0)=1$. The class of spirallike functions is denoted by S_{α}^{*}. In particular with $\alpha=0, S_{0}^{*}$ coincides with the class of normalized starlike functions. The relationship between S_{α}^{*} and S_{0}^{*} is indicated in the following lemma.

Lemma 1.1. $f(z) \in S_{0, p}$ if and only if there is a $g(z) \in S_{0, p}$ such that

$$
\begin{equation*}
\left[\frac{f(z)}{z}\right]^{\exp (i \alpha)}=\left[\frac{g(z)}{z}\right]^{\cos \alpha}, \tag{7}
\end{equation*}
$$

where the branches are chosen so that each side of the equation has the value 1 , when $z=0$.

On the other hand, in the paper by Abdulhadi and Muhanna [3], the following theorem was proved.

Theorem 1.2. Let $f(z)=z . h(z) \cdot \overline{g(z)}$ be a logharmonic mapping in D, $0 \notin h g(D)$. Then $f \in S T_{L H}^{*}$ if and only if $\varphi(z)=z \frac{h(z)}{g(z)} \in S T^{*}$.

Finally, let Ω be the family of functions $\phi(z)$ which are analytic in D and satisfying the conditions $\phi(0)=0|\phi(z)|<1$ for every $z \in D$ and let $s_{1}(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots, s_{2}(z)=z+b_{2} z^{2}+b_{3} z^{3}+\ldots$ be analytic functions in D. We say that $s_{1}(z)$ is subordinate to $s_{2}(z)$ if $s_{1}(z)=s_{2}(\phi(z))$ for some function $\phi(z) \in \Omega$ and every $z \in D$ and denote by $s_{1}(z) \prec s_{2}(z)$.

2. Main results

Considering Lemma 1.1 and Theorem 1.2 together, we obtain the following lemma.

Lemma 2.1. $\phi(z) \in S_{\alpha}^{*}$ if and only if there is a $f(z)=z h(z) \overline{g(z)} \in S T_{L H}^{*}$ such that

$$
\begin{equation*}
\left(\frac{\phi(z)}{z}\right)^{e^{i \alpha}}=\left(\frac{h(z)}{g(z)}\right)^{\cos \alpha}, \tag{8}
\end{equation*}
$$

where the branches are chosen so that both sides of the equation has the value 1 , when $z=0$.

Theorem 2.2. Using Lemma 2.1, we have the following equality

$$
\begin{equation*}
e^{i \alpha} z \cdot \frac{\phi^{\prime}(z)}{\phi(z)}=\cos \alpha\left[1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right]+i \sin \alpha . \tag{9}
\end{equation*}
$$

Proof. We have:

$$
\begin{gather*}
f=z \cdot|z|^{2 \beta} h(z) \overline{g(z)} \Rightarrow \frac{z f_{z}}{f}=\beta+1+z \frac{h^{\prime}(z)}{h(z)} ; \frac{\bar{z} f_{\bar{z}}}{f}=\beta+\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}} ; \tag{10}\\
w(z)=\frac{\bar{f}_{\bar{z}}}{\bar{f}} \frac{f}{f_{z}}=\frac{\bar{\beta}+z \frac{g^{\prime}(z)}{g(z)}}{1+\beta+z \frac{h^{\prime}(z)}{h(z)}} . \tag{11}
\end{gather*}
$$

In the equality (11) if we take $\beta=0$, then we obtain:

$$
\begin{equation*}
w(z)=\frac{z \frac{g^{\prime}(z)}{g(z)}}{1+z \frac{h^{\prime}(z)}{h(z)}} \tag{12}
\end{equation*}
$$

Therefore, we have $w(0)=0,|w(z)|<1$, and then we can say that $w(z)$ satisfies the conditions of the Schwarz lemma, and

$$
\begin{align*}
& 1-w(z)=\frac{1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}}{1+z \frac{h^{\prime}(z)}{h(z)}} \tag{13}\\
& \frac{w(z)}{1-w(z)}=\frac{z \frac{g^{\prime}(z)}{g(z)}}{1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}} . \tag{14}
\end{align*}
$$

Using equalities (9), (10), equalities (13) and (14) can be written in the following form

$$
\begin{gather*}
1-w(z)=\frac{\frac{1}{\cos \alpha}\left[z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right]}{z \frac{f_{z}}{f}} \tag{15}\\
\frac{w(z)}{1-w(z)}=\frac{z \frac{\overline{f_{\bar{z}}}}{\bar{f}}}{\frac{1}{\cos \alpha}\left[e^{i \alpha} z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right]} \tag{16}
\end{gather*}
$$

Using the subordination principle, these equalities can be written as

$$
\begin{align*}
& \frac{\frac{1}{\cos \alpha}\left[z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right]}{z \frac{f_{z}}{f}} \prec 1-z, \tag{17}\\
& \frac{\left.z \frac{\frac{f_{z}}{f}}{\frac{1}{\cos \alpha}\left[e^{i \alpha} z\right.} z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right]}{} \prec \frac{z}{1-z} . \tag{18}
\end{align*}
$$

On the other hand, since the transformations $1-z$ and $\frac{z}{1-z}$ map $|z|=r$ onto the discs with centers $c_{1}(r)=(1,0), c_{2}(r)=\left(\frac{r^{2}}{1-r^{2}}\right)$ and radius $\rho_{1}(r)=r$ $\rho_{2}(r)=\frac{r}{1-r^{2}}$ respectively, using the subordination principle then we have:

$$
\begin{equation*}
\left|\frac{\frac{1}{\cos \alpha}\left[z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right]}{z \frac{f_{z}}{z}}-1\right| \leq r ;\left|\frac{z \frac{\bar{J}_{\bar{z}}}{f}}{\frac{1}{\cos \alpha}\left[e^{i \alpha} z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right]}-\frac{r^{2}}{1-r^{2}}\right| \leq \frac{r}{1-r^{2}} . \tag{19}
\end{equation*}
$$

After simple calculations, from equalities (19) we get the following theorem. The inequalities (19) can be written in the form, respectively:

$$
\begin{gather*}
\frac{\left|\frac{1}{\cos \alpha}\left(e^{i \alpha} z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right)\right|}{1-r} \leq\left|\frac{z f_{z}}{f}\right| \leq \frac{\left|\frac{1}{\cos \alpha}\left(e^{i \alpha} z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right)\right|}{1+r} \tag{20}\\
\left|\frac{z f_{\bar{z}}}{f}\right| \leq \frac{r\left|\frac{1}{\cos \alpha}\left(e^{i \alpha} z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right)\right|}{1-r} \tag{21}
\end{gather*}
$$

On the other hand we have:

$$
\begin{gather*}
p(z)=\frac{1}{\cos \alpha}\left(e^{i \alpha} z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right) \Rightarrow\left|p(z)-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 r}{1-r^{2}} \Rightarrow \\
\left|\frac{1}{\cos \alpha}\left(e^{i \alpha} z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right)-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 r}{1-r^{2}} \Rightarrow \\
\frac{(\cos \alpha-|\sin \alpha|)-(\cos \alpha+|\sin \alpha|) r}{1+r} \leq\left|z \frac{\phi^{\prime}(z)}{\phi(z)}\right| \leq \frac{(\cos \alpha+|\sin \alpha|)-(\cos \alpha-|\sin \alpha|) r}{1-r} \tag{22}
\end{gather*}
$$

$$
\begin{equation*}
\frac{1}{\cos \alpha}\left|z \frac{\phi^{\prime}(z)}{\phi(z)}\right|-|\tan \alpha| \leq\left|\frac{1}{\cos \alpha}\left(e^{i \alpha} z \frac{\phi^{\prime}(z)}{\phi(z)}-i \sin \alpha\right)\right| \leq \frac{1}{\cos \alpha}\left|z \frac{\phi^{\prime}(z)}{\phi(z)}\right|+|\tan \alpha| . \tag{23}
\end{equation*}
$$

Using the inequalities (22) and (23) in the inequalities (20) and (21), and after the simple calculations, we get

$$
\begin{gather*}
F_{1}(r, \alpha) \leq\left|\frac{z f_{z}}{f}\right| \leq F_{2}(r, \alpha) \\
F_{1}(r, \alpha)=\frac{(\cos \alpha-|\sin \alpha|-\cos \alpha|\tan \alpha|)-(\cos \alpha+|\sin \alpha|+\cos \alpha|\tan \alpha|) r}{\left(1-r^{2}\right) \cos \alpha} \\
F_{2}(r, \alpha)=\frac{(\cos \alpha+|\sin \alpha|+\cos \alpha|\tan \alpha|)+(\cos \alpha-|\sin \alpha|-\cos \alpha|\tan \alpha|) r}{\left(1-r^{2}\right) \cos \alpha} \\
\left|\frac{z f_{\bar{z}}}{f}\right| \leq F_{3}(r, \alpha) \tag{24}\\
F_{3}(r, \alpha)=\frac{r[(\cos \alpha+|\sin \alpha|+\cos \alpha|\tan \alpha|)+(\cos \alpha-|\sin \alpha|-\cos \alpha|\tan \alpha|) r]}{(1-r)^{2} \cos \alpha}
\end{gather*}
$$

So, we have the following theorem.
Theorem 2.3 Let $f=z h(z) \overline{g(z)}$ be logharmonic spirallike function then

$$
\begin{gathered}
F_{1}(r, \alpha) \leq\left|\frac{z f_{z}}{f}\right| \leq F_{2}(r, \alpha), \\
\left|\frac{z f_{\bar{z}}}{f}\right| \leq F_{3}(r, \alpha) .
\end{gathered}
$$

Proof. Using Theorem 2.2, we get the result.

References

[1] Z. Abdulhadi and W.Hengartner, Spirallike logharmonic mappings. Complex Variables Theory Appl. 9 (1987), 121-130.
[2] Z. Abdulhadi and W.Hengartner, One pointed univalent logharmonic mappings. J. Math. Anal. Appl. 203, No 2 (1996), 333-351.
[3] Z. Abdulhadi and Y.A.Muhanna, Starlike log-harmonic mappings of order α. J. Inequl. Pure Appl. Math. 7, No 4 (2006), Article 123.
[4] Z. Abdulhadi, Close to starlike logharmonic mappings. Internat J.Math and Math. Sci. 19, No 3 (1996), 563-574.
[5] Z. Abdulhadi, Typically real logharmonic mappings. Internat J.Math and Math. Sci. 31, No 1 (2002), 1-9.
[6] Z. Abdulhadi and D. Bshouty, Univalent functions in H. \bar{H}. Trans. Amer. Math. Soc. 305, No 2 (1988), 841-849.
[7] T. Basgoze and F.R. Keogh, The Hardy class of a spirallike function and its derivative. Proc. of the Amer. Math. Soc. 26, No 2 (Oct. 1970), 266-269.
${ }^{1}$ Department of Computer Engineering
Faculty of Computer Engineering and Architecture
Yeni Yuzyil University
Ayazma Road No 26, Topkapı, İstanbul, TURKEY
e-mail: melike.aydogan@yeniyuzyil.edu.tr
Received: GFTA, August 27-31, 2010
${ }^{2}$ Department of Mathematics and Computer Sciences
İstanbul Kültür University
34156, Bakirköy, İstanbul, TURKEY
e-mail: y.polatoglu@iku.edu.tr

[^0]: (C) 2010, FCAA - Diogenes Co. (Bulgaria). All rights reserved.

