FEKETE-SZEGÖ INEQUALITY FOR UNIVERSALLY PRESTARLIKE FUNCTIONS

T. N. Shanmugam *, J. Lourthu Mary **

This paper is dedicated to the 70th anniversary of Professor Srivastava

Abstract

The universally prestarlike functions of order $\alpha \leq 1$ in the slit domain $\Lambda=\mathcal{C} \backslash[1, \infty)$ have been recently introduced by S. Ruscheweyh. This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in \mathcal{C}). In this paper, we obtain the coefficient inequalities and the Fekete-Szegö inequality for such functions.

MSC 2010: 30C45
Key Words and Phrases: prestarlike functions, universally prestarlike functions, coefficients, Fekete-Szegö inequality

1. Introduction

Let $H(\Omega)$ denote the set of all analytic functions defined in a domain Ω. For domain Ω containing the origin $H_{0}(\Omega)$ stands for the set of all function $f \in H(\Omega)$ with $f(0)=1$. We also use the notation $H_{1}(\Omega)=$ $\left\{z f: f \in H_{0}(\Omega)\right\}$. In the special case when Ω is the open unit disk $\Delta=$ $\{z \in \mathcal{C}:|z|<1\}$, we use the abbreviation H, H_{0} and H_{1} respectively for $H(\Omega), H_{0}(\Omega)$ and $H_{1}(\Omega)$.

[^0]A function $f \in H_{1}$ is called starlike of order α with $(0 \leq \alpha<1)$ satisfying the inequality

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

and the set of all such functions is denoted by S_{α}. The convolution or Hadamard Product of two functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ is defined as

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n} .
$$

A function $f \in H_{1}$ is called prestarlike of order α if

$$
\begin{equation*}
\frac{z}{(1-z)^{2-2 \alpha}} * f(z) \in S_{\alpha} . \tag{1.2}
\end{equation*}
$$

The set of all such functions is denoted by \mathcal{R}_{α}. The notion of prestarlike functions has been extended from the unit disk to other disk and half planes containing the origin. Let Ω be one such disk or half plane.Then there are two unique parameters $\gamma \in \mathcal{C} \backslash\{0\}$ and $\rho \in[0,1]$ such that

$$
\begin{equation*}
\Omega_{\gamma, \rho}=\left\{w_{\gamma, \rho}(z): z \in \Delta\right\}, \tag{1.3}
\end{equation*}
$$

where

$$
w_{\gamma, \rho}(z)=\frac{\gamma z}{1-\rho z}
$$

Note that $1 \notin \Omega_{\gamma, \rho}$ iff $|\gamma+\rho| \leq 1$.
Definition 1.1. (see [2], [3], [4]) Let $\alpha \leq 1$, and $\Omega=\Omega_{\gamma, \rho}$ for some admissible pair (γ, ρ). A function $f \in H_{1}\left(\Omega_{\gamma, \rho}\right)$ is called prestarlike of order α in $\Omega_{\gamma, \rho}$ if

$$
\begin{equation*}
f_{\gamma, \rho}(z)=\frac{1}{\gamma} f\left(w_{\gamma, \rho}(z)\right) \in \mathcal{R}_{\alpha} . \tag{1.4}
\end{equation*}
$$

The set of all such functions f is denoted by $\mathcal{R}_{\alpha}(\Omega)$.
Let Λ be the slit domain $\mathcal{C} \backslash[1, \infty)$ (the slit being along the positive real axis).

Definition 1.2. (see [2], [3], [4]) Let $\alpha \leq 1$. A function $f \in H_{1}(\Lambda)$ is called universally prestarlike of order α if and only if f is prestarlike of order α in all sets $\Omega_{\gamma, \rho}$ with $|\gamma+\rho| \leq 1$. The set of all such functions is denoted by \mathcal{R}_{α}^{u}.

Example 1.1. A function $f(z)=\frac{z}{(1-z)^{1-2 \alpha}}$ is prestarlike of order $0 \leq \alpha<1$. When $\alpha=0$ the function is universally prestarlike of order 0 .When $\alpha=\frac{1}{2}$ the function $f(z)=z$ is the only entire function in \mathcal{R}_{α}^{u}.

EXAMPLE 1.2. A function $f(z)=\frac{z}{(1-z)^{\frac{1}{2}}}$ is universally prestarlike of order $\frac{1}{2}$.

Definition 1.3. (see [4]) Let $\phi(z)$ be an analytic function with positive real part on Δ, which satisfies $\phi(0)=1, \phi^{\prime}(0)>0$ and which maps the unit disc Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the class $\mathcal{R}_{\alpha}^{u}(\phi)$ consists of all analytic function $f \in H_{1}(\Lambda)$ satisfying

$$
\begin{equation*}
\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f} \prec \phi(z) \tag{1.5}
\end{equation*}
$$

where \prec denotes the subordination, where $\left(D^{\beta} f\right)(z)=\frac{z}{(1-z)^{\beta}} \star f$, for $\beta \geq 0$. In particular, for $\beta=n \in \mathrm{~N}$. We have $D^{n+1} f=\frac{z}{n!}\left(z^{n-1} f\right)^{(n)}$. We let $\mathcal{R}_{\alpha}^{u}(A, B)$ denote the class $\mathcal{R}_{\alpha}^{u}(\phi)$, where $\phi(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$. For suitable choices of $\mathrm{A}, \mathrm{B}, \alpha$ the class $\mathcal{R}_{\alpha}^{u}(A, B)$ reduces to several well known classes of functions. $\mathcal{R}_{\frac{1}{2}}^{u}(1,-1)$ is the class S^{*} of starlike univalent functions.

Note 1.1. (see [4]) Let $F(z)=\sum_{k=0}^{\infty} a_{k} z^{k}=\int_{0}^{1} \frac{d \mu(t)}{1-t z}$ where, $a_{k}=$ $\int_{0}^{1} t^{k} d \mu(t), \mu(t)$ is a probability measure on $[0,1]$. Let T denote the set of all such functions F. They are analytic in the slit domain Λ.

Note 1.2. (see [3]) Let Ω be a circular domain containing the origin, $\alpha \leq 1$, and let $f \in \mathcal{R}_{\alpha}(\Omega), F \in \mathcal{R}_{\alpha}^{u}$. Then $f * F \in \mathcal{R}_{\alpha}(\Omega)$.

To prove our result we need the following theorem.
ThEOREM 1.1. (see [2], [4]) Let $0 \leq \alpha \leq 1$ and $f \in H_{1}(\Lambda)$. Then $f \in \mathcal{R}_{\alpha}^{u}$ if and only if

$$
\begin{equation*}
\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f} \in T \tag{1.6}
\end{equation*}
$$

This admits an explicit representation of the function in \mathcal{R}_{α}^{u}. If $f \in H_{0}$ has all its Taylor coefficients at the origin different from zero we write $f^{(-1)}$ for the (possibly formal but) unique solution of $f * f^{(-1)}=\frac{1}{1-z}$.

Lemma 1.1. (see [1]) If $P_{1}(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is an analytic function with positive real part in Δ, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq\left\{\begin{aligned}
-4 v+2, & v \leq 0 \\
2, & 0 \leq v \leq 1 \\
4 v+2, & v \geq 1
\end{aligned}\right.
$$

when $v<0$, or $v>1$, the equality holds if and only if $P_{1}(z)$ is $\frac{1+z}{1-z}$ or one of its rotations.when $0<v<1$, then the equality holds if and only if $P_{1}(z)$ is $\frac{1+z^{2}}{1-z^{2}}$ or one of its rotations. If $v=0$, the equality holds if and only if $P_{1}(z)=\left(\frac{1}{2}+\frac{\lambda}{2}\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{\lambda}{2}\right) \frac{1-z}{1+z} .0 \leq \lambda \leq 1$ or one of its rotations. If $v=1$, the equality holds if and only if $P_{1}(z)$ is the reciprocal of one of the function for which the equality holds in the case of $v=0$. Also the above upper bound can be improved as follows when $0<v<1$

$$
\begin{array}{ll}
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leq 2 & \left(0<v \leq \frac{1}{2}\right) \\
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leq 2 & \left(\frac{1}{2}<v \leq 1\right) .
\end{array}
$$

2. Series representation for universally prestarlike functions

Theorem 2.1. Let f be an universally prestarlike function of order $0 \leq \alpha \leq 1$, then the function $f(z)$ has a representation of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

where

$$
\begin{gather*}
a_{n}=\left\{\frac{\sum_{k=1}^{n-1} \mathcal{C}(\alpha, k) a_{k} b_{n-k}}{\mathcal{C}^{\prime}(\alpha, n)-\mathcal{C}(\alpha, n)}\right\}, \quad n=2,3, \ldots \tag{2.1}\\
\mathcal{C}(\alpha, n)=\frac{\prod_{k=2}^{n}(k-2 \alpha)}{(n-1)!}, \quad \mathcal{C}(\alpha, k)=\frac{\prod_{m=2}^{k}(m-2 \alpha)}{(k-1)!}, \mathcal{C}(\alpha, 1) a_{1}=1
\end{gather*}
$$

$\mathcal{C}^{\prime}(\alpha, n)=\frac{\prod_{k=2}^{n}(k+1-2 \alpha)}{(n-1)!}, \quad b_{n}=\int_{0}^{1} t^{n} d \mu(t)$ and $\mu(t)$ is a probability measure on $[0,1]$.

Proof. By Theorem 1.1, $f \in \mathcal{R}_{\alpha}^{u}$ if and only if $\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f} \in T$. Hence, $\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f}=\int_{0}^{1} \frac{d \mu(t)}{1-t z}$, for some probability measure $\mu(t)$ on $[0,1]$,

$$
\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f}=\sum_{n=0}^{\infty} b_{n} z^{n}, \quad \text { where } \quad b_{n}=\int_{0}^{1} t^{n} d \mu(t)
$$

Therefore,

$$
D^{3-2 \alpha} f=z+\sum_{n=2}^{\infty} \mathcal{C}^{\prime}(\alpha, n) a_{n} z^{n}
$$

where $\mathcal{C}^{\prime}(\alpha, n)=\frac{\prod_{k=2}^{n}(k+1-2 \alpha)}{(n-1)!}, \quad n=2,3, \ldots$
Now,

$$
D^{2-2 \alpha} f=z+\sum_{n=2}^{\infty} \mathcal{C}(\alpha, n) a_{n} z^{n},
$$

where $\mathcal{C}(\alpha, n)=\frac{\prod_{k=2}^{n}(k-2 \alpha)}{(n-1)!}, \quad n=2,3, \ldots$
Therefore,

$$
\begin{equation*}
\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f}=\frac{z+\sum_{n=2}^{\infty} \mathcal{C}^{\prime}(\alpha, n) a_{n} z^{n}}{z+\sum_{n=2}^{\infty} \mathcal{C}(\alpha, n) a_{n} z^{n}}=\sum_{n=0}^{\infty} b_{n} z^{n} \tag{2.2}
\end{equation*}
$$

Equating the like of coefficients, we obtain for $n=2,3, \ldots$:

$$
a_{n}=\frac{\sum_{k=1}^{n-1} \mathcal{C}(\alpha, k) a_{k} b_{n-k}}{\mathcal{C}^{\prime}(\alpha, n)-\mathcal{C}(\alpha, n)},
$$

with $\mathcal{C}(\alpha, 1) a_{1}=1$.

3. Main result

We now establish the Fekete Szegö inequality.
Theorem 3.1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is a universally prestarlike function of order α, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{lr}
\frac{B_{2}+(2-2 \alpha) B_{1}^{2}-(3-2 \alpha) B_{1}^{2} \mu}{3-2 \alpha}, & \mu \leq \sigma_{1} \\
\frac{B_{1}}{3-2 \alpha}, & \sigma_{1} \leq \mu \leq \sigma_{2} \\
\frac{-B_{2}-(2-2 \alpha) B_{1}^{2}+(3-2 \alpha) B_{1}^{2} \mu}{3-2 \alpha}, & \mu \geq \sigma_{2}
\end{array}\right.
$$

where $\quad \sigma_{1}=\frac{\left(B_{2}-B_{1}\right)+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}, \sigma_{2}=\frac{\left(B_{2}+B_{1}\right)+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}$.
The result is sharp.
Proof. If $f \in \mathcal{R}_{\alpha}^{u}$, then there is a Schwartz function $w(z)$, analytic in Δ with $w(0)=0$ and $|w(z)|<1$ in Δ such that $\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f}=\phi(w(z))$. Define the function $P_{1}(z)$ by $P_{1}(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\ldots$. Since $w(z)$ is a Schwartz function, we see that $\operatorname{Re} P_{1}(z)>0$ and $P_{1}(0)=1$. Define the function $P(z)=\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f}=1+b_{1} z+b_{2} z^{2}+\ldots$ Now, $P(z)=\phi\left(\frac{P_{1}(z)-1}{P_{1}(z)+1}\right)$, where

$$
\begin{aligned}
\frac{P_{1}(z)-1}{P_{1}(z)+1} & =\frac{c_{1} z+c_{2} z^{2}+\ldots}{2+c_{1} z+c_{2} z^{2}+\ldots} \\
& =\frac{1}{2}\left[c_{1} z+z^{2}\left[c_{2}-\frac{c_{1}^{2}}{2}\right]+z^{3}\left[c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right]+\ldots\right]
\end{aligned}
$$

Hence, on simplification, we get

$$
P(z)=1+\frac{B_{1} c_{1} z}{2}+\left[\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4}\right] z^{2}+\ldots
$$

Therefore,

$$
1+b_{1} z+b_{2} z^{2}+\ldots=1+\frac{B_{1} c_{1} z}{2}+\left[\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4}\right] z^{2}+\ldots
$$

Equating the like coefficients, we get

$$
\begin{gather*}
b_{1}=\frac{B_{1} c_{1}}{2} \tag{3.1}\\
b_{2}=\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4} . \tag{3.2}
\end{gather*}
$$

Now, $\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f}=1+b_{1} z+b_{2} z^{2}+\ldots$ From equation (2.2), we have

$$
\begin{gathered}
1+\left[\mathcal{C}^{\prime}(\alpha, 2) a_{2}-\mathcal{C}(\alpha, 2) a_{2}\right] z+\left[\mathcal{C}^{\prime}(\alpha, 3) a_{3}-\mathcal{C}(\alpha, 2) \mathcal{C}^{\prime}(\alpha, 2) a_{2}^{2}-\mathcal{C}(\alpha, 3) a_{3}\right. \\
\left.+\left(\mathcal{C}(\alpha, 2) a_{2}\right)^{2}\right] z^{2}+\ldots=1+b_{1} z+b_{2} z^{2}+\ldots
\end{gathered}
$$

Equating the coefficients of z and z^{2} respectively and simplifying, we get

$$
\begin{equation*}
a_{2}=b_{1} \quad, \quad a_{3}=\frac{b_{2}+(2-2 \alpha) b_{1}^{2}}{3-2 \alpha} \tag{3.3}
\end{equation*}
$$

Applying equations (3.1) and (3.2) in (3.3), we get

$$
a_{2}=\frac{B_{1} c_{1}}{2} \quad, \quad a_{3}=\frac{1}{3-2 \alpha}\left[\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4}+(2-2 \alpha) \frac{B_{1}^{2} c_{1}^{2}}{4}\right] .
$$

Now,

$$
\begin{array}{r}
a_{3}-\mu a_{2}^{2}=\frac{1}{3-2 \alpha}\left[\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4}+(2-2 \alpha) \frac{B_{1}^{2} c_{1}^{2}}{4}\right]-\mu \frac{B_{1}^{2} c_{1}^{2}}{4} \\
=\frac{1}{3-2 \alpha} \frac{B_{1}}{2}\left[c_{2}-c_{1}^{2}\left[\frac{1}{2}-\frac{B_{2}}{2 B_{1}}-(2-2 \alpha) \frac{B_{1}}{2}+(3-2 \alpha) \mu \frac{B_{1}}{2}\right]\right] \\
=\frac{B_{1}}{2(3-2 \alpha)}\left[c_{2}-c_{1}^{2} v\right],
\end{array}
$$

where

$$
v=\left[\frac{1}{2}-\frac{B_{2}}{2 B_{1}}-(2-2 \alpha) \frac{B_{1}}{2}+(3-2 \alpha) \mu \frac{B_{1}}{2}\right] .
$$

Now by an application of Lemma 1.1, if $\mu \leq \sigma_{1}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{2}+(2-2 \alpha) B_{1}^{2}-(3-2 \alpha) B_{1}^{2} \mu}{3-2 \alpha},
$$

where

$$
\sigma_{1}=\frac{\left(B_{2}-B_{1}\right)+(2-2 \alpha) B_{1}^{2} \mu}{(3-2 \alpha) B_{1}^{2}} .
$$

Now, if $\sigma_{1} \leq \mu \leq \sigma_{2}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{3-2 \alpha} .
$$

Now, if $\mu \geq \sigma_{2}$,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{-B_{2}-(2-2 \alpha) B_{1}^{2}+(3-2 \alpha) B_{1}^{2} \mu}{3-2 \alpha}
$$

where

$$
\sigma_{2}=\frac{\left(B_{2}+B_{1}\right)+(2-2 \alpha) B_{1}^{2} \mu}{(3-2 \alpha) B_{1}^{2}}
$$

If $\mu=\sigma_{1}$, then the equality holds in Lemma 1.1, if and only if

$$
P_{1}(z)=\left(\frac{1}{2}+\frac{\lambda}{2}\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{\lambda}{2}\right) \frac{1-z}{1+z}, 0 \leq \lambda \leq 1,
$$

or one of its rotations. If $\mu=\sigma_{2}$, then

$$
\frac{1}{P_{1}(z)}=\frac{1}{\left(\frac{1}{2}+\frac{\lambda}{2}\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{\lambda}{2}\right) \frac{1-z}{1+z}}
$$

If $\sigma_{1}<\mu<\sigma_{2}, P_{1}(z)=\frac{1+\lambda z^{2}}{1-\lambda z^{2}}$. To show that the bounds are sharp, we define the function $K_{\alpha}^{\phi_{n}}(n=2,3, \ldots)$ by

$$
\frac{D^{3-2 \alpha} K_{\alpha}^{\phi_{n}}}{D^{3-2 \alpha} K_{\alpha}^{\phi_{n}}}=\phi\left(z^{n-1}\right),
$$

$K_{\alpha}^{\phi_{n}}(0)=0,\left(K_{\alpha}^{\phi_{n}}\right)^{\prime}(0)=1$ and function F_{α}^{λ} and $G_{\alpha}^{\lambda}(0 \leq \lambda \leq 1)$ by

$$
\frac{\left(D^{3-2 \alpha} F_{\alpha}^{\lambda}\right)(z)}{\left(D^{2-2 \alpha} F_{\alpha}^{\lambda}\right)(z)}=\phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right),
$$

$F_{\alpha}^{\lambda}(0)=0,\left(F_{\alpha}^{\lambda}\right)^{\prime}(0)=1$ and similarly,

$$
\frac{\left(D^{3-2 \alpha} G_{\alpha}^{\lambda}\right)(z)}{\left(D^{2-2 \alpha} G_{\alpha}^{\lambda}\right)(z)}=\phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right)
$$

$G_{\alpha}^{\lambda}(0)=0,\left(G_{\alpha}^{\lambda}\right)^{\prime}(0)=1$. Clearly, the functions $K_{\alpha}^{\phi_{n}}, F_{\alpha}^{\lambda}, G_{\alpha}^{\lambda} \in \mathcal{R}_{\alpha}^{u}$. Also we write $K_{\alpha}^{\phi}:=K_{\alpha}^{\phi_{2}}$. If $\mu<\sigma_{1}$ or $\mu<\sigma_{2}$, then the equality holds if and only if f is K_{α}^{ϕ} or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, then the equality holds if and only if f is $K_{\alpha}^{\phi_{3}}$ or one of its rotations. If $\mu=\sigma_{1}$, then the equality holds if and only if f is F_{α}^{λ} or one of its rotations If $\mu=\sigma_{2}$ then the equality holds if and only if f is G_{α}^{λ} or one of its rotations. Hence the result follows.

Remark 3.1. If $\sigma_{1} \leq \mu \leq \sigma_{2}$, then in view of Lemma 1.1, Theorem 3.1 can be improved. Let σ_{3} be given by

$$
\sigma_{3}=\frac{B_{2}+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}
$$

If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\frac{(3-2 \alpha) \mu B_{1}^{2}-\left[\left(B_{2}-B_{1}\right)+(2-2 \alpha) B_{1}^{2}\right]}{(3-2 \alpha) B_{1}^{2}}\right)\left|a_{2}^{2}\right| \leq \frac{B_{1}}{3-2 \alpha} .
$$

If $\sigma_{2} \leq \mu \leq \sigma_{3}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\frac{-(3-2 \alpha) \mu B_{1}^{2} B_{2}+B_{1}+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}\right)\left|a_{2}^{2}\right| \leq \frac{B_{1}}{3-2 \alpha} .
$$

Proof. For $\sigma_{1} \leq \mu \leq \sigma_{3}$, we have

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\sigma_{1}\right)\left|a_{2}^{2}\right| \\
& =\frac{B_{1}}{2(3-2 \alpha)}\left|c_{2}-v c_{1}^{2}\right|+\left(\mu-\frac{\left[\left(B_{2}-B_{1}\right)+(2-2 \alpha) B_{1}^{2}\right]}{(3-2 \alpha) B_{1}^{2}}\right) \frac{B_{1}^{2}\left|c_{1}\right|^{2}}{4} \\
& =\frac{B_{1}}{2(3-2 \alpha)}\left(\frac{(3-2 \alpha) \mu B_{1}^{2}-B_{2}-B_{1}-(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}\right) \frac{B_{1}^{2}\left|c_{1}\right|^{2}}{4} \\
& =\frac{B_{1}}{(3-2 \alpha)}\left[\frac{1}{2}\left|c_{2}-v c_{1}^{2}\right|+\frac{1}{2} v\left|c_{1}\right|^{2}\right] \\
& =\frac{B_{1}}{(3-2 \alpha)}\left[\frac{1}{2}\left[\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2}\right]\right] .
\end{aligned}
$$

Now, by using Lemma 1.1, we get $\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\sigma_{1}\right)\left|a_{2}^{2}\right| \leq \frac{B_{1}}{(3-2 \alpha)}$. Now, for $\sigma_{2} \leq \mu \leq \sigma_{3}$, we have

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\left(\sigma_{2}-\mu\right)\left|a_{2}^{2}\right| \\
& =\frac{B_{1}}{2(3-2 \alpha)}\left|c_{2}-v c_{1}^{2}\right|+\left(\frac{B_{2}+B_{1}+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}-\mu\right) \frac{B_{1}^{2}\left|c_{1}\right|^{2}}{4} \\
& =\frac{B_{1}}{2(3-2 \alpha)}\left(\frac{-(3-2 \alpha) \mu B_{1}^{2}+B_{2}+B_{1}+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}\right) \frac{B_{1}^{2}\left|c_{1}\right|^{2}}{4} \\
& =\frac{B_{1}}{(3-2 \alpha)}\left(\frac{1}{2}\left[\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2}\right]\right) .
\end{aligned}
$$

Now, by using Lemma 1.1, we get $\left|a_{3}-\mu a_{2}^{2}\right|+\left(\sigma_{2}-\mu\right)\left|a_{2}^{2}\right| \leq \frac{B_{1}}{(3-2 \alpha)}$.
Hence the result follows.

References

[1] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions. Proc. Conf. on Complex Analysis (Eds: F. Li, L. Ren, L. Yang, S. Zhang), Int. Press (1994), 157-169.
[2] S. Ruscheweyh, Some properties of prestarlike and universally prestarlike functions. Intern. Conf. Geometric Function Theory, J. Analysis 15 (2007), 247-254.
[3] S. Ruscheweyh, L. Salinas, Universally prestarlike functions as convolution multipliers. Mathematische Zeitschrift (2009), 607-617.
[4] S. Ruscheweyh, L. Salinas, T. Sugawa, Completely monotone sequences and universally prestarlike functions. Israel J. Math. 171 (2009), 285304.

Department of Mathematics
Anna University Chennai, Chennai - 600025, INDIA

* e-mail: shan@annauniv.edu
** e-mail: j_lourthumary@annauniv.edu
Received: GFTA, August 27-31, 2010

[^0]: (c) 2010, FCAA - Diogenes Co. (Bulgaria). All rights reserved.

