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Abstract

Harmonic function in the open unit disc D = {z ∈ C||z| < 1} can be
written as a sum of an analytic and an anti-analytic function, f = h(z) +
g(z), where h(z) and g(z) are analytic functions in D, and are called the
analytic part and co-analytic part of f , respectively.

One of the most important questions in the study of the classes of such
functions is related to bounds on the modulus of functions (growth) or
modulus of the derivative (distortion). The aim of this paper is to give the
growth and distortion theorems for the close-to-convex harmonic functions
in the open unit disc D.
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1. Introduction

Let U be a simply connected domain in the complex plane C. A har-
monic function f has the representation f = h(z) + g(z), where h(z) and
g(z) are analytic in U and are called the analytic and co-analytic part
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of f , respectively. Let h(z) = zm + am+1z
m+1 + am+2z

m+2 + · · · and
g(z) = bmzm + bm+1z

m+1 + bm+2z
m+2 + · · · (m ∈ N) be analytic functions

in the open unit disc D. The Jacobian of the mapping f = h(z) + g(z),
denoted by Jf(z), and can be computed by Jf(z) = |h′(z)|2 − |g′(z)|2. If
Jf(z) = |h′(z)|2 − |g′(z)|2 > 0 or Jf(z) = |h′(z)|2 − |g′(z)|2 < 0, then f is
called a sense-preserving multivalent harmonic function. The class of all
sense-preserving multivalent harmonic functions with |bm| < 1 is denoted
by SH(m), and the class of all sense-preserving multivalent harmonic func-
tions with bm = 0 is denoted by S0

H(m). For convenience, we will investigate
sense-preserving harmonic functions, that is, functions for which Jf(z) > 0.
If Jf(z) < 0, then f is sense-preserving. The second analytic dilatation of a
harmonic function is given by w(z) = g′(z)/h′(z). We also note that if f is
locally univalent and sense-preserving, then |w(z)| < 1 for every z ∈ D.

In this paper we examine the class of functions that are convex in the
direction of real axis. The shear construction is essential to the present work
as it allows one to study harmonic functions through their related analytic
functions ([2], Hengartner and Shober). The shear construction produces a
univalent harmonic function that maps D to a region that is convex in the
direction of the real axis. This construction relies on the following theorem
of Clunie and Sheil-Small.

Theorem 1.1. ([1]) A harmonic function f = h(z) + g(z) locally univa-
lent in D is a univalent mapping of D onto a domain convex in the direction
of the real axis if and only if h(z)− g(z) is a conformal univalent mapping
of D onto a domain convex in the direction of the real axis.

Hengartner and Shober [2] studied analytic functions ψ(z) that are con-
vex in the direction of the imaginary axis. They used a normalization which
requires, in essence, that the right and left extremes of ψ(D) be the images of
1 and −1. This normalization is as follows: there exist points z′n converging
to z = 1 and z′′n converging to z = −1 such that

lim
n→∞Re{ψ(z′n)} = sup

|z|<1
Re{ψ(z)},

lim
n→∞Re{ψ(z′′n)} = inf

|z|<1
Re{ψ(z)}.

(1)

If CIA is the class of functions on the domains, D, that are convex in the
direction of the imaginary axis and admit a mapping ψ(z) so that ψ(D) = D
and ψ(z) satisfies the normalization (1), then we have the following result:
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Theorem 1.2. ([2]) Suppose that ψ(z) is analytic and non-constant for
|z| < 1. Then we have Re[(1− z2)ψ′(z)] ≥ 0 for |z| < 1 if and only if

(i) ψ(z) is univalent on D,

(ii) ψ(D) ∈ CIA, and

(iii) ψ(z) is normalized by (1).

We note that in the light of Theorem 1.2 and the normalization (1),
the region that is convex in the direction of the real and the region in
the direction of the imaginary axis are determined by the following three
remarks:

Remark 1.3. ([2]) The condition Re[(1−z2)ψ′(z)]≥ 0 (for |z|< 1),
has an elementary geometric interpretation. If we parametrize the line seg-
ment and circular arcs γt, −π/2 < t < π/2, joining z = −1 to z = 1 in the
unit disc by

γt : z = z(s) =
es+it − 1
es+it + 1

, −∞ < s < ∞,

then one easily verifies that
d

ds
Re[ψ(z(s))] = 2Re[(1− z2(s))ψ′(z(s))].

Consequently, the condition Re[(1− z2)ψ′(z)] ≥ 0 (for |z| < 1) is equivalent
to the property that the circular arcs γt are mapped onto analytic arcs
which may be represented as functions v = v(u). It follows that ψ(z) has
the normalization (1). Furthermore, since the region bounded by ψ(γt) ∪
ψ(1)∪ψ(−1) is convex in the v-direction for every −π/2 < t < π/2, we find
that ψ(|z| < 1) is also convex in the v-direction.

Remark 1.4. ([2]) An analytic function ψ(z) is close-to-convex if
there exists a convex mapping s(z) such that Re[ψ′(z)/s′(z)] > 0 for |z| <
1. Functions satisfying Re[(1 − z2)ψ′(z)] > 0 are special close-to-convex
functions associated with s(z) = 1

2 log[(1 + z)/(1 − z)]. W. Kaplan [3] has
shown that close-to-convex functions, hence functions satisfying Re[(1 −
z2)ψ′(z)] > 0, are univalent. The geometric interpretation of Remark 3
could also be used to show that functions satisfying Re[(1 − z2)ψ′(z)] > 0
are univalent.

Remark 1.5. ([4]) We also note that Theorem 1.1 has a natural
generalization when f is convex in the direction α. In that situation e−iαf
and ϕ(z) = e−iαh(z) − eiαg(z) are convex in the direction of the real axis,
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hence the function h(z)−ei2αg(z) is convex in the direction α. In particular,
we can use this construction when α = π/2 to construct functions that are
convex in the direction of the imaginary axis. At the same time, to be able
to use this result for functions that are convex in the direction of the real
axis, let us consider the following situation: suppose that ϕ(z) is a function
that is analytic and convex in the direction of the real axis. Furthermore,
suppose that ϕ is normalized by the following. Let there exist points z′n
converging to z = eiα and z′′n converging to z = ei(α+π) such that

lim
n→∞ Im{ϕ(z′n)} = sup

|z|<1
Im{ϕ(z)},

lim
n→∞ Im{ϕ(z′′n)} = inf

|z|<1
Im{ϕ(z)}.

(2)

Consequently, if ψ(z) satisfies (1), then ϕ(z) = iψ(e−iαz) satisfies (2).

Finally, let Ω be the family of functions φ(z) which are regular in D
and satisfying the conditions φ(0) = 0, |φ(z)| < 1 for every z ∈ D. Denote
by P(m) (with m being a positive integer) the family of functions p(z) =
m + p1z + p2z

2 + · · · which are regular in D and satisfying the conditions
p(0) = m, Rep(z) > 0 for all z ∈ D, and such that p(z) is in P(m) if and
only if

p(z) = m
1 + φ(z)
1− φ(z)

(3)

for some function φ(z) ∈ Ω and every z ∈ D. Let F (z) = z + α2z
2 + · · ·

and G(z) = z + β2z
2 + · · · be analytic functions in D, if there exist a

function φ(z) ∈ Ω such that F (z) = G(φ(z)) for all z ∈ D, then we say that
F (z) subordinate to G(z) and we write F (z) ≺ G(z). We also note that if
F (z) ≺ G(z), then F (D) ⊂ G(D).

Denote by S0
HC(m) the class of all m-valent harmonic functions in the

direction of real axis. In this paper we will give growth and distortion
theorems for the class S0

HC(m).

2. Main Results

Lemma 2.1. Let ϕ(z) = zm + cm+1z
m+1 + cm+2z

m+2 + · · · be analytic

in D. If ϕ(z) satisfies the condition Re
[
(1− z2m) ϕ′(z)

zm−1

]
> 0, then ϕ(z) is a

m-valent close-to-convex function and

mrm−1(1− r)
(1 + r2m)(1 + r)

≤ |ϕ′(z)| ≤ mrm−1(1 + r)
(1− r2m)(1− r)

(4)
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for all |z| = r < 1.

P r o o f. Let consider the function s(z) =
∫ z
0

ζm−1

1−ζ2m dζ. Since

1 + z
s′′(z)
s′(z)

= m
1 + z2m

1− z2m
⇒ Re

(
1 + z

s′′(z)
s′(z)

)
> 0

and

Re
(

ϕ′(z)
s′(z)

)
= Re

[
(1− z2m)

ϕ′(z)
zm−1

]
> 0,

then ϕ(z) is a m-valent close-to-convex function for all z ∈ D. On the other
hand, since

Re
[
(1− z2m)

ϕ′(z)
zm−1

]
> 0,

[
(1− z2m)

ϕ′(z)
zm−1

] ∣∣∣∣
z=0

= m,

p(z) ∈ P(m) ⇔ p(z) = m
1 + φ(z)
1− φ(z)

⇔ φ(z) =
p(z)−m

p(z) + m
,

for some φ(z) ∈ Ω, the function

φ(z) =
(1− z2m) ϕ′(z)

zm−1 −m

(1− z2m) ϕ′(z)
zm−1 + m

satisfies the conditions of Schwarz lemma, whence |φ(z)| ≤ r. Therefore we
have

∣∣∣∣∣
(1− z2m) ϕ′(z)

zm−1 −m

(1− z2m) ϕ′(z)
zm−1 + m

∣∣∣∣∣ ≤ r ⇒
∣∣∣∣(1− z2m)

ϕ′(z)
zm−1

−m
1 + r2

1− r2

∣∣∣∣ ≤
2mr

1− r2
. (5)

After straightforward calculations we obtain (4).

Corollary 2.2. If we take m = 1 in Lemma 2.1, we have
1− r

(1 + r2)(1 + r)
≤ |ϕ′(z)| ≤ 1

(1− r)2
.

This inequalities were obtained by Hengartner and Shober [2].

Theorem 2.3. Let f = h(z) + g(z) be an element of S0
H(m), and let

ϕ(z) = h(z)− g(z), w(z) = g′(z)
h′(z) . Furthermore, let ϕ(z) satisfies the condi-

tion Re
[
(1− z2m) ϕ′(z)

zm−1

]
> 0 for all z ∈ D, then for |z| < r
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mrm−1(1− r)
(1 + r2m)(1 + r)2

≤ |fz| ≤ mrm−1(1 + r)
(1− r)2(1− r2m)

(6)

and

|w(z)|mrm−1(1− r)
(1 + r2m)(1 + r)2

≤ |fz̄| ≤ mrm−1(1− r)
(1− r)2(1− r2m)

(7)

for all |z| = r < 1, where w = g′/h′ is second analytic dilatation of f .

P r o o f. Since ϕ(z) = h(z)− g(z), then we have

h′(z) = fz =
ϕ′(z)

1− w(z)
, g′(z) = fz̄ =

ϕ′(z)w(z)
1− w(z)

, |w(z)| < 1.

Therefore, we have
|ϕ′(z)|

1 + |w(z)| ≤ |fz| ≤ |ϕ′(z)|
1− |w(z)| , (8)

and
|w(z)||ϕ′(z)|
1 + |w(z)| ≤ |fz̄| ≤ |w(z)||ϕ′(z)|

1− |w(z)| . (9)

Using Lemma 2.1 and the Schwarz lemma in (8) and (9), we get (6)
and (7), respectively. We note that the inequalities are sharp because the
extremal functions can be found as

(1− z2m)
ϕ′(z)
zm−1

= m
1 + z

1− z
, (1− z2m)

ϕ′(z)
zm

= m
1− z

1 + z

(i.e., p(z) ∈ P(m) then 1
p(z) ∈ P(m))

h′(z) =
∫ z

0

ϕ′(ζ)
1− w(ζ)

dζ, g′(z) =
∫ z

0

ϕ′(ζ)w(ζ)
1− w(ζ)

dζ,

the solution of h(z) and g(z) must be found under the conditions h(0) =
g(0) = 0.

f = h(z) + g(z) =
∫ z

0

ϕ′(ζ)
1− w(ζ)

dζ +
∫ z

0

ϕ′(ζ)w(ζ)
1− w(ζ)

dζ

=
∫ z

0

ϕ′(ζ)
1− w(ζ)

dζ +
∫ z

0

ϕ′(ζ)
1− w(ζ)

dζ −
∫ z

0
ϕ′(ζ)dζ

= Re
(∫ z

0

2ϕ′(ζ)
1− w(ζ)

dζ

)
− ϕ(z).

We also note that the second dilatation must be chosen suitably.
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Corollary 2.4. If we take m = 1 in Theorem 2.3, we have
1− r

(1 + r2)(1 + r)2
≤ |fz| ≤ 1

(1− r)3
,

|w(z)|(1− r)
(1 + r2)(1 + r)2

≤ |fz̄| ≤ r

(1− r)3
.

These inequalities were obtained by Schambroeck [4].

Theorem 2.5. Let f = h(z) + g(z) be an element of S0
H(m), and let

ϕ(z) = h(z)− g(z), w(z) = g′(z)
h′(z) , Re

[
(1− z2m) ϕ′(z)

zm−1

]
> 0, then

|f | ≤
∫ r

0

mρm−1(1 + ρ)2

(1− ρ)2(1− ρ2m)
dρ

P r o o f. We have

f = h(z) + g(z) ⇒ |f | = |h(z) + g(z)| ≤ |h(z)|+ |g(z)|
≤

∫ r

0
|fz(ρeiθ)eiθ|dρ +

∫ r

0
|fz̄(ρeiθ)e−iθ|dρ

=
∫ r

0
|fz(ρeiθ)|dρ +

∫ r

0
|fz̄(ρeiθ)|dρ

=
∫ r

0

mρm−1(1 + ρ)
(1− ρ)2(1− ρ2m)

dρ +
∫ r

0

mρm(1 + ρ)
(1− ρ)2(1− ρ2m)

dρ.

Corollary 2.6. If we take m = 1 in Theorem 2.5, then we obtain

|f | ≤ r

(1− r)2
.

This inequality was obtained by Schambroeck [4].
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