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DETERMINED BANACH SPACES
∗
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Abstract. We prove that a Banach space X is weakly Lindelöf deter-
mined if (and only if) each non-separable Banach space isomorphic to a
complemented subspace of X has a projectional resolution of the identity.
This answers a question posed by S. Mercourakis and S. Negrepontis and
yields a converse of Amir-Lindenstrauss’ theorem. We also prove that a Ba-
nach space of the form C(K) where K is a continuous image of a Valdivia
compactum is weakly Lindelöf determined if (and only if) each non-separable
Banach space isometric to a subspace of C(K) has a projectional resolution
of the identity.

1. Introduction. Projectional resolutions of the identity (or, shortly,
PRI’s) are a powerful tool in studying the structure of non-separable Banach
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spaces. For applications see e. g. [29] or [6, Section 6.2]. First projectional
resolutions were constructed by J. Lindenstrauss [16], [17]. Their importance
became obvious after the famous paper of D. Amir and J. Lindenstrauss [1] where
it is proved that every nonseparable weakly compactly generated Banach space
admits a PRI. Let us remark that WCG spaces are stable to isomorphisms and
to taking complemented subspaces. Hence it follows from [1] that if X is WCG,
then each nonseparable Banach space isomorphic to a complemented subspace of
X admits a PRI.

The result of [1] was later extended to several larger classes of Banach
spaces. In [28] it was extended to weakly countably determined spaces (called
also Vašák spaces by some authors). This class contains all subspaces of WCG
spaces, and even all weakly K-analytic Banach spaces introduced by M. Talagrand
[23], [24]. A further generalization was proved by M. Valdivia [25] who proved
the existence of a PRI in weakly Lindelöf determined (WLD) spaces (see [3]).
Again, each of these larger classes is stable to isomorphisms and to taking (even
arbitrary, not necessarily complemented) subspaces.

Another yet larger class of Banach spaces admitting a PRI is formed
by 1-Plichko spaces. It was proved in various settings and in different degrees
of generality in [22], [26], [27]; our terminology follows [14] and [15]. However,
this class is stable neither to isomorphisms (see [9], [7] and [13]) nor to taking
(complemented) subspaces (see [9] and [12]).

In view of these results it is natural to ask ‘converse questions’. What is
the largest class of Banach spaces admitting a PRI? It was observed in [7] that a
Banach space of density ℵ1 is 1-Plichko whenever it admits a PRI. However, for
larger densities the analogous statement is not valid; for some partial character-
ization of such spaces see [15, Theorem 4.14]. While the just mentioned result
is rather technical and not easy to formulate, if we search for the largest class
of Banach spaces admitting a PRI, which has some nice stability properties, the
answer could be more clear. In [18, § 4, p. 517] the following question was asked.

Problem. Let X be a Banach space such that each nonseparable Banach
space isomorphic to a complemented subspace of X admits a PRI. Is then X
weakly Lindelöf determined?

It follows from the results of [13] that a Banach space of density ℵ1 is
WLD whenever it has a PRI in every equivalent norm. In particular, this yields
the positive answer to the above problem within spaces of density ℵ1. In the
present paper we prove the positive answer for spaces of an arbitrary density.
Let us remark that there are spaces which are not WLD but still have a PRI in
every equivalent norm (see [13]).
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Having answered the above problem, it is natural to ask the following
question.

Question. Let X be a Banach space such that each nonseparable Banach
space isometric to a (complemented) subspace of X admits a PRI. Is then X
weakly Lindelöf determined?

We also give a partial positive answer. However, this question in full
generality seems to be open.

We start by the basic definitions. Let us begin with PRI’s. For technical
reasons we give its definition in two steps.

Definition 1. Let (X, ‖ · ‖) be a Banach space. By a long sequence of
projections on X we mean an indexed family (Pα : ω ≤ α ≤ µ), where µ is a
limit ordinal, of projections on X satisfying the following conditions.

(i) Pω = 0, ‖Pα‖ = 1 for ω < α ≤ µ;

(ii) PαPβ = PβPα = Pα whenever ω ≤ α ≤ β ≤ µ;

(iii) PλX =
⋃

ω≤α<λ

PαX whenever λ ∈ (ω, µ] is limit.

Definition 2. Let (X, ‖ · ‖) be a nonseparable Banach space with density
character µ. By a projectional resolution of the identity (PRI) of X we mean
a long sequence of projections (Pα : ω ≤ α ≤ µ) on X satisfying moreover the
following conditions.

(iv) Pµ = IdX ;

(v) densPαX ≤ card α for ω < α ≤ µ.

This is the classical notion of a PRI. It turns out that this concept is not
the best one. In some applications it is too strong, in other situations it seems
to be too weak. So let us introduce the following two notions.

Definition 3. Let (X, ‖ · ‖) be a nonseparable Banach space with density
character µ.

(1) By a weak projectional resolution of the identity (weak PRI) of X we mean
a long sequence of projections (Pα : ω ≤ α ≤ µ) on X satisfying, moreover,
the condition (iv) and the following one.

(v′) densPαX < µ for ω < α < µ.
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(2) By a strong projectional resolution of the identity (strong PRI) of X we
mean a long sequence of projections (Pα : ω ≤ α ≤ µ) on X satisfying,
moreover, the condition (iv) and the following one.

(v′′) densPαX = card α for ω < α ≤ µ.

It can be proved that each Banach space from one of the classes mentioned
in the introductory paragraphs admits even a strong PRI (cf. [15, Section 4.1]).
On the other hand, to be able to use transfinite induction (which is probably the
main application of PRI’s) it would be sufficient to use a weak PRI.

Now we are going to give the definitions of some classes of spaces closely
related to PRI’s. These are Corson and Valdivia compacta and associated Banach
spaces.

Definition 4.

(1) For any set Γ we put Σ(Γ) = {x ∈ R
Γ : {γ ∈ Γ : x(γ) 6= 0} is countable}.

(2) A compact space K is called Corson if it is homeomorphic to a subset of
some Σ(Γ).

(3) A compact space K is called Valdivia if it is homeomorphic to a subset
K ′ ⊂ R

Γ such that K ′ ∩ Σ(Γ) is dense in K ′.

In Banach spaces we need a counterpart of the notion of a dense set.
Therefore we recall definitions of the following two notions.

Definition 5. Let X be a Banach space. A subspace S of X∗ is called
norming (1-norming) if the norm defined by |x| = sup{|〈ξ, x〉| : ξ ∈ S, ‖ξ‖ ≤ 1} is
equivalent (equal, respectively) to the original norm on X.

Definition 6.

(1) Let X be a Banach space. We say that S ⊂ X∗ is a Σ-subspace of X∗ if
there is a linear one-to-one weak* continuous mapping T : X∗ → R

Γ such
that S = T−1(Σ(Γ)).

(2) A Banach space X is called weakly Lindelöf determined (WLD) if X∗ is a
Σ-subspace of itself.

(3) A Banach space X is called Plichko (1-Plichko) if X∗ has a norming (1-
norming, respectively) Σ-subspace.
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Plichko and 1-Plichko spaces were studied, using various definitions, for
example in [22], [27], [20], [7], [13], [12], [14] and [15]. The above definition and
terminology follows the last two named papers.

The class of Corson compact spaces is closely related to the class of WLD
Banach spaces. Namely, a Banach space is WLD if and only if the dual unit
ball is Corson in it weak* topology ([21, Proposition 4.1], see [7] for a different
proof). The relationship between properties of K and C(K) is more complicated
– the space C(K) is WLD if and only if K is a Corson compact space with the
property (M) defined below (see [4, Theorem 3.5]).

Definition 7. A compact space is said to have the property (M) if each
Radon probability measure on it has separable support.

2. Main results. In this section we present our main results. The first
one is the following answer to the Problem formulated in the introduction.

Theorem 1. Let X be a Banach space. Then the following assertions
are equivalent.

(a) X is weakly Lindelöf determined.

(b) Each nonseparable Banach space which is isomorphic to a subspace of X
admits a strong PRI.

(c) Each nonseparable Banach space which is isomorphic to a complemented
subspace of X admits a weak PRI.

The proof of the new implication (c) ⇒ (b) of Theorem 1 is based on the
results of [13]. Namely, we prove that any space X satisfying (c) is 1-Plichko in
any equivalent norm and then use [13] to conclude that X is WLD. This shows
that the isometric question is completely different.

We continue by the following partial answer to Question asked in the
introduction. Let us remark that by C(K) we mean the space of all real-valued
continuous functions on the compact space K equipped with the supremum norm.

Theorem 2. Let K be a compact Hausdorff space which is a continuous
image of a Valdivia compactum. Then the following assertions are equivalent.

(a) C(K) is weakly Lindelöf determined.

(a′) K is a Corson compactum with property (M).
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(b) Each nonseparable Banach space which is isometric to a subspace of C(K)
has a strong PRI.

(b′) Each nonseparable Banach space which is isometric to a subspace of C(K)
has a weak PRI.

The same idea can be used to characterize Corson compact spaces.

Theorem 3. Let K be a compact Hausdorff space which is a continuous
image of a Valdivia compactum. Then the following assertions are equivalent.

(a) K is a Corson compactum.

(b) For each L, a (non-metrizable) continuous image of K, the space C(L) has
a strong PRI.

(b′) For each L, a (non-metrizable) continuous image of K, the space C(L) has
a weak PRI.

Let us remark that in Theorems 2 and 3 we make the assumptions on
all subspaces, not only on the complemented ones. We do not know whether it
suffices to consider only complemented subspaces. However, in some special cases
it is enough, as expressed in the following remark.

Remark. If K is a Valdivia compactum with a dense set of Gδ points,
then the assertions of Theorem 2 are also equivalent to the following one.

(c) Each nonseparable Banach space which is isometric to a complemented
subspace of C(K) has a weak PRI.

Under the same hypothesis the assertions of Theorem 3 are also equivalent to the
following one.

(c′) For each L, a (non-metrizable) continuous image of K such that the canon-
ical copy of C(L) is complemented in C(K), the space C(L) has a weak
PRI.

The proof of this remark is included in the proofs of Theorems 2 and 3.

3. Proofs. To prove Theorem 1 we need several lemmas. First two
of them are trivial and we omit the obvious proofs but we state them for the
convenience of the reader.
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Lemma 1. Let X be a Banach space and P be a bounded projection on
X with Y = PX. Then the mapping R : P ∗X∗ → Y ∗ defined by R(ξ) = ξ ↾ Y is
an isomorphism of P ∗X∗ onto Y ∗. Moreover, if ‖P‖ = 1, then R is an isometry.

Lemma 2. Let X be a Banach space and (Pα : ω ≤ α ≤ µ) be a long
sequence of projections on X. If ω ≤ α < β ≤ µ, ξ ∈ P ∗

αX∗ and x ∈ (Pβ −Pα)X,
then 〈ξ, x〉 = 0.

Lemma 3. Let X be a Banach space and (Pα : ω ≤ α ≤ µ) be a long
sequence of projections on X. Then S =

⋃
ω≤α<µ

P ∗
αX∗ is a 1-norming subspace of

P ∗
µX∗ = (PµX)∗ (using the identification due to Lemma 1).

P r o o f. Choose x ∈ PµX and ε > 0. By the condition (iii) there is
α < µ and y ∈ PαX such that ‖x − y‖ < ε

2 . Pick η ∈ X∗ with ‖η‖ = 1 such that
〈η, y〉 = ‖y‖. Put ξ = P ∗

αη. Then clearly ξ ∈ S and ‖ξ‖ ≤ 1. Moreover,

〈ξ, x〉 = 〈ξ, y〉 + 〈ξ, x − y〉 ≥ 〈P ∗
αη, y〉 − ‖ξ‖ · ‖x − y‖ ≥ 〈η, Pαy〉 −

ε

2

= 〈η, y〉 −
ε

2
= ‖y‖ −

ε

2
≥ ‖x‖ − ‖x − y‖ −

ε

2
≥ ‖x‖ − ε

Hence, S is 1-norming. �

Lemma 4. Let X be WLD and S ⊂ X∗ be a norming Σ-subspace. Then
S = X∗.

P r o o f. If S is norming, then there is an equivalent norm on X such
that S is 1-norming with respect to this new norm. As WLD spaces are stable
to renormings, we can without loss of generality suppose that S is 1-norming. It
follows from the Hahn-Banach separation theorem that S ∩ BX∗ is weak* dense
in BX∗ . Further, by the definition of a Σ-subspace we have that S is countably
closed in X∗ (i. e., C ⊂ S whenever C ⊂ S is countable). Finally, BX∗ is a Corson
compactum, and hence it is angelic [19, Theorem 2.1]. Therefore BX∗ ⊂ S, so
S = X∗. �

Lemma 5. Let X be a Banach space and S be a subspace of X∗. Then
S is a Σ-subspace of X∗ if and only if there is a linearly dense set M ⊂ X such
that S = {ξ ∈ X∗ : {m ∈ M : 〈ξ,m〉 6= 0} is countable}.

P r o o f. This follows easily from the well-known fact that weak* contin-
uous linear functionals on X∗ belong to X [8, Theorem 55]. �

Now we are ready to prove Theorem 1.
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P r o o f o f T h e o r e m 1. (a) ⇒ (b) This follows from the fact that
WLD spaces have strong PRI and are stable to taking subspaces (by [2, Corollary
IV.3.15]). (The assertion can be proved in a more direct and elementary way,
using [6, Proposition 8.3.1] together with an idea of the proof of [6, Proposition
6.1.10].)

(b) ⇒ (c) This is trivial.
(c) ⇒ (a) We will proceed by transfinite induction on density character

of X. As separable spaces are clearly WLD, the assertion holds if densX ≤ ℵ0.
Suppose that κ is an uncountable cardinal such that the assertion is valid for
every X with densX < κ.

Let X be a Banach space with dens X = κ satisfying the condition (c).
Fix | · | an arbitrary equivalent norm on X. By the assumptions there is a weak
PRI (Pα : ω ≤ α ≤ κ) on (X, | · |). By the induction hypothesis (Pα+1−Pα)X is a
WLD space for each α ∈ [ω, κ). So there is, by Lemma 5 (using the identification
from Lemma 1), a linearly dense set Mα ⊂ (Pα+1 −Pα)X such that for every ξ ∈
(P ∗

α+1 −P ∗
α)X∗ the set {m ∈ Mα : 〈ξ,m〉 6= 0} is countable. Put M =

⋃
ω≤α<κ

Mα.

Then M is linearly dense in X. We will show by transfinite induction on α that

∀α ∈ [ω, κ) ∀ξ ∈ P ∗
αX∗ the set {m ∈ M : 〈ξ,m〉 6= 0} is countable.

For α = ω it is trivially satisfied.
Suppose it holds for some α < κ. Let us prove it for α + 1. Choose

ξ ∈ P ∗
α+1X

∗ and denote by A the set of all m ∈ M such that 〈ξ,m〉 6= 0. By
Lemma 2 we have A ∩ Mβ = ∅ for β > α. If m ∈ A ∩ Mα, then

0 6= 〈ξ,m〉 = 〈ξ, (Pα+1 − Pα)m〉 = 〈(P ∗
α+1 − P ∗

α)ξ,m〉,

and hence A∩Mα is countable by the choice of Mα. Further, if m ∈ A∩
⋃

ω≤β<α

Mβ,

then m ∈ PαX, hence

0 6= 〈ξ,m〉 = 〈ξ, Pαm〉 = 〈P ∗
αξ,m〉,

and thus A∩
⋃

ω≤β<α

Mβ is countable by induction hypothesis. Indeed, we already

know that the set {m′ ∈ M : 〈P ∗
αξ,m′〉 6= 0} is countable. Therefore A is

countable.
Suppose that α ∈ (ω, κ) is limit and that we have proved our claim for

all β < α. Put

M̃ = M ∩ PαX =
⋃

ω≤β<α

Mβ .
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Then M is linearly dense in PαX. Further, put

S̃ = {ξ ∈ P ∗
αX∗ : {m ∈ M̃ : 〈ξ,m〉 6= 0} is countable}.

By Lemma 5 (using Lemma 1) it is a Σ-subspace of P ∗
αX∗. By the induction hy-

pothesis it contains
⋃

ω≤β<α

P ∗
βX∗, and hence it is 1-norming by Lemma 3. More-

over, the space PαX is WLD (as densPαX < κ), and thus S̃ = P ∗
αX∗ by Lemma

4. Finally, by Lemma 2 our claim holds also for α.
To complete the argument, put

S = {ξ ∈ X∗ : {m ∈ M : 〈ξ,m〉 6= 0} is countable}.

By Lemma 5 it is a Σ-subspace of X∗. By the just proved claim it contains⋃
ω≤α<κ

P ∗
αX∗, and hence it is 1-norming by Lemma 3. It follows that (X, | · |) is

1-Plichko. As | · | was an arbitrary equivalent norm, X is WLD by [13, Theorem
1]. �

To prove Theorems 2 and 3 we need three more lemmas.

Lemma 6. Let K be a compact Hausdorff space, κ be an infinite cardinal
and H ⊂ K be a closed set of cardinality at most κ. Then there is L, a continuous
image of K of weight at most κ, such that L contains a homeomorphic copy of
H.

P r o o f. It is well-known that we can suppose that K ⊂ [0, 1]Γ for some Γ.
If h, h′ are two distinct points of H, there is some γh,h′ ∈ Γ such that h(γh,h′) 6=
h′(γh,h′). Put Γ′ = {γh,h′ : h, h′ ∈ H,h 6= h′}. Then clearly card Γ′ ≤ κ. Let
R : [0, 1]Γ → [0, 1]Γ

′

be the canonical restriction mapping. Put L = R(K).
Then clearly L is a continuous image of K and the weight of L is at most κ.
Moreover, it follows from the choice of Γ′ that R ↾ H is one-to-one, so R(H) is a
homeomorphic copy of H contained in L. �

Lemma 7. Let K be a non-Corson Valdivia compactum. Then there is
a retract L of K such that the weight of L is ℵ1 and L is a non-Corson Valdivia
compactum. If, moreover, K has a dense set of Gδ points, then L can be chosen
to have a dense set of Gδ points as well.

P r o o f. Suppose that K ⊂ [0, 1]Γ such that A = K ∩Σ(Γ) is dense in K.
For J ⊂ Γ let us denote by RJ the canonical restriction mapping. It follows from
[5, Claim on p. 254] that we have

(∗) I ⊂ Γ, card I ≤ ℵ1 ⇒ ∃J ⊃ I : card J ≤ ℵ1 & RJ(K) ⊂ K.



104 Ondřej F. K. Kalenda

As K is not Corson, there is by [10, Proposition 2. 7] a homeomorphic injection
h : [0, ω1] → K with h([0, ω1)) ⊂ A. Put I =

⋃
{supph(α) : α ∈ [0, ω1)}. Then

clearly card I ≤ ℵ1. Let J be the set from (*). Then RJ ↾ K is a retraction
on K, the weight of RJ(K) is at most ℵ1, RJ(K) ∩ A is dense in RJ(K) (as it
contains RJ(A)), so RJ(K) is a Valdivia compactum, and finally RJ(K) contains
a copy of [0, ω1], and hence it is not Corson. This completes the proof of the first
statement.

Now let us suppose that K has a dense set of Gδ points. By [10, Propo-
sition 2.2(3)] all Gδ points of K are contained in A. As A is a Fréchet-Urysohn
space (i. e., whenever M ⊂ A, x ∈ A, x ∈ M , then there is a sequence xn ∈ M ,
xn → x; see [19, Theorem 2.1] or [10, Proposition 2.2(1)]), we have the following.

(∗∗) ∀x ∈ A∃gn(x) ∈ A,n ∈ N : gn(x) is a Gδ point of K & gn(x) → x

Let us construct by induction sets Mk,Dk ⊂ A, Jk ⊂ Γ such that

(α) D1 = h([0, ω1));

(β) Mk = Dk ∪ {gn(x) : x ∈ Dk, n ∈ N};

(γ) Jk ⊃
⋃
{suppx : x ∈ Mk} ∪

⋃
{Jl : l < k}, card Jk ≤ ℵ1, RJk

(K) ⊂ K;

(δ) Dk+1 is a dense subset of RJk
(K) ∩ A, card Dk+1 ≤ ℵ1, Dk+1 ⊃ Mk.

Put J =
⋃

k∈N

Jk. Then clearly card J ≤ ℵ1 and RJ(K) ⊂ K. Hence

RJ(K) is a retraction of K of weight at most ℵ1. Further, RJ(K) ∩ A is dense
in RJ(K) and RJ(K) contains a copy of [0, ω1]. Thus RJ(K) is a non-Corson
Valdivia compactum. It remains to prove that RJ(K) has a dense set of Gδ

points. Let G denote the set of all Gδ points of RJ(K). By the construction we
have Dk ⊂ G for all k. Hence RJk

(K) ⊂ G for all k. To finish the proof it suffices
to observe that

⋃
k∈N

RJk
(K) is dense in RJ(K). �

Lemma 8. Let K be a Corson compact space without property (M).
Then there is a retract L of K such that the weight of L is ℵ1 and L is a Corson
compact space without property (M).

P r o o f. Suppose that K ⊂ Σ(Γ)∩[0, 1]Γ and that µ is a Radon probability
measure on K with nonseparable support H. Construct by transfinite induction
hα ∈ H for α < ω1 such that hα /∈ {hβ : β < α} for each α < ω1. Put I =⋃
{supphα : α < ω1}. Then card I ≤ ℵ1, so there is (by (*) in the proof of the

previous proposition) J ⊃ I with card J ≤ ℵ1 and such that RJ(K) ⊂ K. Let
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ν = RJ(µ) (i. e., ν is the image of µ by the mapping RJ). Then the support of ν is
equal to RJ(H). If RJ(H) were separable, it would be metrizable (as a separable
Corson compactum), and so {hα : α < ω1} ⊂ RJ(H) would be separable as well,
which contradicts the construction. �

P r o o f o f T h e o r e m 3. (a) ⇒ (b) This follows from the fact that
Corson compact spaces are stable to continuous images (see e. g. [2, Corollary
IV.3.15]) and that C(K) has a strong PRI whenever K is Corson (see e. g. [26]).

(b) ⇒ (b′) This is trivial.

(b′) ⇒ (a) Let K be a continuous image of a Valdivia compactum which is
not Corson. By [11, Theorem 1] the space K contains a copy of [0, ω1]. By Lemma
6 there is K ′, a continuous image of K of weight ℵ1 such that K ′ contains a copy
of [0, ω1]. Then K ′ is a non-Corson continuous image of a Valdivia compactum
of weight ℵ1. By [12, Theorem 2] there is a continuous image L of K such that
C(L) has no PRI. As C(L) has density ℵ1, it has no weak PRI, as these two
notions coincide for spaces of density ℵ1.

(b′) ⇒ (c′) This is trivial.

(c′) ⇒ (a) Let K be a non-Corson Valdivia compactum with a dense set of
Gδ points. By Lemma 7 there is K ′, a retract of K, such that K ′ is a non-Corson
Valdivia compactum of weight ℵ1 with a dense set of Gδ points. Clearly C(K ′)
is complemented in C(K). By [12, Proposition 1] there are a, b ∈ K ′ such that
BC(L)∗ is not Valdivia if L is the quotient space made from K ′ by identification
of a and b. Then C(L) has no PRI by [7, Lemma 2]. Further, C(L) form a
hyperplane in C(K ′), so it is complemented in C(K ′). Finally it is clear that
C(L) is complemented in C(K). �

P r o o f o f T h e o r e m 2. (a) ⇔ (a′) This is proved in [4, Theorem 3.5].

(a) ⇒ (b) This follows from Theorem 1.

(b) ⇒ (b′) This is trivial.

(b′) ⇒ (a′) If K is not Corson, then this assertion follows from Theorem
3. If K is Corson without property M , there is, by Lemma 8, a retract L of K
such that L has weight at most ℵ1 and does not have the property (M). By [12,
Proposition 3] there is a hyperplane Y ⊂ C(L) such that BY ∗ is not Valdivia. As
dens Y = ℵ1, the space Y has no PRI by [7, Lemma 2]. Let us remark that in
this case Y is complemented in C(K).

(b′) ⇒ (c) This is trivial

(c) ⇒ (a′) If K is not Corson, the assertion follows from Theorem 3. If
K is Corson without property (M), then the proof is the same as that of the
implication (b′) ⇒ (a′) above. �
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Sokolovská 83, 186 75 Praha 8

Czech republic

e-mail: kalendakarlin.mff.cuni.cz

Received August 8, 2000

Revised October 23, 2001


