

NOTE ON RADIUS PROBLEMS FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS

Neslihan Uyanik ¹, Shigeyoshi Owa ²

We dedicate this paper to the 60th anniversary of Professor Y. Polatoglu

Abstract

For analytic functions f(z) normalized by f(0) = f'(0) - 1 = 0 in the open unit disk \mathbb{U} , the subclass $\mathcal{A}(\alpha, \beta; \lambda)$ of functions f(z) which satisfy

$$\left| \alpha \left(\frac{z}{f(z)} \right)'' + \beta z^2 \left(\frac{1}{f(z)} - \frac{1}{z} \right)' \right| \le \lambda \quad (z \in \mathbb{U})$$

for some complex numbers α and β and for some real $\lambda > 0$ is introduced. The object of the present paper is to discuss some radius properties for $S^*(\gamma)$ such that $\frac{1}{\delta}f(\delta z) \in \mathcal{A}(\alpha,\beta;\lambda)$.

MSC 2010: 30C45

Keywords and Phrases: analytic function, starlike function of order α , Cauchy-Schwarz inequality

1. Introduction

Let \mathcal{A} be the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

^{© 2010,} FCAA – Diogenes Co. (Bulgaria). All rights reserved.

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For a function $f(z) \in \mathcal{A}$, we say that f(z) belongs to the class $\mathcal{A}(\alpha, \beta; \lambda)$ if it satisfies $\frac{f(z)}{z} \neq 0$ $(z \in \mathbb{U})$ and

$$\left| \alpha \left(\frac{z}{f(z)} \right)'' + \beta z^2 \left(\frac{1}{f(z)} - \frac{1}{z} \right)' \right| \le \lambda \quad (z \in \mathbb{U})$$
 (1.2)

for some complex numbers α and β and for some real $\lambda > 0$.

Let us consider a function $f_k(z)$ given by

$$f_k(z) = \frac{z}{(1-z)^k}$$
 $(k \in \mathbb{R}).$

Then $f_k(z)$ satisfies $\frac{f_k(z)}{z} = \frac{1}{(1-z)^k} \neq 0 \quad (z \in \mathbb{U})$ and

$$\left(\frac{z}{f_k(z)}\right)'' = k(k-1)(1-z)^{k-2}.$$

Further, if we write that

$$f_k(z) = \frac{z}{1 + \sum_{n=1}^{\infty} a_n z^n}$$

with

$$a_n = (-1)^n \binom{k}{n},$$

then we see that

$$z^{2} \left(\frac{1}{f_{k}(z)} - \frac{1}{z} \right)' = \sum_{n=1}^{\infty} (n-1)a_{n}z^{n}.$$

Therefore, we have that

$$\left| \alpha \left(\frac{z}{f_k(z)} \right)'' + \beta z^2 \left(\frac{1}{f_k(z)} - \frac{1}{z} \right)' \right| = \left| \alpha k(k-1)(1-z)^{k-2} + \beta \sum_{n=1}^{\infty} (n-1)a_n z^n \right|$$

$$< |\alpha|k(k-1)2^{k-2} + |\beta| \sum_{n=1}^{\infty} (n-1)|a_n|$$

for $k \geq 2$. This means that $f_k(z) \in \mathcal{A}(\alpha, \beta; \lambda)$ for $\lambda \geq 2|\alpha| + |\beta|$ if k = 2, and $f_k(z) \in \mathcal{A}(\alpha, \beta; \lambda)$ for $\lambda \geq 12|\alpha| + 5|\beta|$ if k = 3.

The classes $\mathcal{A}(1,0;\lambda)$ and $\mathcal{A}(0,1;\lambda)$ were introduced by Obradović and Ponnusamy [2], the generalized classes of $\mathcal{A}(1,0;\lambda)$ and $\mathcal{A}(0,1;\lambda)$ were considered by Shimoda, Hayami, Hashidume and Owa [4] and Kobashi, Kuroki, Shiraishi and Owa [1].

Let $\mathcal{S}^*(\gamma)$ denote the subclass of \mathcal{A} consisting of all functions f(z) which satisfy

(1.3)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \gamma \qquad (z \in \mathbb{U})$$

for some real γ $(0 \le \gamma < 1)$. A function $f(z) \in \mathcal{S}^*(\lambda)$ is said to be starlike of order γ in \mathbb{U} (cf. Robertson [3]). We also write that $\mathcal{S}^*(0) = \mathcal{S}^*$. For $f(z) \in \mathcal{A}$ given by (1.1), we write

$$\frac{z}{f(z)} = \frac{1}{1 + \sum_{n=2}^{\infty} a_n z^{n-1}} = 1 + \sum_{n=1}^{\infty} b_n z^n.$$

Then we know that $b_1 = -a_2$, $b_2 = a_2^2 - a_3$ and $b_3 = 2a_2a_3 - a_4 - a_3^2$.

2. Radius problems

To discuss our radius problems for $f(z) \in \mathcal{A}(\alpha, \beta; \lambda)$, we need the following lemmas.

LEMMA 2.1. Let $f(z) \in \mathcal{A}$ be given by (1.4) with $\frac{f(z)}{z} \neq 0$ ($z \in \mathbb{U}$). If f(z) satisfies

$$\sum_{n=2}^{\infty} (n-1) \left(|\alpha|n + |\beta| \right) |b_n| \le \lambda \tag{2.1}$$

for some complex numbers α and β and for some real $\lambda > 0$, then $f(z) \in \mathcal{A}(\alpha, \beta; \lambda)$.

Proof. It follows that

$$\left| \alpha \left(\frac{z}{f(z)} \right)'' + \beta z^2 \left(\frac{1}{f(z)} - \frac{1}{z} \right)' \right| = \left| \alpha \sum_{n=2}^{\infty} n(n-1)b_n z^{n-2} + \beta \sum_{n=2}^{\infty} (n-1)b_n z^n \right|$$

$$< |\alpha| \sum_{n=2}^{\infty} n(n-1)|b_n| + |\beta| \sum_{n=2}^{\infty} (n-1)|b_n|$$

= $\sum_{n=2}^{\infty} (n-1) (|\alpha|n + |\beta|) |b_n|.$

Therefore, if the coefficient inequality (2.1) holds true, then we say that $f(z) \in \mathcal{A}(\alpha, \beta; \lambda)$.

LEMMA 2.2. Let $f(z) \in \mathcal{A}$ be given by (1.4) with $\frac{f(z)}{z} \neq 0$ ($z \in \mathbb{U}$). Further let $b_n = |b_n|e^{in\theta}$ ($\theta \in \mathbb{R}$). If $f(z) \in \mathcal{S}^*(\gamma)$, then

$$\sum_{n=1}^{\infty} (n+\gamma-1)|b_n| \le 1-\gamma. \tag{2.2}$$

Proof. Note that $f(z) \in \mathcal{S}^*(\gamma)$ implies that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = \operatorname{Re}\left(\frac{1 - \sum_{n=1}^{\infty} (n-1)b_n z^n}{1 + \sum_{n=1}^{\infty} b_n z^n}\right)$$
$$= \operatorname{Re}\left(\frac{1 - \sum_{n=1}^{\infty} (n-1)|b_n|e^{in\theta} z^n}{1 + \sum_{n=1}^{\infty} |b_n|e^{in\theta} z^n}\right) > \gamma \qquad (z \in \mathbb{U})$$

If we consider z such that $z = |z|e^{-i\theta}$, then we obtain that

$$\frac{1 - \sum_{n=1}^{\infty} (n-1)|b_n||z|^n}{1 + \sum_{n=1}^{\infty} |b_n||z|^n} > \gamma \qquad (|z| < 1).$$

Now, letting $|z| \to 1^-$, we have that

$$\sum_{n=1}^{\infty} (n+\gamma-1)|b_n| \le 1-\gamma,$$

REMARK 2.1. In view of the coefficient inequality (2.2), we know that

$$\sum_{n=2}^{\infty} (n+\gamma-1)|b_n| \le 1-\gamma-\gamma|b_1|$$

which shows that

$$|b_n| \le \frac{1 - \gamma - \gamma |b_1|}{n + \gamma - 1} < 1$$
 $(n = 2, 3, 4, \cdots).$

This implies that

(2.3)
$$\sum_{n=2}^{\infty} (n-1)|b_n|^2 \le 1 - \gamma - \gamma |b_1|.$$

Now, we derive the following

THEOREM 2.1. Let $f(z) \in \mathcal{A}$ be given by (1.4) with $\frac{f(z)}{z} \neq 0$ ($z \in \mathbb{U}$). Further let $b_n = |b_n|e^{in\theta}$ ($\theta \in \mathbb{R}$) and $\delta \in \mathbb{C}$ ($|\delta| < 1$). If $f(z) \in \mathcal{S}^*(\gamma)$ with $0 \le \gamma < \frac{1}{1+|b_1|}$, then $\frac{1}{\delta}f(\delta z)$ belongs to the class $\mathcal{A}(\alpha,\beta;\lambda)$ for $0 < |\delta| \le |\delta_0(\lambda)|$, where $|\delta_0(\lambda)|$ is the smallest positive root of the equation

$$|\delta|^2 \left(|\alpha| \sqrt{2(2+|\delta|^2)} + |\beta|(1-|\delta|^2) \right) \sqrt{1-\gamma-\gamma|b_1|} = \lambda(1-|\delta|^2)^2. \quad (2.4)$$

Proof. By means of (1.4), we have that

$$\frac{z}{\frac{1}{\delta}f(\delta z)} = 1 + \sum_{n=1}^{\infty} b_n \delta^n z^n.$$

Thus, we have to prove that

$$\sum_{n=2}^{\infty} (n-1) \left(|\alpha|n + |\beta| \right) |b_n| |\delta|^n \le \lambda$$

by Lemma 2.1. Applying the Cauchy-Schwarz inequality, we see that

$$\sum_{n=2}^{\infty} (n-1) \left(|\alpha|n + |\beta| \right) |b_n| |\delta|^n = |\alpha| \sum_{n=2}^{\infty} n(n-1) |b_n| |\delta|^n + |\beta| \sum_{n=2}^{\infty} (n-1) |b_n| |\delta|^n$$

$$\leq |\alpha| \left(\sum_{n=2}^{\infty} n^2 (n-1) |\delta|^{2n} \right)^{\frac{1}{2}} \left(\sum_{n=2}^{\infty} (n-1) |b_n|^2 \right)^{\frac{1}{2}}$$

$$+ |\beta| \left(\sum_{n=2}^{\infty} (n-1) |\delta|^{2n} \right)^{\frac{1}{2}} \left(\sum_{n=2}^{\infty} (n-1) |b_n|^2 \right)^{\frac{1}{2}}.$$
We note that

$$\left(\sum_{n=2}^{\infty} (n-1)|b_n|^2\right)^{\frac{1}{2}} \le \sqrt{1-\gamma-\gamma|b_1|}$$

from (2.3) of Remark 2.1. If we put $|\delta|^2 = x$, then

$$\sum_{n=2}^{\infty} n^2 (n-1) |\delta|^{2n} = x^2 \sum_{n=2}^{\infty} n^2 (n-1) x^{n-2}$$
$$= x^2 \left(\sum_{n=2}^{\infty} n z^n \right)^n = x^2 \left(\frac{x}{(1-x)^2} - x \right)^n = \frac{2x^2 (2+x)}{(1-x)^4}$$

and

$$\sum_{n=2}^{\infty} (n-1)|\delta|^{2n} = x^2 \sum_{n=2}^{\infty} (n-1)x^{n-2}$$
$$= x^2 \left(\sum_{n=2}^{\infty} x^{n-1}\right)' = x^2 \left(\frac{x}{1-x}\right)' = \frac{x^2}{(1-x)^2}.$$

Therefore, we obtain that

$$\sum_{n=2}^{\infty} (n-1) (|\alpha|n+|\beta|) |b_n||\delta|^n$$

$$\leq \left(\frac{|\alpha||\delta|^2 \sqrt{2(2+|\delta|^2)}}{(1-|\delta|^2)^2} + \frac{|\beta||\delta|^2}{1-|\delta|^2} \right) \sqrt{1-\gamma-\gamma|b_1|}.$$

Considering $\lambda > 0$ such that

$$\left(\frac{|\alpha||\delta|^2\sqrt{2(2+|\delta|^2)}}{(1-|\delta|^2)^2} + \frac{|\beta||\delta|^2}{1-|\delta|^2}\right)\sqrt{1-\gamma-\gamma|b_1|} = \lambda$$

which is equivalent to (2.4), we define $h(|\delta|)$ by

$$h(|\delta|) = |\delta|^2 \left(|\alpha| \sqrt{2(2+|\delta|^2)} + |\beta|(1-|\delta|^2) \right) \sqrt{1-\gamma-\gamma|b_1|} - \lambda(1-|\delta|^2)^2.$$

Then we have that $h(0) = -\lambda < 0$ and $h(1) = \sqrt{6}|\alpha|\sqrt{1 - \gamma - \gamma|b_1|}$. This implies that $h(|\delta|) = 0$ has a positive root $|\delta_0(\lambda)|$ for $0 < |\delta| < 1$. This completes the proof of the theorem.

Taking $\gamma = 0$ in Theorem 2.1, we have the following

Corollary 2.1. Let $f(z) \in \mathcal{A}$ be given by (1.4) with $\frac{f(z)}{z} \neq 0$ ($z \in \mathbb{U}$). Further, let $b_n = |b_n|e^{in\theta}$ ($\theta \in \mathbb{R}$) and $\delta \in \mathbb{C}$ ($0 < |\delta| < 1$). If $f(z) \in \mathcal{S}^*$, then $\frac{1}{\delta}f(\delta z)$ belongs to the class $\mathcal{A}(\alpha, \beta; \lambda)$ for $0 < |\delta| \leq |\delta_0(\lambda)|$, where $|\delta_0(\lambda)|$ is the smallest positive root of the equation

$$|\delta|^2 \left(|\alpha| \sqrt{2(2+|\delta|^2)} + |\beta|(1-|\delta|^2) \right) = \lambda (1-|\delta|^2)^2.$$
 (2.5)

Remark 2.2. If we take $\delta=\frac{1}{2}e^{i\theta}$ in (2.5), then we have $\lambda=\frac{2\sqrt{2}}{3}|\alpha|+\frac{1}{3}|\beta|.$

If we consider $|\alpha| = |\beta| = \lambda = 1$, then

$$|\delta|^2 \sqrt{2(2+|\delta|^2)} + |\delta|^2 (1-|\delta|^2) - (1-|\delta|^2) 2 = 0.$$

Therefore, we see that $0.4623 < |\delta_0(1)| < 0.4625$.

Taking $\alpha = 1$ and $\beta = 0$ in Theorem 2.1, we have

COROLLARY 2.2. Let $f(z) \in \mathcal{A}$ be given by (1.4) with $\frac{f(z)}{z} \neq 0$ ($z \in \mathbb{U}$). Further, let $b_n = |b_n|e^{in\theta}$ ($\theta \in \mathbb{R}$) and $\delta \in \mathbb{C}$ ($0 < |\delta| < 1$). If $f(z) \in \mathcal{S}^*(\gamma)$ with $0 \leq \gamma < \frac{1}{1+|b_1|}$, then $\frac{1}{\delta}f(\delta z)$ belongs to the class $\mathcal{A}(1,0;\lambda)$ for $0 < |\delta| \leq |\delta_0(\lambda)|$, where $|\delta_0(\lambda)|$ is the smallest positive root of the equation

$$\frac{|\delta|^2 \sqrt{2(2+|\delta|^2)}}{(1-|\delta|^2)^2} \sqrt{1-\gamma-\gamma|b_1|} = \lambda.$$

If we take $\alpha = 0$ and $\beta = 1$ in Theorem 2.1, then we have

COROLLARY 2.3. Let $f(z) \in \mathcal{A}$ be given by (1.4) with $\frac{f(z)}{z} \neq 0$ ($z \in \mathbb{U}$). Further let $b_n = |b_n|e^{in\theta}$ ($\theta \in \mathbb{R}$) and $\delta \in \mathbb{C}$ ($0 < |\delta| < 1$). If $f(z) \in \mathcal{S}^*(\gamma)$ with $0 \leq \gamma < \frac{1}{1 + |b_1|}$, then $\frac{1}{\delta}f(\delta z)$ belongs to the class $\mathcal{A}(0, 1; \lambda)$ for $0 < |\delta| \leq |\delta_0(\lambda)|$, where

$$|\delta_0(\lambda)| = \left(\frac{\lambda}{\lambda + \sqrt{1 - \gamma - \gamma |b_1|}}\right)^{\frac{1}{2}}.$$

Finally, since $b_1 = 0$ implies that $a_2 = 0$, we have

COROLLARY 2.4. Let $f(z) \in \mathcal{A}$ be given by (1.4) with $a_2 = 0$ and $\frac{f(z)}{z} \neq 0$ ($z \in \mathbb{U}$). Further, let $b_n = |b_n|e^{in\theta}$ ($\theta \in \mathbb{R}$) and $\delta \in \mathbb{C}$ ($|\delta| < 1$). If $f(z) \in \mathcal{S}^*(\gamma)$ with $0 \leq \gamma < 1$, then $\frac{1}{\delta}f(\delta z)$ belongs to the class $\mathcal{A}(\alpha, \beta; \lambda)$ for $0 < |\delta| \leq |\delta_0(\lambda)|$, where $|\delta_0(\lambda)|$ is the smallest positive root of the equation

$$|\delta|^2 \left(|\alpha| \sqrt{2(2+|\delta|^2)} + |\beta|(1-|\delta|^2) \right) \sqrt{1-\gamma} = \lambda (1-|\delta|^2)^2.$$

References

- [1] H. Kobashi, K. Kuroki, H. Shiraishi and S. Owa, Radius problems of certain analytic functions. *Internat. J. Open Problems Complex Anal.* 1 (2009), 8-12.
- [2] M. Obradovć and S. Ponnusamy, Radius properties for subclasses of univalent functions. *Analysis* **25** (2005), 183-188.
- [3] M.S. Robertson, On the theory of univalent functions. *Ann. of Math.* **37** (1936), 374-408.
- [4] Y. Shimoda, T. Hayami, Y. Hashidume and S. Owa, Radius properties of certain analytic functions. *Internat. J. Open Problems Complex Anal.* 1 (2009), 29-34.
- ¹ Department of Mathematics
 Kazim Karabekir Faculty of Education
 Atatürk University
 Erzurum T-25240, TURKEY
 e-mail: nesuyan@yahoo.com Received: GFTA, August 27-31, 2010
- ² Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502, JAPAN

 $e\hbox{-}mail\hbox{:}\ owa@math.kindai.ac.jp$