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Abstract

In studying the behaviour of series, defined by means of the Mittag-
Leffler functions, on the boundary of its domain of convergence in the com-
plex plane, we prove Cauchy-Hadamard, Abel, Tauber and Littlewood type
theorems. Asymptotic formulae are also provided for the Mittag-Leffler
functions in the case of “large” values of indices that are used in the proofs
of the convergence theorems for the considered series.
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1. Introduction

The Mittag-Leffler functions E, (Mittag-Leffler, 1902-1905) and E,_ g3
(Agarwal 1953, see also [5]), are defined in the whole complex plane C by
the power series:

o0 k

z > Zk
Eo(z2) = > Tk 1) Eop(z) = kZ:O ek a7 0, 6>0. (1.1)

o
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The Mittag-Leffler functions (1.1) are examples of entire functions of
a given order p = 1/a and a type 0 = 1. They have been studied in
details by Dzrbashjan [1], [2]: asymptotic formulae in different parts of the
complex plane, distribution of the zeros, kernel functions of inverse Borel
type integral transforms, various relations and representations. The detailed
properties of these functions can be found in the contemporary monographs
of Kilbas et al. [4] and Podlubny [15].

In our previous papers ([9] - [12]) we studied series in systems of some
other representatives of the SF of FC, which are fractional indices analogues
of the Bessel functions and also multi-index Mittag-Leffler functions (in the
sense of [5],[6],[7]), and proved Cauchy-Hadamard, Abel and Tauberian type
theorems in the complex domain.

In this paper we prove some inequalities in the complex plane C and on
its compact subsets, asymptotic formulae for ”large” values of indices of the
functions (1.1) and study the convergence of series in such kind of functions.

2. Inequalities and asymptotic formulae

In this point we prove some asymptotic formulae for ”large” values of
indices. Denote

ZFkn—l—l On,5 ;ka—i—ﬁ (2.1)

%m@y_mmggrmk+m. (2.2)

LEMMA 2.1. Let n € N, z € C and K C C be a nonempty compact set.
Then the following inequalities hold

1 [z exp(lz])

1

< = — < .

02 < 2 (exp (D)= 1), 1005l € gy TR (23
I'(n)

< — — .

Bn(2)] < ey T+ 1) (Eallz) = 1), (2.4
and moreover there exists a constant C', 0 < C' < oo, such that

6,(2) < O/l [up(2)] < C/n—1)1, an(z)] < O—T)_ (25)

n — * n,ﬂ — *y a,n — F(O[ + n) 9 .

for all the natural numbers n and each z € K.
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P roof. First, let z € C. Then we can write

L(nt+1) 4 1 & X
0 = = —
n(2) I'(n+1 F kn +1) n! kz_: n)! ‘
Denoting ug(z) = (on)] 2", we obtain the estimate |ug(z)| < o for the

absolute value of ug(z). Since the series Z ‘Zk‘ converges for each z € C
k=1
and its sum is exp(]z|) — 1, then the first of the estimates (2.3) hold on the

whole complex plane.
The second of the estimates (2.3) are proved in [13].

To prove (2.4), we write

oo
I'(a+n)
0 =
an(?) a+n 221 I‘(ozk:—i—n
and denoting
- TIla+n) _ ok
Tn,k = m, Un,k(z) =Tnk =,

we obtain consecutively

~ . a+1 T (a+s) _ Tla+1)
n1=1; 0 n < ,forke N, k#£1,
it <k = Tlak + 1) 1;[ okt s) = Dok 1) kel k7
_ T(a+1
()] = ot < [ S ot fork e

and therefore

T(n)T(a+1) [ |z|*

which proves (2.4).
Further, for all z on the compact set K, the inequalities (2.5) follow
immediately from the inequalities (2.3) and (2.4). [

THEOREM 2.1. For the Mittag-Leffler functions E,, E, 3, Ean (n € N),
the following asymptotic formulae

E, (2) =140,(2), 2z€C, 0,(2) -0 as n— o0 (2.6)
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E, 3(z) = F(lﬂ (1+6,5(2), 2€C, b,5(2) =0 as n—oo (2.7)
Ean(z) = F(ln) (14 00n(2)), 2€C, fan(z) =0 as n—oo (2.8)

~—

are valid. The functions 0,(2), 0, (%), 8a.n(2) are holomorphic for z € C.
The convergence is uniform on the compact subsets of C.

P r o o f. The identities (2.6)-(2.8) obtain due to (1.1), (2.1) and (2.2)
automatically. The holomorphy of 6,(z), 6, 3(2), Oan(z) follows from the
holomorphy of E,(z), Ey, (%), Ean(z) on the whole complex plane and the
equalities (2.6) - (2.8). The rest follows immediately from Lemma 2.1. m

NOTE 2.1. According to the asymptotic formulae (2.6) - (2.8), it follows
there exists a natural number M such that the functions E,, I'(n)Eq,,
I'(B) Ey, g have not any zeros at all for n > M.

3. Series in Mittag-Leffler functions

We introduce the following auxiliary functions, related to Mittag-Leffler’s
functions, adding Ey(2), Ep (%)) and E, o(2) just for completeness, namely:
Eo(z) =1; En(z) =2"En(2), n €N,

Eop(2) =1; Enp(2) =T(8)2"Enp(z), n€N; 8> 0,
EO[’()(Z) =1; Eanl(z) = I'(n)z"Ean(z), n€N; a>0,

and consider the series in these functions, respectively:

Y anEn(z), > anknp(z), Y anEan(2), (3.1)
n=0 n=0 n=0

with complex coefficients a,, (n =0,1,2,...).

Our main objective is to study the convergence of the series (3.1) in the
complex plane. We prove theorems, corresponding to the classical Cauchy-
Hadamard, Abel, Tauber and Littlewood theorems. Such kind of results are
provoked by the fact that the solutions of some fractional order differential
and integral equations can be written in terms of series (or series of integrals)
of Mittag-Leffler functions (as for example in Sagabi and Kiryakova [19]).
Convergence theorems are obtained also for series in other special functions,
for example, for series in Laguerre and Hermite polynomials [16] - [18], and
resp. by the author for series in Bessel functions and their Wright’s 2, 3,
and 4-index generalizations in the previous papers [9] - [12].
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4. Cauchy-Hadamard and Abel type theorems

In the beginning we give a theorem of Cauchy-Hadamard type for every
one of the above series.

THEOREM 4.1. (OF CAUCHY-HADAMARD TYPE). The domain of con-
vergence of each one of the series (3.1) with complex coefficients a,, is the
disk |z| < R with a radius of convergence R = 1/A, where

A = limsup ( |an| )™ (4.1)
n—oo
The cases A = 0 and A = 0o can be included in the general case, provided
1/A means oo, respectively 0.

Idea of Proof Using the asymptotic formulae (2.6) - (2.8), we
evaluate the absolute value of the general term of each of the series (3.1).
Further the proof goes separately in the three cases: A =0, 0 < A <
00, A = co. We show the absolute convergence of the series (3.1) in the
circular domain {z : z € C, |z| < R}. In the second case we prove that
the series is divergent for |z| > R and in the third case - divergent for all
complex z # 0. [

Let zp € C, 0 < R < o0, |20] = R and g, be an arbitrary angular
domain with size 2¢p < 7 and with vertex at the point z = zg, which is
symmetric with respect to the straight line defined by the points 0 and zg.
The following theorem is valid.

THEOREM 4.2. (OF ABEL TYPE). Let {ay}>2 be a sequence of complex
numbers, A be the real number defined by (4.1), 0 < A < co. Let K = {z:
z€C, |z| < R,R=1/A}. If f(2), g(2; B), h(z; ) are the sums respectively
of the first, second and third of the series (3.1) on the domain K, and these
series converge at the point zy of the boundary of K, then:

lim f(z Zan (20), hrgl g(z Zan n, 8(20), (4.2)

z2—20

lim A(z; «) Zan o, n(20), (4.3)

provided |z| < R and z € g,,.
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P roof Let us consider the difference

A(z) =Y anEn(z0) = f(z) = Y an(En(20) = En(2)) (4.4)
n=0 n=0

and represent it in the form

k o)
A(Z):Zan(En(ZO) — En(2)) + Z an(En(20) — En(2)).
n=0 n=k+1
Let p > 0. By using the notations

ﬂm = Z anEn(ZD)v m > k, ﬁk = 0, ’Yn(z) =1- En(z)/ﬁn(z())a
n=k+1
and the Abel transformation (see in ([8], vol.1, ch.1, p.32, 3.4:7), we obtain

consecutively:
k+p k+p

Z an(En(ZO) - En(z)) = Z (ﬁn - /Bn—l)fyn(’@

n=k+1 n=k+1
k+p—1

= Bk+p’7k+p(z) - Z Bn(Yn+1(2) — m(2)),

: —k+1
ie. n=kE

k+p k+p

Y an(Bn(20) = En(2)) = (1 = Exip(2)/Brap(z0)) Y anEnlz0)

n=k+1 n=k+1

oy ( > @5@0)) ( B Bual) ) |

it \emht1 En(20))  Ent1(20))
According to Note 2.1, there exists a natural number M such that Ey, (z0)#0
when n > M. Let k > M. Then, for every natural n > k:
En(2)/En(20) = En1(2)/ Ent1(20) (4.5)
o (U 0a(2) (101 (20)) = (/20) (4Ot (2)) (146 (20))
= (2/20) :
(1401 (20)) (1+6n11(20))
For the right hand side of (4.5) we apply the Schwartz lemma. Then we get
that there exists a constant C":
|Bn(2)/ En(20) = Ent1(2)/Ent1(20)| < Clz = 20l /20"
Analogously, there exists a constant B:
|1 = Erip(2)/ Ei4p(20)| < Bl2 = 20| < 2B]z0|.
Let ¢ be an arbitrary positive number and choose N(¢) so large that for
k > N (e) the inequality
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\ Z asEs(z0)| < min(e cos ¢/ (12B|z0]), € cos ¢/ (6C|z0]))
s=k+1

holds for every natural n > k. Therefore, for k > max(M, N(¢)):

| Z asEy(z0)| < min(e cos p/(12B]z0]), € cos ¢/ (6C|z0]),

s=k+1
and
| Y an(Enl20) = En(2))] < (cos/6)(1+ > |20 |z — 20]|2/20]")
n=k+1 n=k+1

< (ecos /6)(1 + |z — zol/([20] — [2]))-

But near the vertex of the angular domain g, in the part d, closed between
the angle’s arms and the arc of the circle with center at the point 0 and
touching the arms of the angle, we have |z — zo|/(|z0] — |2]) < 2/ cos g, i.e.
|z — 20| cos p < 2(|z0| — |z]). That is why the inequality

oo

| )" an(En(z0) — En(2))] < (ecosg) /6 +¢/3 < ¢/2 (4.6)
n=k+1

holds for z € d, and k > max(M, N(e)). Fix some k > max(M, N(e)) and
after that choose d(¢) such that if |z — 29| < d(g) then the inequality

k
1> " an(En(20) — En(2))] < £/2 (4.7)
n=0
holds inside d,. We get
IAGE)] = 1D an(En(z0) = En(2))]
n=0

for the module of the difference (4.4). From (4.6) and (4.7) it follows that
the first of the equalities (4.2) is satisfied.

The proofs of the second of the equalities (4.2) and (4.3) go by analogy.

(]

5. (E,zp) - summations

Let us consider the numerical series

Y an, an€C, n=01,2.. (5.1)
n=0
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To define its Abel summability ([3], p.20, 1.3 (2)), we consider also the

o0
power series Y a,z".
n=0

DEFINITION 5.1. The series (5.1) is called A - summable, if the series

o0
> anz™ converges in the disk D = {z: z € C, |z| < 1} and moreover there
n=0

o0
exists lim Y ap2" =S.
z—1-0 =

The complex number S is called A-sum of the series (5.1) and the usual
notation of that is

dan=5 (A
n=0

NoOTE 5.1. The A-summation is regular. It means that if the series
(5.1) converges, then it is A-summable, and its A-sum is equal to its usual
sum.

NOTE 5.2. The A-summability of the series (5.1) does not imply in
general its convergence. But, with additional conditions on the growth of
the general term of the series (5.1), the convergence can be ensured.

Note that each of the functions F(z), En’g(z), ann(z), (n € N), being
an entire function, no identically zero, has no more than finite number of
zeros in the closed and bounded set |z| < R ([8], Vol. 1, Ch. 3, §6, 6.1,
p.305). Moreover, because of Note 2.1, no more than finite number of these
functions have some zeros.

Let zp € C, |20] = R, 0 < R < o0, Eyn(2) # 0, E‘n,ﬁ(zo) # 0, and
Eon(z0) # 0. For the sake of brevity, denote
En(z)

EX(z;20) = =, E’s(z;2) =
n( ) En(ZO) nu@( )

(z520) = L"(Z)

Ea,n(ZO)

Envﬁ (Z) E*
= ) a,n
E, 5(20)

DEFINITION 5.2. The series (5.1) is said to be (E, zp) - summable, if
the series

ZanE;;(z; 20), (5.2)
n=0

converges in the disk |z| < R and, moreover, there exists the limit
oo

I WE (2 20), 5.3
Jlim > an (23 20) (5.3)

n=0
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provided z remains on the segment [0, zp).

DEFINITION 5.3. The series (5.1) is said to be (Eg,zp) - summable
(respectively (Eq, 29) - summable), if the series

o [e.9]
Z anky, 5(2; 20) (respectively Z anlly, (25 20))
n=0

n=0
converges in the disk |z| < R and, moreover, there exists the limit

o0 o
zh—>Hzl0 2) anEy, 5(2; 20) (respectively Zli_)rglo z;) anly, (23 20)),
n= n=

provided z remains on the segment [0, 2p).

NoTE 5.3. Every (E, z0)—, (Eg, 20)—, (Fa, 20)— summation is regular,
and this property is just a particular case of Theorem 4.2.

6. Tauberian type theorems

A Tauberian theorem is a statement that relates the Abel summabil-
ity and the standard convergency of a numerical series by means of some
assumptions imposed on the general term of the series under question. A
classical result in this direction is given by Theorem 85 ([3]).

In this paper we extend the validity of such type of assertion to series
in Mittag-Leffler functions. Tauber type theorems are given also for sum-
mations by means of Laguerre polynomials [16], and Bessel type functions
by the author [9] - [12].

THEOREM 6.1. (OF TAUBER TYPE). If the series (5.1) is (E,z) -
summable, (or (Eg, zy) respectively (Eq, zo) - summable), and

lim na, =0, (6.1)

n—oo
then it is convergent.

P roof. Let z belong to the segment [0, z9]. Taking into account the
asymptotic formula (2.6) for the Mittag-Leffler functions, we obtain:

anEr (25 20) = an, <;) % = ay, (;) (1 + gn(Z, ZO)) )
0,(2) — 0,(20)
1+ 6, (20)

0n(z; 20) = O(1/n!). (6.2)

where 0, (z; 29) = . Then, due to (2.5):
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Let us write (5 2) in the form

o0 > n "

Zan (2;20) n;)an (Z()) (1 +9n(z,zo)). (6.3)

Denoting wy(z) = ap, (%) 0, (2; 20) we consider the series 3 wy(2). Since
n=0

lwn(2)] < |an| |6n(z; 20)| and according to condition (6.1) and the relation-
ship (6.2), there exists a constant C, such that |w,(z)] < C/n? Since
Z 1/n? converges, the series Z wp(z) is also convergent, even absolutely

n=1
and uniformly on the segment [O 20)- Therefore (since hm wp(z) =0)

215210 E:O wp(z Z Zlgrzlo wy(2) = 0.
n—
Obviously, the assumption that the series (5.1) is (E, zp) - summable implies

the existence of the limit (5.3). Then, having in mind that (6.3) can be
written in the form

Zan (2 20) ian<) +Zan<20> n(2:20),

n=0 n=0

we conclude that there exists the limit

o Py n
Zlgrzlo Z an <Z0> (6.4)
o0 > n
ZlLrglo Z anE} (2 20) = zli)rglo Z an <ZO>

n=0
From the existence of the limit (6.4) it follows that the series (5.1) is A-
summable. Then according to Theorem 85 from [3], the series (5.1) con-
verges.
The proofs of the theorem for the other two cases (Eg, 29)- and (Eq, 20)-

summations go in the same way. ]

and, moreover,

At first sight it seems that the condition a,, = o(1/n) is essential. Nev-
ertheless, Littlewood succeeds to weaken it and obtain the strengthened
version of the Tauber theorem ([3], Theorem 90).

A Littlewood generalization of the o(n) version of a Tauber type theorem
(Theorem 6.1) is also given in this part. Similar theorem for series in Bessel
functions series is also proved, see [12].

THEOREM 6.2 (OF LITTLEWOOD TYPE). If the series (5.1) is (E, zp) -
summable, (or (Eg, zo) respectively (Eq,20) - summable), and
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an, = 0O(1/n) (6.5)
then the series (5.1) converges.

Idea of the P roof Using Theorem 90 in the place of
Theorem 85, [3], the proof of the (Eg, z9) summability follows the line of
that of Theorem 6.1 and the ideas of the proofs of the cases of (E, zp)- and
(Ea, z0)-summabilities, given in [13], respectively [14]. [
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