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Abstract. We prove that all arrangements (consistent with the Rolle theo-
rem and some other natural restrictions) of the real roots of a real polynomial
and of its s-th derivative are realized by real polynomials.

In the present paper we consider a real polynomial of one real variable

P (x, a) = xn + a1x
n−2 + . . . + an−1. We are interested in the question what

arrangements between the real roots of P and P (s) are possible (1 ≤ s ≤ n − 1).

To define an arrangement means to write down the roots of P and P (s) in a

chain in which every two consecutive roots are connected either by an equality

or by an inequality <. The arrangement α is said to belong to the closure of
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the arrangement β if it is obtained from β by replacing some inequalities by

equalitites. The results are the first step towards the study of real discriminant

sets {a ∈ Rn−1|Res(P,P (s)) = 0}.
In an earlier paper [3] it is shown that if P is hyperbolic, i.e. with n real

roots, then the standard Rolle restrictions are necessary and sufficient conditions

for a root arrangement to be realizable (see Theorems 2 and 4.4 in [3]). Namely,

denote by x1 ≤ . . . ≤ xn the roots of P and by ξ1 ≤ . . . ≤ ξn−s the ones of P (s)

(which is also hyperbolic). Then one has

xl ≤ ξl ≤ xl+s(1)

for l = 1, . . . , n − s and every arrangement of the roots of P and P (s) which is

consistent with (1) is realizable. One presumes also that the following conditions

hold:

A) If a root of P of multiplicity d > s coincides with a root of P (s) of

multiplicity g, then g = d − s (self-evident).

B) If a root ξ of P (s) coincides with a root of P of multiplicity κ ≤ s, then

ξ is a simple root of P (s) (see [3], Lemma 4.2) and one has κ ≤ s − 1.

C) If xl = ξl or xl+s = ξl, then xl = xl+1 = . . . = xl+s = ξl (self-evident

for s = 1 and easy to prove by induction on s for s > 1).

Example 1. If n = 2, s = 1, then there are two possible arrangements

(i.e. consistent with (1), A) B) and C)) : x1 < ξ1 < x2 and x1 = ξ1 = x2. They

are both realizable by hyperbolic polynomials.

In the present paper we treat the case when P is arbitrary (not necessarily

hyperbolic). (Notice that P (s) can be hyperbolic even if P is not.)

Definition 2. Suppose that P has m conjugate couples of complex roots

and n − 2m real roots. Then a priori P (s) has at least n − 2m − s real roots

counted with the multiplicities. Indeed, a real root of P (i) of multiplicity l ≥ 1

is a root of P (i+1) of multiplicity l − 1 and between every two real roots of P (i)

there is a root of P (i+1). Iterating this rule s times one obtains the existence of

n − 2m − s real roots of P (s) (we call them Rolle roots) which together with the

real roots of P satisfy conditions (1), A) and B). A Rolle root is multiple only if

it coincides with a root of P of multiplicity > s. Eventually, P (s) can have ≤ 2m
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other (non-Rolle) real roots counted with the multiplicities some (or all) of which

can coincide with Rolle ones. Which real roots of P (s) should be chosen as Rolle

and which as non-Rolle ones is not always uniquely defined and when it is not

we assume that a choice is made.

Example 3. The polynomial x6 −x2 = x2(x2 − 1)(x2 + 1) has real roots

x1 = −1, x2 = x3 = 0, x4 = 1 (and complex roots ±i). One has P ′ = 6x5 − 2x =

2x(
√

3x2 − 1)(
√

3x2 + 1), i.e. P ′ has three Rolle roots (and no non-Rolle ones)

– 0 and ±1/31/4 where 0 is a common root for P and P ′, see A). It has also

two complex roots ±i/31/4. One has P ′′ = 30x4 − 2, i.e. P ′′ has two Rolle

roots ±1/151/4, no non-Rolle ones and two complex roots ±i/151/4. One has

P ′′′ = 120x3, i. e. P ′′′ has a triple real root at 0 and no complex roots. One

copy of this real root should be considered as a Rolle one and the other two as

non-Rolle ones.

Proposition 4. Suppose that a real root of P of multiplicity d coincides

with a real root of P (s) of multiplicity g. Then

1) if d > s, then one has g = d− s; in this case this is a Rolle root of P (s)

of multiplicity d − s;

2) if 0 ≤ d ≤ s, then one has g ≤ 2m + 1 (and if g ≥ 1, then d < s).

Observe that in the above example one has m = 1 and for s = 3 the

estimation 2m + 1 is attained by the multiplicity of 0 as a root of P ′′′. The

proposition generalizes conditions A) and B) in the case of arbitrary m.

P r o o f. Part 1) is self-evident. Prove part 2). If the root is non-Rolle

and does not coincide with a Rolle one, then its multiplicity is ≤ 2m. If the root

is Rolle and does not coincide with a non-Rolle one, then either it coincides with

a root of P of multiplicity > s and we are in case 1) or it is a simple root. Finally,

if the root is Rolle and coincides with a non-Rolle one, then the Rolle root must

be simple (otherwise there will be a contradiction with part 1)) and the sum of

their two multiplicities is ≤ 2m + 1. �

Definition 5. An arrangement of the real roots of P and P (s) is called

a priori admissible if there exist n − 2m − s Rolle roots of P (s) in the sense of

Definition 2 and if conditions 1) and 2) of Proposition 4 hold.
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Theorem 6. All a priori admissible root arrangements are realizable by

real polynomials of degree n.

P r o o f. 10. We explain first in 10 – 70 why all a priori admissible arrange-

ments in which the derivative P (s) is hyperbolic and which are the least generic

are realizable. “Least generic” means that all non-Rolle roots of P (s) coincide

with Rolle ones or with roots of P . The general case is treated in 80 – 110.

To realize an a priori admissible arrangement with P (s) hyperbolic and

with the necessary multiplicities of the real roots of P consider the family of

polynomials

P (x,w, g, t) =

q
∏

j=1

(x − wj)
mj

m
∏

j=1

((x − gj)
2 + t2j)(2)

where wj, j = 1, . . . , q, are the real roots of P , of multiplicities mj (w0 = 0 ≤
w1 ≤ . . . ≤ wq ≤ 1 = wq+1), and gj ± itj are its complex roots (not necessarily

distinct), tj ≥ 0, 0 ≤ gj ≤ 1. We allow here equalities between the roots wj for

convenience; it will be shown that the necessary arrangement is realized for roots

with strict inequalities between them.

Denote by ξ1 ≤ . . . ≤ ξn−s the real parts of the roots of P (s) (n− 2m − s

of them are just Rolle roots) and by θ1 ≤ . . . ≤ θm the biggest nonnegative

imaginary parts of the roots of P (s) (recall that for a least generic arrangement

one has θj = 0). Set ξ0 = 0, ξn−s+1 = 1. (Notice that P (s) has not more conjugate

couples of complex roots than P , i.e. not more than m.) The functions ξi, θj are

continuous in (w, g, t).

20. Suppose that for the desired arrangement of the real roots of P

and P (s) the Rolle and non-Rolle roots of P (s) are fixed. Denote the non-Rolle

roots by u1 ≤ . . . ≤ u2m. Impose additional requirements upon the numbers

gj as follows: if the non-Rolle roots with odd indices u2p−1, u2p+1, . . . , u2p+2p′−1

belong to the interval [wj , wj+1), j < q, or to [wq, wq+1], then we require that

wj ≤ gp ≤ . . . ≤ gp+p′ ≤ wj+1. Define the variables h1 ≤ . . . ≤ hq+m as the union

of the variables wj (j = 1, . . . , q) and gi (i = 1, . . . ,m) with the order defined

above. Hence, they belong to the unit simplex Σq+m.
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30. In what follows we assume that the variables tj belong to some interval

[0, N ] where N > 1. We define with the help of the variables hj, ti continuous

functions ηj, ζi such that (η1, . . . , ηq+m) ∈ Σq+m, ζi ∈ [0, N ]. The set S = Σq+m×
[0, N ]m is homeomorphic to Σq+2m. By the Brouwer fixed point theorem (see [1],

p. 57), there exists a fixed point of the mapping τ : S → S, τ : (h, t) 7→ (η, ζ), i.e.

a point where one has ηj = hj , ζi = ti. The functions ηj , ζi are defined such that

the arrangement of the real roots of P and P (s) at the fixed point is the required

one.

40. Define the functions ηj by the following rules:

1) We want to achieve the additional conditions (at the fixed point) gp =

u2p−1, . . ., gp+p′ = u2p+2p′−1 for all appropriate indices, see 20; therefore we set

ηi1 = ξi2 whenever hi1 is a variable gp+l and ξi2 is the corresponding function

u2p+2l−1;

2) If a variable hj , which is a root wi of multiplicity < s+1, must coincide

with a simple root ξk of P (s) or, more generally, with the roots ξk = ξk+1 = . . . =

ξk+l, then we set ηj = ξk;

3) If the variables hr < hr+1 < . . . < hr+l (which are all consecutive roots

wj and among which there might be roots wj of multiplicity ≥ s + 1) lie between

the Rolle roots ξk and ξk+v of P (s) and all roots among the roots ξk+1, . . ., ξk+v−1

(if v > 1) coincide with roots wj (r ≤ j ≤ r + l) of multiplicity ≥ s + 1, then we

set

ηr+j = ξk + (j + 1)(ξk+v − ξk)/(l + 2), j = 0, 1, . . . , l.

Remark 7. It follows from rules 1) – 3) that there are q + m functions

ηj – as many as the variables hj .

Recall that the arrangement is least generic, i.e. for every non-Rolle root

ξi of P (s) one has either ξi = ξi1 where ξi1 is a Rolle one or ξi = wi2 = hj for

some i2, j. Denote by l1, . . ., l2m the absolute values |ξi − ξi1| and |ξi − wi2 | for

all i, i1 and i2 as above. Set Φ = l1 + . . . + l2m and

ζi =

∣

∣

∣

∣

∣

∣

ti −
1

3m

m
∑

j=1

θj −
ti

3(N + 1)m
|t1t2 . . . tm − 1| − ti

12m
Φ

∣

∣

∣

∣

∣

∣

(3)

50. Denote by ti0 the greatest variable ti at the fixed point (see 30).

Observe first that one can assume that ti0 > 0. Indeed, if ti0 = 0, then ti = 0 for
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all i, P is hyperbolic and the roots of P and P (s) define an arrangement α from

the closure of the desired least generic one β.

Lemma 8. For ti0 = 0 there exists a real-analytic deformation of P into

a real polynomial which together with its s-th derivative defines the arrangement

β.

The lemma is proved after the theorem. It allows one to consider only

the case ti0 > 0.

60. One has

ζi0 = ti0 −
1

3m

m
∑

j=1

θj −
ti0

3(N + 1)m
|t1t2 . . . tm − 1| − ti0

12m
Φ .

Indeed, all roots of P (s) lie within the convex hull of all roots of P (see [4], p.

108). Hence, one has θj ≤ ti0, j = 1, . . . ,m. One has also |t1t2 . . . tm − 1| ≤
t1t2 . . . tm + 1 < (N + 1)m and Φ ≤ 4m (because for each term lj one has lj ≤ 2).

Thus

1

3m

m
∑

j=1

θj+
ti0

3(N + 1)m
|t1t2 . . . tm−1|+ ti0

12m
Φ < mti0/3m+ti0/3+4mti0/12m = ti0

(4)

and for i = i0 one can delete the absolute value sign in the right hand-side of (3).

But then to have ζi0 = ti0 one must have θj = 0 for j = 1, . . . ,m, t1t2 . . . tm−1 = 0

and l1 = . . . = l2m = 0. This means that tj 6= 0, i.e. no root gj + itj of P will be

real, that P (s) will indeed be hyperbolic (θj = 0) and that all non-Rolle roots of

P (s) equal either roots wj of P or Rolle roots of P (s).

Remark 9. The condition N > 1 makes possible the choice of the

values of the variables ti so that t1t2 . . . tm − 1 = 0. One can prove by analogy

with (4) that |ζi| < N , i.e. the mapping τ is indeed from S into itself.

70. A priori the fixed point assures the existence of an arrangement

only from the closure of the necessary one. The fact that at the fixed point no

inequality between roots of P is replaced by equality is proved by analogy with

40 – 70 of the proof of Theorem 4.4 from [3] where the case of P hyperbolic is

considered. The proof there shows that equalities replacing inequalities between
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roots of P imply that a root of P of multiplicity m ≥ s + 1 is a root of P (s)

of multiplicity ≥ m − s + 1 which contradicts part 1) of Proposition 4. In the

general case (P not necessarily hyperbolic) the proof is essentially the same, the

presence of eventual non-Rolle roots can only increase the multiplicity of the root

as a root of P (s).

Hence, the fixed point provides the necessary arrangement.

80. To obtain (in 80 – 90) all arrangements in which P (s) is hyperbolic

but which are not necessarily least generic we use the same construction but with

another function Φ. Namely, consider a family of such functions Φ depending on

a parameter b ∈ (R+, 0) defined as follows: if instead of ξi − ξi1 = 0, see 40, one

must have ξi − ξi1 > 0 or ξi − ξi1 < 0 (and no root ξj or wj lies between ξi and

ξi1), then in Φ we replace the absolute value lν = |ξi − ξi1 | by |ξi − ξi1 − b| (resp.

by |ξi − ξi1 + b|); in the same way for ξi − wi2, see 40. In a sense, we obtain the

not least generic arrangements by deforming least generic ones the deformation

parameter being b.

90. Denote by F (b) the set of fixed points of the mapping τ from 30. For

b small enough one has (η, ζ) ∈ S. The set F (0) contains all limit points of the

family of sets F (b) when b → 0 and there exists at least one such limit point

because all sets F (b) (for b small enough) are non-empty and belong to S which

is compact. Hence, one can choose b > 0 small enough and a fixed point of F (b)

at which there is an inequality between two roots in the arrangement if there is

an inequality in the arrangement for b = 0, and the equalities ξi − ξi1 = 0 or

ξi − wi2 = 0 where this is necessary are replaced by the desired inequalities.

100. Obtain all arrangements in which P (s) is not hyperbolic and which

are least generic. Suppose that P (s) must have exactly m′ conjugate couples of

complex roots. In this case we assume that m′ of the couples of roots gj ± itj
are replaced by a couple ±iv where v > 0 is “large”, i.e. much bigger than N .

Hence, P (s) also has exactly m′ couples of conjugate complex roots with “large”

imaginary parts. One has

Q := P/v2m′

= (1 + x2/v2)m
′

q
∏

j=1

(x − wj)
mj

m−m′

∏

j=1

((x − gj)
2 + t2j) ,

i.e. the family Q is a one-parameter deformation of a family of polynomials like

(2) (the role of the small parameter is played by 1/v2) and the existence of the
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necessary arrangements can be deduced by analogy with 10 – 70 (see 90 for the

role of the small parameter; however, the function Φ is the one from 10 – 70).

110. To obtain the existence of all arrangements (which are not necessarily

least generic and with P (s) not necessarily hyperbolic) one has to combine 80, 90

and 100. The theorem is proved. �

P r o o f o f L e m m a 8. 10. We assume that P has the same number

of distinct real roots as in the desired arrangement β, otherwise one can deform

P within the class of hyperbolic polynomials to obtain this condition while re-

maining in the closure of β. See [2] for such deformations. We begin with two

observations:

1) for a > 0, µ ∈ N∪ {0} and ν even the polynomial Q = xµ(xν + a) has

a µ-fold root for x = 0 and its s-th derivative for s > µ has a (µ + ν − s)-fold

one; Q has also ν/2 couples of conjugate complex roots;

2) with a, µ and ν as above, the polynomial Q1 = xµ(xν + a + aQ2(x, a))

where Q2 is a polynomial in x of degree ≤ ν − 1, Q2(0, a) ≡ 0, has ν complex

zeros for a small enough and a real µ-fold root at 0; to see this set a = cν , x = cy;

one has Q1(cy, cν) = cµ+νyµ(yν +1+Q2(cy, cν)); the last polynomial has a µ-fold

root at 0 and ν roots which for c small enough are close to the roots of yν + 1,

hence, are complex.

20. Suppose that the polynomial P of degree n realizing with P (s) the

arrangement α has a real root of multiplicity µ+ν (with ν even) which (in order to

obtain the arrangement β) must split into ν/2 couples of conjugate complex roots

and into a real root of multiplicity µ. (If several roots of P must split, we make

them split one by one.) Suppose in addition that in the deformed polynomial

(denoted by R) the real root of multiplicity µ must coincide with a root of R(s)

of multiplicity µ + ν − s. Assume that the bifurcating root is at 0 and that

P = xµ+ν(1 + h(x)) , h(0) = 0(5)

(P is not necessarily monic). Construct the necessary deformation of P in the

form

R(x, a) = xµ(xν + a + bs−µxs−µ + . . . + bν−1x
ν−1)(1 + g(x, a))(6)
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where a ∈ (R, 0) and bi = bi(a) and g(x, a) (g(0, a) ≡ 0) are defined such that all

equalities of the form xi = ξj defining the arrangement β will be preserved.

30. Suppose first that in (6) one has g(x, a) ≡ h(x). The condition

(A) : R(s) has a (µ + ν − s)−fold root at 0

is a triangular linear non-homogeneous system with unknown variables bi; the

system defines unique functions bi = b∗i a, b∗i ∈ R. This can be checked directly.

Suppose that in (6) one has g = h(x) +
∑l

j=1 djhj(x, d) where d =

(d1, . . . , dl) ∈ (Rl, 0) and hj depend smoothly on d. Then condition (A) de-

fines unique functions bi(a, d) = b∗i a + a
∑l

j=1 dj b̃i,j(d) where b∗i ∈ R and b̃i,j are

smooth in d. This can also be checked directly.

40. For each root wj 6= 0 of P of multiplicity < s which must be equal to a

root ξi of P (s) denote by dj the deviation from its position in a deformation of P .

Admitting such deviations means that in (5) the function h should be replaced

by h(x) +
∑l

j=1 djhj(x, d).

Denote by (B) the system of all conditions wj = ξi for all such equalities

with wj 6= 0 characterizing the arrangement β.

50. For any deformation R∗(x, a, d) = xµ(xν + a + bs−µxs−µ + . . . +

bν−1x
ν−1)(1 + g(x, d)) of P (where bk are considered as small parameters) one

can find d depending smoothly on a and bk such that for all a small enough

all equalities from (B) hold. This follows from Propositions 11 and 13 from

[2] where it is shown that the linearizations of the conditions (B) w.r.t. d are

linearly independent. (In [2] their linear independence is proved only when P is

hyperbolic; this independence is an “open” property, so it holds for all nearby

polynomials as well.)

60. The independence of these linearizations implies that for a small

enough the system of conditions (B) applied to the deformation

R̃(x, a, d) = xµ(xν+a+bs−µ(a, d)xs−µ+. . .+bν−1(a, d)xν−1)(1+h(x)+

l
∑

j=1

djhj(x, d))

(with bi(a, d) defined as in 30) defines unique dj = dj(a) smooth in a. Indeed,

the linearizations w.r.t. d of the system of conditions (B) from 60 and from 50

are the same.

On the other hand, bi were defined such that condition (A) holds. Hence,

for d = d(a) and bi = bi(a, d(a)) (where a > 0 is small enough) the (µ + ν)-fold
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root of P at 0 splits into a real µ-fold root at 0 and ν complex roots close to

0 (see observation 2) from 10) and P (s) has a (µ + ν − s)-fold root at 0. The

arrangement of the other real roots of P and P (s) remains the same. �
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