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ABSTRACT. In this work we present the operators A, = vA +5A* with
Re~y = 1/2 in the case of an operator A from the class of nondissipative
operators generating nonselfadjoint curves, whose correlation functions have
a limit as t — +oo0. The asympthotics of the stationary curves e’*47 f as
t — oo onto the absolutely continuous subspace of A, are obtained. These
asymptotics and the obtained asymptotics in [9] of the nondissipative curves
e*A f allow to construct the scattering theory for the couples (Ay, A) and
(A, Ay). We consider the basic terms from the scattering theory - wave
operators, a scattering operator and the question of a similarity of A and
A,. We obtain explicitly the wave operators, the scattering operator and
the similarity of A and A,.
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1. Introduction. This paper is a continuation and an application of
the results in [2, 9] concerning the asymptotics of nondissipative curves e f as
t — £o00, generated by the class (ZR of nondissipative operators A with a limit of
the corresponding correlation function V (t 4+ 7,5 + 7) = (e!tHNAf eils+7)A f) ag
T — *+00, and the abstract scattering theory for the couple (A4*, A).

The purpose of the present paper is to obtain the asymptotics of the curves
7 f onto the absolutely continuous subspace of the operator A, = vA +5A*
with Rey = 1/2 and to construct the scattering theory for the couples (A, A)
and (4, A,).

The development of the study of nonselfadjoint operators began with
the works of M. S. Livsic and his associates in 1950’s ([6, 5]) and later that of
Sz.-Nagy, Foias, de Branges and Rownyak ([14, 3, 4]), M. S. Livsic, A. A. Yant-
sevich, V. Vinnikov et al. ([13, 12]), K. Kirchev and V. Zolotarev ([10, 11]).
The theory, created from M. S. Livsic, consider mostly operators A : H —
H in a Hilbert space H with a nonhermitian part A — A* from finite rank
(dim(A — A*)H < +o00) or trace class. It is based on the connection between the
theory of nonselfadjoint operators and the theory of bounded analytic functions
on the upper half-plane.

Let us denote for the operator A : H — H with dim(A — A*) < 400

eztA

E=(A—AYH, ®=Py, L=2(4-A%p
7

where Pg is the orthogonal projector of H onto E. Then the matrix function
(called a characteristic function of A)

WA =1Ig —iPg(A—X)"'PgL

is defined and analytic in the resolvent set of A, analytic in a neighbourhood
|A| > a of A =00, W(oo) =1 and W () possesses the metric properties

W*(\ILW(A) > L (Im\ > 0),
W*A\)LW(\) =L (ImA=0),
W*\LW() <L (Im\ < 0)

for a regular point A of the operator A. In other words to every bounded operator
A in a Hilbert space with a finite imaginary part there corresponds a matrix
valued function which characterizes these operators up to an unitary equivalence
on the principal subspace of A. This relation is the essence of the theory of M.
S. Liv§ic and it allows to make a classification of the considered operators.
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More generally the characteristic function of A : H — H can be intro-
duced in the form
W) =1—i®(A—-\)1O*L

by the so called operator colligation
X =(4;H,9,E; L),

where F is a Hilbert space, ® : H — F and L : E — FE are bounded linear
operators with L* = L and (A — A*)/i = ®*L .

The main point in this investigations is the relation between the invariant
subspaces of the operator A and the factorizations of the characteristic function
W(A) (given by Potapov’s factorization theorem).

An arbitrary finite matrix can be presented in a triangular form by a
corresponding unitary mapping. Analogous problem can be solved for classes of
nonselfadjoint operators — the operators from these classes are presented in the
so called triangular models using unitary mappings.

One of the applications of this theory is the study of nonstationary random
processes and more generally continuous curve g(t) in a Hilbert space H:

g(t) =™ f (f € H).

The obtained asymptotics of a nonstationary curves for classes of nonselfadjoint
operators allow us to construct a scattering theory for a couple (A*, A), where A
is an operator from a given class.

From the class of all nonselfadjoint operators in a Hilbert space with a
finite nonhermitian rank we consider the operators A presented as a coupling
of a dissipative operator and an antidissipative one. For these operators A we
consider the operators

A, =vA+75A" with Rey=1/2.

The reason for our interest in the operators A, with Rey = 1/2 is the
connection between the complete characteristic matrix function W(\) = I —
iL||((A— M) "tga,gg)|| of the nondissipative operator A and the matrix function
Vo(N) = |7 I((Ay — A1) 71 ga, gg)|| where {go}T" are the channel elements of A.
W(A) and V,(X) determine completely each other and the consideration of the
matrix function V,(X) allows to describe the characteristic matrix functions of
a class of operators (see, for example, [6] in the case of v = 1/2). In [6] M. S.
Livsic and M. S. Brodskii have considered the operators A, with v = 1/2 for
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operators A with a finite imaginary part. In [16] L. A. Sakhnovich has presented
the operators A, with Rey = 1/2 for dissipative operators A with a trace class
imaginary parts.

The main purpose of this article is to obtain the asymptotics of the curves
7 f onto the absolutely continuous subspace of the selfadjoint operator A, and
to construct a scattering theory for the couples (A, A) and (A, A,). We obtain
explicitly the wave operators W4 (A, A ), Wi (A,, A), the scattering operator and
the similarity of A and A,. In this paper we essentially use the asymptotics of

eztA

the nondissipative curves e f for A € Qr and other results obtained in [9].

2. Wave operators for the class {2z of nondissipative oper-
ators. We consider the class (ZR of all nonselfadjoint linear bounded operators
in a Hilbert space with a finite nonhermitian rank, real spectrum and presented
as a coupling of a dissipative operator and an antidissipative one. This class has
been considered in [9, 2]. Let the operator A belong to the class Qr. We may
assume without loss of generality that the operator A has the form

xT

Af() = ale)f(e) =i [ FETIEOS T ()de-+
(1) ,
$i f FEOT(E)STE (2)de + J e )de

in the Hilbert space L2(0,1;C")={f(2)=(f1(z),..., fu(x)) : [0,]] — C™: fy(x)€
l

L%(0,1),k=1,2,...,n} with an inner product (f(z),g(z))= [ f(z)g*(x)dz. Here
0

a(x) is a bounded non-decreasing function on a finite interval [0;{] which is con-
tinuous at 0 and continuous from the left on (0;!], II(z) is a measurable n x m
(I < n < m) matrix function on [0;!], whose rows are linearly independent at
each point of a set of positive measure, and satisfying the condition

trIl* (z)I(z) = 1,
the selfadjoint operator L : C™ — C™ with det L # 0 has the representation
L=J1—Ja+5+5"%,
where Ji, Jo, S, S* : C™ — C™,

I, 0 (0 0 B
i=(5 o) a0 1, ) 5=

o O

)

n) o
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I, is the identity matrix in C* (k = r,m —r), S is a (m — r) X r matrix, r is
the number of the positive eigenvalues and m — r is the number of the negative
eigenvalues of the operator L, the matrix function B(z) = II*(x)II(z) satisfies
the condition

(2) B(l‘)Jl = JlB(JL‘)

for almost all z € [0;]. The model (1) is a suitable form of the triangular model
of M. S. Livsic [13, 12] which generates a class of nondissipatives curves having
a limit of the corresponding correlation function ([2, 9]).

Let us suppose that II(z) has a linearly independent rows for almost all
x € [0;1]. If we consider a measurable m X n matrix function Q(x) on [0;]
satisfying the condition II(z)Q(x) = I where I is the identity matrix in C", we
can present the operator A from (1) as a coupling of a dissipative operator and
an antidissipative one

(3) A= P AP, + PAP, + PIAP;,
where the orthogonal projectors P; and P, have the form

(4) Pif(z) = fa)l(x)hQx), Pof(z) = f(x)Il(x)]2Q(x)

(see [9]), PLAP; is dissipative and P, AP, is antidissipative.

In this paper we shall be considering only operators from the class SNZR
with an absolutely continuous spectrum, i. e. the inverse function o(u) of a(x)
is absolutely continuous on [a;b], where a = «(0), b = a(l).

In this paper we will denote by || || the norm of a matrix function in C"
and by || ||z2 - the norm in L2(0,1;C").

For the simplification of writing we will also assume that the matrix func-
tion B(x) € Cy,[0;1] (i. e. |[B(z1) — B(z2)|| < Clzy — 22|*, 0 < a1 < 1,
V1, z2 € [0;1]) and the function « : [0;1] — R satisfies the conditions:

(i) a(x) is continuous strictly increasing on [0;] :

(ii) the inverse function o(u) of a(z) is absolutely continuous on [a; b];

(iii) o’(u) is continuous and satisfies the condition

lo'(u1) — o' (u2)| < Clug —ug|®* (0 < ag < 1)

for all uy, uz € [a;b] and for some constant C' > 0.
For our further applications let us denote the next operators for a non-
negative (non-positive) matrix function T'(z) € Cy,[a;b] (aq > 0) (following the

denotations in [9]):
5 i)

(5) F%(Lu) = s — lim fem

6—0 4,

dv
)



114 Galina S. Borisova

(6) Py(x,u) = B (2,u) — Fy (z,u)
for all w,u,z such that a <w <u<b,a<z<band
= i 5 i)
—1 —1T' (v
(7) F$($,u) s — lim f e v—a WetT(2) f e v—a dU,
REY(2) = (FF (w,u) (Ff (2,u))7)? =
-1
) _
®) =s—1lim [e fi)dvein(x) eiﬂig)dv )
—Yw w
= i (v)
- —iT(v —iT (v
9) Up(z,u) = Ril(x)ﬂf(a:,u) =s—lim [e= ™ [ e dU,
z—05 T(x)
= ZiT(w) f v—x dv
(10) Upp(x,u) = lim [ e7v-s e ats )
6—0 4,

Py (,u) = (Ry () = Ry (2)) Uz (w)e” O 0=,
Qw (.’E, ’LL) = P2,w (x’ u)eZT($) 1H(u—$)€—iT(u) ln(u—;p)’
QE(x) = RE (2)Upy(a)e!T @ Me—w)
Qu(r) = Q$(33) - Qy(z)
for all w, u, x such that a < w <z < u < b. The existence of these limits follows

from the formula about the limit values for multiplicative integrals, obtained by
L. A. Sakhnovich in [16]

12
13

(12)
(13)
(14)
(15)

175 b

—iT(v) dv —iT(v) 7 —iT(v)
s — lim fe” @™ = g — lim fe vma Wt (@) [ o=mg @,
0

6*>0 o— a $+5

Using the introduced notations for T'(x) € Cyla;b] (0 < a < 1) we shall
recall several inequalities obtained by L. A. Sakhnovich in ([16]) which we will
use (see, for example, [9]):

(16) U (2, 0) = Urp (2, 0) | < /HTW—T@)H

dv
—
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for all w, u, x such that a <w <z <u <Wb,

a/

To— T
() |Usa(1) — Unal2)]] < c( : 1) ,
r1T —a
Tr9 — 1 of
(18) IRaten) = Bole)] < € (222
1 —a
(19) | FE(z1,b) — FE(z2,b)|| < C (( 1‘1) + <x2 —x1> ) ’
T —a b— x9
for all z1,29 : a < 1 < 29 < b where C' > 0 is a suitable constant and
o =a/(1+a).
We will also use the next inequalities obtained in [9]
(20) IFf (2,u) — Qb (2, u)]| < Cu— ),
O[/
uU—x
1) IQbe) - il < ¢ (£=2)

for all w,u,z:a <w <z <u<b,

= —1i ('u)
(22) [e e — Upy(z)e 7@ <C(x—u)”
for all w,u,z:a <w<u<x<Db,

O[/
(23) HezT(a:) In(z—w) _ 6z‘T(u) ln(u—w)H <C <1‘ - u>
T —w

for all z,u,w:w <u <z,
(24) HefiT(x) In(z—u) efiT(u) In(z—u) H < C(l‘ - u)o/

forall z,u:a <u<ax<b,

% i) % i o o
—iT(z —i u—2z u—z

(25) eTomr W [eTomu <C<< ) —i—( > )
b w r—a w—

when a <  <wu < w < b, where C > 0 is a suitable constant and o/ = /(1 + «).
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For the simplification of writing suppose that the initial function

f(@) = (fi(2), fa(2),..., fu(z)) € L?(0,1;C")

is chosen from the dense set Hgy in L2(0,1;C") such that there exist fi(z) €
L2(0,1) (k=1,2,...,n) and £(0) = f(I) = (0,0,...,0).

For our further applications we shall denote the matrix functions de-
fined by (5) (or (7)), (6), (8), (9), (10), (11), (12), (13), (15), (14) with Ff(z,u),
Pw(xvu)v Ril(dj)v Uw(xvu)v Ulw(xvu)v UQW(J:)’ P2w($7u)7 Qw(xvu)a Qw($)7 Qi(x)
respectively for the nonnegative matrix function T'(x) = J;B(o(z))Jio'(z) on
[a;b] and with FE(z, u), Py(z,u), RE(x), Uy(2,u), Ure(z, u), Usw(z), Poy(a,u),
Qu(x,1), Qu(z), QE(x) respectively for the nonpositive matrix function T'(z) =
—JoB(o(z))Ja0'(x) on [a; b].

In [9] the asymptotics of nondissipative curve e f with basic operators
from the class (ZR have been obtained and the existence of the limits of the
corresponding correlation function V (t + 7,5 47) = (e HAf A f) ag 7 —
+o0o has been proved. In other words (see [9] Theorem 4, Theorem 5) let for the
model A € Qp, defined by (1), next conditions hold:

1) the function « : [0;1] — R satisfies (i), (ii), (iii);

2) Q*(x) is a smooth matrix function on [0;1] (i. e. Q*(x) is differentiable
and Q*'(z) is continuous on [0;!] by norm in C")) ;

3) B(x) € Coy[0;1] (0 < a1 <1).

Then the nondissipative curve 4 f for each f € H, after the change of the
variable x = o(u) has the asymptotics

(26) e £ (o (u)) — €S fo(w)] 2 — 0
as t — doo and there exist the limits of the corresponding correlation function
V(t+ 7,54+ 7) as T — Foo for ¢ f in L?(0,1;C") and after the change of the
variable = o(u) these limits have the form
b - -
oy A V(s + 1) = [ (£ o)) Sa (o) o (u)du =
= (™S f(o(u)), e*"Sef (0 (u)))

for all ¢,s € R. The operators Si and ,§i are bounded linear operators defined
in the subspace Hy by the equalities (after the change of the variable x = o(u)):

(28) Sif(o(u) = (Seflo(w)TeZ(t, ),
(29) Sif(o(u) = TeSsf(o(u)),
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where R
Sitflo(u) =

w
—

~ iBq(v) _13()
=/f’(w)/evud”de1+/f / = d”deg—/f F (u, b)dws,

(30) Tih=h (JlUga(u)(u — a)iBrwFE BT 1] 4B, (u)) ], +
+ JoUsq(u)(u — a)*iEQ(“)ei%E(")I‘*l(I - iég(U))Jg) IT* (o (u))
- +oo ~
or a € where I'(el 4+ ¢B1(u)) = e TellET i) Mgy (e > 0) is
(for all h € C™) where I'( 1) = [ emrellemDImBilinugy (e > 0)

0
the analogue in C™ of the classical gamma-function (considered in [9]),

(31) Z(t,u) = (o (w)) (Ji[HP 1 + Joft] 72 ) Q(o(u),
(32) Bi(u) = J1B(o(u))Jyo’ (u), Ba(u) = JoB(o(u))Jao’ (u),
(33) Fw) = f(o(w)Q*(o(w)).

We can embed the operator A from (1) in a colligation
(34) X =(4L%0,1;,C"), @,C™, L),

where the operator ® : L2(0,/;C") — C™ is defined by

l
(35) (z) = / F)TI(2)dar
0

(36) (A— A*))i =®*L® and ®*h = hIT*(z).

In [9] the construction of a scattering theory for the couples (A*, A) with
A from Qp is presented and the wave operators for (A*, A) as weak limits are
obtained. The proved similarity of A and the operator D of a multiplying by an
independent variable in [9] allows us to prove the existence of the wave operators
as strong limits.

Theorem 1. Let for the model A € Qr, defined by (1), next conditions
hold:

1) the function a : [0;1] — R satisfies (i), (ii), (iii);
2) Q*(z) is a smooth matriz function on [0;1];
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3) B(z) € Cy,[0;1] (0 < a1 <1).
Then there exist the strong limits

. ok
s — lim eztA e itA
t—+oo

on L2(0,1;C").

Proof. Let us consider the operator function
W(t) — eitA* e—itA

in L2(0,1;C"). Then W) _ gitA A=A” o—itA 4 q consequently

dt 1
t
(37) W) f=f—i / T (A — ANe T A fdr
0
for f € L?(0,/;C"). But #e’imf = Y (e7"f ga)(Lea,es)gs, where
a,B=1
{ea}" is an orthonormal basis in C™, g,(x) = P*e, = e II*(z) (x € [0;1]),
a=1,2,...,m, are channel elements of A. Then
H A_iA* €7Z'tAfHL2 < (eiitAfa ga)(Leaa €ﬂ)gﬁ <
) L2
m o~ . o~ m . o~ _~ *
< C 2 (857752 f.90)| = O 3 (P51 f, 55" ga)l =

b o~ qx
J e ™S f(o(w)(S5" galo(u)) "o’ (u)du

a

m

:cz

a=1

)

because A = §£1D§i onto L2(0,1;C") (see [9]) after the change of the variable
T = o(u), where D is the operator of a multiplying by an independent variable,
S1!is the inverse operator of Sy and it has the form

(38) §£1 =G11 + Gy + G?:Q,
where

1 d

Guglo(u)) = o——- [ glo(u))Fa(r, w)drJ1Q(o(u)) (o' ()™,

a
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1 d

Gaaglo(w) = 5o [ 9(0()Palr, )T Qo () (0" ()

a

Giog(o(u)) = —G115HGag(o(u)),

SEf(o /f ¥ (u,b)dws,

(where g € L2(0,1;C™) such that |¢'(x)| < C in [0;1], € > 0 is a constant). But

for each f € L2(0,1;C") there exists g € Y = R(Sy) c L2(0,1;C™) such that
f= Si g and then

ey, = |42

(39) m b
<C Y |[ e tg(o(w)ha(u)du

9

where ho(u) = (S5 ga(o(u)))*o’(u) € L2(0,1;C™), o = 1,2,...,m and R(S%)
is the range of the operator ‘/S\i-

On the one hand W (t), ¢ € R, is an uniformly bounded set of operators
(i. e. ||W(t)|]] < M for all t € R, where M > 0 is a suitable constant — see [9]).
On the other hand from (37) and (39) we obtain

‘ 2

2 * * :
f e’LTA A_iA eszAfd,]_
t1

W (t2) f — W (t1) fl}2 =

LQ
ta m - e 2
=\l X (7 f,9a)(Lea,ep)e™ gg(x)dr|| <
t1 a,B=1 L2
m to ) to L
<My 55 |(Leare)P [ 1@ 7 f, e0)Par [ |74 Be|dr
Ol,ﬁ:l t1 t1

(M; is a suitable constant). But straightforward calculations show that
|[@e~#4||L. € L2(R) as a function of ¢. Then [[e®4" ®*eg||p2 < || D*||.|leg]| =
| @e~%#4||> and hence the function ||e?*4" ®*eg|.> belongs to L%(R) as a function
of t. The integrability of HeitA*q)*egHig together with ®e~#4 f € L2(R;C™) and
the last inequalities imply that

[W(te)f =W (t1)fllLe =0 as t — Foo.
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Then for the uniformly bounded set W(t), t € R, there exist the limits

lim W(t)f forall feL%0,l;C"),

t—=+o0

i. e. there exist the strong limits

s— lim W(t)=s— lim " e 4
t—=o0 t—=o0
onto L2(0,1;C™). The proof is complete. [
From the results in [9] about the form of the wave operators as weak
limits and Theorem 1 it follows that

s — tlgtnoo eitA*e—itA _ Wj:(A*,A) _ ngg:F’

where the operators Sy are defined by (29).

3. The operators A, = YA +7A* with Re~y = 1/2. Properties
of the operators from the form A, = yA+7A* with v = 1/2 for operators A with
a finite imaginary part are presented in [6], properties of A, with Rey = 1/2 for
dissipative operators A with a trace class imaginary part (A— A*)/i are presented
in [16].

The obtained asymptotics (56) for the nondissipative curves e f as t —
+oo with A € Qg in [9] allow us to study some properties of the operators

Ay =7vA+75A" (Rey=1/2)

in the case of the operator A € (NZR, satisfying the conditions introduced in part 2,
to obtain the asymptotics of the curve €47 f onto the absolutely continuous
subspace as t — +oo and to consider the wave operators and the scattering
operators for the couples (A,, A) and (A, A,)

Let the model A € Qg be defined by (1). Let the function a(z) satisfies
the conditions (i), (ii), (iii) and II(x), B(x), Q(x), J1, J2, S, L are like in part 2
stated. Let A be embedded in the colligation X from (32) with ®, ®* satisfying
(33) and (34). Let {ga}7" be the channel elements of the operator A:

(40) ga(x) = ®eq = e 11" (x) , z € [0;1],

where {e,}{" is an orthonormal basis in C™. Then the characteristic operator
function W () of the colligation X has the representation

(41) W(A) =1 —iL[|((A = M) ga, g5)]-
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Let us consider the next matrix function

(42) Vo) = YL I((Ay = AL) " ga, g5)-

But

(43) (A=At —(A, =AD"= —F(A, - A HA- A (A -

(44) A-AD'—(A, =AD"= FA-A)THA-A)A, -

Using (41), (42) and (A — A*)/i = ®*L® from (43) and (44) it can be obtained
(45) I =W =iy (v +3W (V) LV, (N),

(46) I=WX) =ily[T LV, () (T +73W (X))

Then we have

) V) =l L TV L) - 1) =
= b L W) = DT +7W ()

(48) W(A) = (v — iy LV, (A) (W + 3LV, (A) ™! =
= (V[ + LV, (X)) "N = iy LV, ().

The equalities (45) and (46) show that

e (VAW (9 + [y |LV;(A)) =
L (VT + iy LV, (W) (VT + AW (V) =T

(49)

Y242
(VA & [0;1]). But V,,(\) has the form

(50) V,(\h = |y|®(A, = AXI)"'®*h (b e C™).
From the results of Birman and Entina ([1]) it follows that there exist the limits

(51) Vi(z)=s5— lim V(2 = i0)

for almost all z € R for the operators V() (A = z £ id) with the form (50).
On the one hand from the form of the characteristic operator function

1
—  —iJyB(0)J — iJyB(0)J
(52) W)= (fefot(e) L+ I) (fe EEZORL iy I)

0
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of the colligation X, presented in [2] and the analogue for the multiplicative
integrals of the well-known Privalov’s Theorem, obtained by L. S. Sakhnovich in
[16], it follows that there exist the limits

WE(z)=s— %in(l) W (z +140)

for all z € R (using the assumptions for B(x) and a(x)).

On the other hand (51) implies that the set of operators {V,(z +id)} is
uniformly bounded for almost all fixed x € R (using for example, [8], Theorem
I11.1.29). Then from (49) it follows that for almost all x there exist the bounded
operators (yI +FW=*(x))~! and from (47) we obtain

Vii(a) = ily[ L7 (v + AW ()" (W () = 1).

Let us denote the next matrix functions
(53) W(w,\) =T —iL||(A = X)) ga, Ga(x))]],

(54) Va2, 2) = DAy = M) 7 ga, Gs(@))
where gg(z) = gg(u)X(0,2)(u) = egll" (w)X[o,)(u), @ € [051], X[o,1(w) is the char-
acteristic function of the interval [0;z]. Using the notations (53) and (54) analo-
gously to (47) we obtain the next representation of V(z,\)

(55) Vo (@, M = iy [hL™ (v +7W () (W (2, \) — 1)

for each h € C™. But from the form (40) of g, () it follows that

xT

(56) ¥ (2. )b = ] / B () (Ay — A1)~ TI(y)dy,
0
(57) (W(x.A) — )h = —ihL / IT*(4) (A — )T (y)dy,
0

where h € C™. Now the representations (55), (56) and (57) imply that

thﬂ*@)(Aw LD (y)dy =
(58) )
= WL (v T £ FW(N) L [ T (y)(A — A I(y)dy
0
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and by differentiating of the equality (58) it follows that

(T () (Ay = A1)~ TI(z) =

®9) = (JL7M (T +7W () "LLIF () (A — AL~ TI(z).

Let us denote
(60) Gy(A) = L™ (yI +3W (X))~ L.

Then from (59) and the form of Q(z) we obtain
(61) (A, = M) h = hQ*(2) G, (MIT*(2)(A = AXI)™t (h e C™)

But A is a coupling of two operators and from (3) and (4) the resolvent
of A has the representation

(A= A"t = P(PAP, — XI)7' P+

(62) +P2(P2AP2 — )\I)ilpg — Pl(PlApl — )\I)ilplAPQ(PQAPQ — )\I)ilpg.

Straightforward calculations show that for each f € ﬁo after the change of the
variable * = o(u) and using the introduced notations, the equalities (62) and
(61), (A, — AI)! takes the form

b
(63) (A'Y_)‘I) f( :L)\f /\ U)Jl)([au]( )
+ﬁw<A,u>Jz>qa;u}< ) = Fu(), b)SF <A,u>J1>H (o)) dw,

where gy (w) = f(w)G,(MIT*(o(w))Q* (o(w)) and f(w) is defined by (33).
Let us denote now

(64) FONf(o(u)) = (Ay = AT f(o(u)),

(65) F:(N)f(o(w) = (= N)*(Ay = M) 7" f(o(u))

for each € > 0 sufficiently small and f € ﬁo. Let us present the space L2(0,1;C")
in the form

L%(0,1;C") = H), ® HY

where Hg. is the absolutely continuous subspace of the selfadjoint operator A,
and HY is the singular subspace of A,. Next theorem describes a suitable rep-
resentation of F.(A)f(o(u)) which we will use to obtain the asymptotics for the
curve ettAr f onto Hy..
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From the theory of the selfadjoint operators (using the representation
(50)) it follows that V,(A) has the representation

(66)

onto the absolutely continuous subspace H,. where the matrix function Z(¢) has
the form Z(t) = w/(t) for almost all ¢ € [a;b] and w(t) is nondecreasing matrix
function with w(—o00) =0, w(4+00) = ||(ga,9s)|l-

For the sace of clarity let us suppose that Z(t) satisfies the condition

(67) 1Z(t1) — Z(t2)|| < Mt1 —ta]® V1, ts € [a;0],

where M > 0 is a constant, 0 < § < 1. The inequality (67) implies that there
exist the limits s — %in% Vy(z £id) = VF(z) for all z € R. Hence using the

equalities (49) we have

1
: coN vk _ . + _ -1 —117t -1
s—lm G, (a£i0) = G5 (2) = W(WH%IWM (z)L) = L™ (v +73W=(x))
for all x € R and it can be shown that
(68) G ()] < My + Mymax{1/(z — a)”;1/(b— z)"}

Vx € (a;b), My > 0 is a suitable constant and 51 : 0 < ; < 1 is sufficiently
small.

Theorem 2. Let for the model A € Or, defined by (1), next conditions
hold:

1) the function a : [0;1] — R satisfies (i), (ii), (iii);

2) Q*(z) is a smooth matrix function on [0;1];

3) B(z) € Cy,[0;1] (0 <y <1);

4) the matriz function Z(t) from the representation (66) satisfies the con-
dition (67).
Then the operator function F.(X\) for each f € Ho N Hy. after the change of the
variable x = o(u) has the representation

b b
Fe(N)f(o(u)) = %f e J (G2 (W) (5 (2, 1) J1 X o) (w) +
(69) +(a: ) (W) — F+(:L‘ b)SES (x,u)J1)—

( )( (x )J1X[a u]( ) + FJ(xvu)JQX[a;u}(w)_
_( ,0)SEL (2, u)J1))dwll* (o (u))dz,
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where

(10)  Get(w) = F)EE @ 0w)Q (o)) . (w) = -5 (w)

and GE(z) = s — lim GE(x +i6) = LY (yI + AW*(x))'L.

Proof. For the proof of the representation (69) we will use the ideas
from the proof of Lemma 8 in [9]. Let A € C\ [a;b]. Let h > 0 be an arbitrary
fixed sufficiently small such that A belongs to the domain G with a boundary
I'=LrUli(6) Ula(d) U (0) ULL(0), where

Lr = {Z:Rew:oggoﬁ%'},
L) = {z=x—i0: a1 <z <b},

() = {z=2+i0: a1 <x < by},
1) = {z=b+ir: =6 <7 <4},
50) = {z=a1+ir: =0 <7< 0},

a1 = a—h, by = b+ h, for each R > 0 sufficiently large and for each § > 0
sufficiently small. Using the Cauchy integral formula for the operator function
F.(\) in the domain G we obtain

(71) ROV (o(u) = 5 [ 21,

z—A ’

where \ € G, f € HyN HJ.. But

(R few)
(72) Pl B w
Lr

by the Lebesgue convergence theorem because

o F=(Re') f(o(u))

Re'®
Ret — \

(73)

Ret? — \

N e A )
as R — o0, ¥y € [0: 271] and
(74) HﬂFa(Rew)f(a(U))H < Culf(ow)]
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for all ¢ € [0;27] and each R > 0 sufficiently large, where C > 0 is a suitable con-
stant. In (73) and (74) we have used the form of F.(Re*) and the representation
of the resolvent of a bounded linear operator.

Now for the integrals we obtain

Lo L@@ g,y 1 ¢ FeEt) g,

11(9) z'(é)
é

= — ok [ Wb Py tin) fo(u))dT— ok f“;ljl”’; Flav+i7) f (o (u))dr.
1

Using the connection between G () and V,,(A):

Gy(A) = (vI +i|y[Vy(A)L)

Y2+
and the existence of the limits s — %irr(l) Gy (a1 £i§), s — %irr(l) G (by £ i€) it follows

that
(75) Gy (a1 +iT)[| < Mz, [[Gy(br +iT)]| < Mo

for all 7 : |7| < ¢ and for some constant My > 0. The inequalities (75), the

form of ga, 1ir(w), Go, +ir (W), Flar+i7)f(o(w)), F(by+i)f(0(u)), Fu(§ +iT,u),
Fy(§ 4+ i1,u) and the properties of the multiplicative integrals show that

(u—bl—’iT)E . 1 1

Al S < . M.
= F(by +i1)f(o(w)|| < By = A =3 (h— o)< 3
(u—ay —itT)® 1 1

M3

F(ay +i71) f(o(u))

< .
T lag = A =0 (h—d)t-=F
for all 7 : |7" <9, M3 > 0 is a suitable constant. Hence

(76) lim — /F " Dz —o, 1imi,/wdz=o.

50 2m Z—A

a1—|—i7’—)\

Passing to limits R — +o0 and § — 0 in (71) and applying (72) and (76)
we obtain that

b1 b
F. (N f(o(u) = 5= [ ﬁ( = (@' (w)(Fyf (2, 1) J1X[ap) (w)+
(77) + Fif (2, 0) JaX (o) (w) — B (2,0)SFF (2, u)J1)—
_gxli(w)(F_(x )J1X[a u](w) +F (x U)JQX[a u}(w)_
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In the equality (77) we have used first the Lebesgue convergence theorem, then
the existence of the limits Gi( ) and FE(z,u), FE(z,u) for the multiplicative
integrals Fy,(x £ 16, u), Fyy(z +14d,u) as § — 0 (when € R). Now using the form
of the limits g, jE( ), FE(z,u), Fi(l‘ u) when z € R\ [a;b] the equality (77)
take the form (69). The theorem is proved. O

From the well-known formula about the representation of eitAW we have
A 1 A
itAy . _ _— it Ao — M _ld)\
¢ 211 / e K ) ’
r

where I' is closed contour containing [«(0);(l)]. Then the equality (A, —
M) f(o(u)) = lirr(l] F.(\)f(o(u)) and (69) for f € HyN H,. after calculations
show that

b
ey f(o(u)) = liII(l) = e —= (0" (w)(Fyf (2, u) J1 X g (w)+
(78) Fif(, )J2X[a u)(w) = F*(ﬂ«“’b)SFJ(fC,U)JD—

- gx ( )( (x U)J1X[a u}( )+ ﬁ;($7u)J2X[a;u](w)_
Fy(x,0)SF; (z,u)J1))dwll*(o(u))dx.

9%@

We present (78) in the convinience form for the further applications of
this formula:

u b )
€t f(o(w) = 5t | lim <f e (@ () — 3’ () P u)dn ¢

ztz

+f = (@ (W) = 3 (W) Fyf (2, u)dwJo+

ztz

+f(u 2= 0z (w)Py(z,u)dx ]+
(79) +f =0 (w)ﬁw(x,u)dm2> dwIT* (o (u))—

b
1 li
— 1m
21 af€ 0

b ) ~
(f e @ (W) ~ 3 (W) Fyf (2. D)SE (. u)da i+

ztz

+f =02 (w)Py(2,b) SF (w, u)da J1+

ztz —

+ f (u— :,3)1 — G, (w)ﬁg(a:,w)SPa(a:,u)de) dwIl*(o(u)).
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Next theorem gives the asymptotics of the curve e f as t — +oo for
f € Hj. N Hy after the change of the variable x = o(u). The proof of this
asymptotics is based on the ideas of the proofs of the asymptotics (26) for the
nondissipative curves e*4 f (A € Qg), obtained in detail in [9].

Theorem 3. Let for the model A € Qg, defined by (1), next conditions

hold:

) the function o : [0;1] — R satisfies (i), (i), (iii);

) Q*(z) is a smooth matriz function on [0;1];
3) B(z) € Cy,[0;1] (0 <y <1),

) the matriz function Z(t) from the representation (66) satisfies the con-
dition (67).

Then the selfadjoint curve e f for each f € HoN HY. after the change of the
variable x = o(u) has the asymptotics

(80) 14 f (o (u)) = €S, f(o(u))||L2 — O
as t — +oo, where

" S’yif(a(u)) :~
= [ Gu"T (w) Uy () (u—10) P1 @) ot P ) F EBL O (144 By (1)) T (0 (1) )+

Hf G’ (w) Usgay () (u—1w) =820 o | ~1B2(0) 5 B2 D=1 (T By () ) JoTT* (o (1)) —

b _ B
— [ 3T (W) FZ (u, b)dwSUsq (u) (u — a)Pr(®),
.‘t‘i§1(u)e¥%§1(u)r—1(1 + iél(U))Jlﬂ*(J(u)),

GuT(w) is defined by (70).

Proof. We will consider in detail the case when ¢ — 4o00. In the course
of proving of (80) we will obtain the asymptotics of the inner integrals in the
representation (79) of the curve ¢4 f with f € HJ.N Hy. Let o = min{cv, az}.

From (79) and the form (52) of the complete characteristic operator func-
tion W(A) of A we see that

(81) GE(z) — GF(u) =7GT (2)(FF (x,b) — F3 (u, b)) (LFF (u,b) — L+ I)—
~(=LF(z,b) + L+ I)L(F (2,b) — Ff (u,b)) LG (u)

a

for all u, z € [a;b]. The inequalities (19) for F (x,b), F¥(u,b), FX(z,b), FE(u,b)
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and (68) show that

liH(l)f (uf;t)mlfa (§$/+( ) ga:,_(w))F (z, u)dx ~
(82) T
~ (gu/—’—( ) = Gu (w) hmf e — F (z,u)dx

On the other hand

u

ztm + . w eitm - *iél (v) dv
lim f == b (2, u)dz = lim i = Je v Pda+
a w

e—07y e—0 (u—z

(83)

eitT 7231 (v) dv

zta:
—|—f(u$15Fw(l‘ud.’L'+fu$laevz dx>'

Using (20) and (21) for the positive matrix function T'(z) = By (z), o/ = o/(14«)
and applying the Lebesgue convergence theorem and the Lebesgue lemma for the
Fourier transform it follows that

hmf (u— Zzl sFJr(.T U)daﬁw hmf( Ztml EQJF( ) fzél(u)ln(ufx)dxw
84)

~ Q+ hmf( ”1 e —i§1(u) In(u—2) j,

as t — +oo. In [9] it has been obtained the asymptotics
u .
itx ~
lim e—zB1 (u) ln(u—a:)dx ~
e—0 (u — .1‘)1_5
w

~ miettu B =3B DY (T 1§ B (w))(sinh (7 By (u))) !
as t — +oo which together with (84) implies that

hm e F (2, u)dr ~
(85) f ey L (@ 0) i
NWiQ$(u)eit“t’Bl(“) 3B WY + By (w))(sinh (7B ()~}
as t — +00. Now from the inequality (22) for T(z) = Bi(z) and a < w <
u <z < band (17) for Usy(z) and Usy,(u) applying (23) and (24) we obtain
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(by the Lebesgue convergence theorem and the Lebesgue lemma for the Fourier
transform)

n

hmf(u ;tzl afe v—z 2 dl‘whmf( 11 aUZw( ) *ZBl(I)lnm wde

e—0
b itx
~ lim Uy, (u) [ (uf )1_5 6*131(96) In g8 10
(86) e—0 0
~ Usyp(u)e iB1 (u) In(u—w) hr%f( i _251(x)1n($—u)dxw

ztz

= _e —2B1( )In(z— u)dl‘

~ Uy (u)(u — w)iél(“ lim f

e—0} (ux

as t — 4o00. After suitable change of the variable the last integral in the relations
(86) takes the form

hmf o Z)Il Ee—zBl( u)In(z—u) ], —

e—07,
_ ~ (b—u)te™ 5 _
(87) — _eitutiBl(u)egBl(u) lim f 6—96((5—1)I—iBl(u)) Inb 9 ~
e—0 0
)

—eit“tiél(")egél(“ liIr(l)I‘(EI — zél(u)) =
~ ~ €= ~ ~
= —riettutiB1W) 3 By P=1(1 4 i By (u))(sinh (7 By (u))) "

as t — +00. In the last equality in (87) we have used the existence and the form
of the limit lirr(l) I'(el — iBy(u)) for the analogue in C™ of the classical gamma-
E—

function (obtained in [9]). Consequently, from (86) and (87) it follows that

ztz + ~
(88) ili%f oy P (2, u)de
=i Uy (1) (u—w) P11 ) e 3B1@ D=1 ([ 1 B, (u))(sinh (7 By (u))) !

as t — +oo.

Now from (82), (83), (85), (88) and the representation of Q(u) as

Q2 (w) = Ung () (u — w)BL0 emBL(W)

show that

(89) lim _7)1,5(§x/+(w) — g (W) Ef (z,u)dz ~ 0
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as t — +oo.
Analogously for the second integral in (79) it can be proved that

b
itx -
(90) i | e @ ) = @) B @ wde ~ 0
a

as t — 400 using the corresponding inequalities for the matrix function T'(z) =
—iBy ().

For the third integral in (79) because of (68), (81) like in (82) and the
form of P, (x,u) we obtain

. b gita s . . “ elte
il—r{(l) mgw (w) Py (z,u)dz ~ g,' (w) g_r}r(l) (u—x)t—=
a w

Py(x,u)dz

as t — +oo. But in [9] has been obtained that

ztz

hmf(u o=z P (x,u)dx ~
~ 21 Uy (1) (u — w) P10 P10 =3B D=1 4 i By (w)).

Hence

o) iy () Pl )~

~ 2mie G, (1)U (1 ><u — ) BB = EB L] 43 (u)

ztm ~

as t — +o00. Analogously for the integral hm f ng/_(w)ﬁw(m,u)dx one
can find that

ztz ~ =

hmf = ;ml — 7 (w)ﬁ (z,u)dx = hmf (w)ﬁw($7u)dx ~

o) ) lny | =0
~ omieitug,! (w)UZw( ) — w)~ zB2(u)t—ZB2() %BQ(u)F_l(I—iEQ(U))

as t — +oo.
For the other integrals in (79) after analogous calculations we obtain the
next asymptotics as t — 4o00:

b
ite ~
93)lim [ (3" (w) — o'~ (w)) Fyf (2, 0) SEF (, u)dwx () (w) ~ O,
e—0 (u — 1‘)1 € '
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b ~
lim [ ufx)'l_g%'f(w)P (x,b)SE} (z,u)dz =
a

e—0
b, ~
(94) = lim [ =8’ (w) Py (@, D)SFS (@, u)da ~
w b ' N
~ g (w) liH(l]f (uf;t; Py(z,b)SE; (z,u)dz ~ 0,

(=n

hmf ml oy (w)ﬁ;(m,b)SPa(a:,u)dx =

(1

= hmf = ;ml G (w)Fy (2,b)SP,(x, u)dz ~

EHO

~2mietng,'” (w)F; (u, b) SUnq (1) (u—a)?Br W iB1 () o= 3B D=1 (4 B (u)).

(95)

Now the asymptotics (80) in the case when ¢ — +oo follow from (89),
(90), (91), (92), (93), (94), (95). Analogously we obtain (80) as ¢ — —oo and the
proof is complete. O

For the simplification of writing let us denote

(96) Sy f(o(u)) = Z(t, w)TeSys fo(w) = Z(t,u)Ss f(o(u)),
where

Sif(o fN " 7@ v dvde +
(97)

—I—fﬁu’qt(w)feiv*u W g Jy — fﬁu/qc(w)ﬁj(u, b)dwS
when f € HJ. N Hy and §,* (w) are defined by (70),

(98) Sy f(o(u)) = TeSyx f(o(u))
and Z(t,u), Ty are defined by (31), (30).

4. Wave operators and a scattering operator for the couples
(A4, A) and (A, A,). In this part we will show that the basic results from
the scattering theory for the selfadjoint operators can be extended for the couples
(Ay, A) and (A, A,) with a nondissipative operator A € Qg and Ay, =~yA+FA"
The asymptotics (80) of A,, the asymptotics (26) of nondissipative operator
A, obtained in [9] allow to obtain the wave operators Wi(A,, A), W1(A, A,)
as strong limits and to obtain an explicit representation of the wave operators,
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the scattering operator and to establish the similarity of A and A, by the wave
operators. We will also essentially use the results in [9] concerning the form of the
form of the operators S and S establishing the similarity of the nondissipative
operator A and the operator of a multiplying by an independent variable.

Let the operator A € Qp and A, = vA+75A* with Rey = 1/2 be like
above stated. From the asymptotics (80) for A, and the introduced denotations
(96), (31), (98) it follows that

e Sy fllLe = 19+ fllz = I flle VS € Hae

i e (g’yﬂ:*g"fifa f) = (f,f). This implies that gyi*g + = I onto the subspace
HJ.. But from the asymptotics (80) we have S, : HJ. — H_. because Hy. is an
invariant subspace under A,. Then the isometric operators S’yi onto Hy. imply
that the range R( vi‘ H, ) of the operator S’yi‘ Hy is a closed linear subspace

of Hge. Then S’yi are invertible operators onto R( 'Yi| o) But
ac

Sy fo(u)) = Z(t,u)TeSya f(a(u)) , Syaf(o(u)) = TuSe f(o(u))

and when g € R(gvi\ H;{C) it follows that

Sy tg(o(u) = SSATL 24 (t u)g(o(w)),

Syt 9(o(w) = 83T g(o(u),
where the operators T ! have the form
T'h =
(99) =hII(o(u))o’ (u) (le' lim T(el+iBy(u))et 3B (y—a) "By (u)J; +
e— _ _ -~
+ Jo(~i) i T(eT — iBy(u))eF 55200 (4 — a)iFa U;a(u)Jg)
E—

for h € C".

Next we will show that for the couples (A,,A) and (A4, A,) it can be
introduced wave operators like in the selfadjoint case [15, 8, 7], the dissipative

case [16] and for (A*, A) with nondissipative operator A € Qg [9]. Let us consider
the operators

Wi(A,, A) = e WA, A,) = e (t € R)
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in L2(0,1;C"). The next theorem states the existence and the form of the strong
limits W (A, A) and Wi (A, A,) of W(A,, A) and Wy(A4, A,) onto L*(0,;C")
and H,. correspondingly as ¢ — +o0o. The operators W (A, A) and W4 (A, A,)
we will call wave operators as in the selfadjoint case and in the dissipative case.

Theorem 4. Let for the model A € Or, defined by (1), next conditions
hold:

1) the function a : [0;1] — R satisfies (i), (ii), (iii);

2) Q*(z) is a smooth matriz function on [0;1];

3) B(z) € Cy,[0;1] (0 < a1 <1);

4) the matriz function Z(t) from the representation (66) satisfies the con-
dition (67).
Then there exist the strong limits
(100) Wi(Ay,A)=s— tli?m eitArg=itA — 572;5; onto L?(0,1;C"),

(101) Wi(A Ay)=s— lim_ ety = ST1S, - onto HQ,
where gvi and Sy are defined by (98) and (29) respectively, §£1 have the form
(102) Syt =5t

§;1 and T¢" are defined by (38) and (99).
Proof. From the form of W;(A,, A) and W;(A, A,) we obtain

A, A | | w | |
M = —2.7€ZtA’Y (A — A*)e_ZtA; M — ’ﬁeZtA(A _ A*)e_ZtAA/
dt i
onto L?(0,1;C"). Then
t
(103) Wi(A,, A) = I —i5 / TR (A ATy,
0
t
(104) Wi(A, Ay) =T+ / GTA(A — AN)e T g,
0

Then the existence of the limits

: itAy —itA : itA —itA
Wi(Ay,A)=5s— lim e"“e ™% Wi(A,A,)=s— lim e"“e "N
t—=+oo t—oo



The operators A, = yA 47y A* for a class of nondissipative operators 135

follows analogously as in the proof of Theorem 1 for the existence of the limits

s — lim eitA*e—itA
t—=o0

using the uniform boundedness of the sets of operators {W;(A, A,)}er and
{W:(A,, A) }+er and the representations

A=S:'DS: onto L%(0,1;C"),

A, = gwi*Dgyi onto Hg.

where Si, 511, , ,/S\;l and T;' are defined by (29), (102), (38), and (99) corre-
spondingly and S,+ are defined by (98).

Next in order to prove the equality (100) we will show first that
Wi(Ay,A)f € Hi for all f € L*(0,l;C"). On the one hand we have

(105) e MWe(Ay, A) = s — lim Wiepy(Ay, A)e™ = Wi (A, A’

Then
(106) et AV, (Ay, A) = Wi(A,, A)elsAemisA,
Consequently the next equality

(107) (A, = M) "'Wi(A,, A) = Wi(A,, A)(A—XI)~?

follows from (106) by integrating on s from 0 to +00 when Im A < 0 and from —oo
to 0 when Im A > 0. If {E,(7)} is the spectral family of the selfadjoint operator

l
Ay ie (Ay =M1 N S dfz(;), then from the well-known fact from the theory
0

of the selfadjoint operators it follows that E,(7) has the representation

(108) B,(r) = (I~ Uy(r))/2
where
1 P
U(r) =5 =t~ [((A) = (4D 4 (4, = (= i) e
p—too

for all 7 such that E,(7) is continuous (see, for example, [8], Lemma VI. 5. 6).
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On the other hand from the representation (62) for the resolvent of the
coupling A it can be obtained by straightforward calculations that

b

(109) (4= 2D (o). o) = [ — (K (e(w). fo(w))dn

for each f € Hy using the assumptions for o(u), B(z), Q*(z) and Lemma 8 [9).

The function (K (n)f(o(u)), f(o(u))) in (109) is integrable on [a;b] as a function
of . Then

(110) (w(@)f(o(u), flo(u))) = /(K(T)f(U(U)),f(U(U)))dT

(Vx € [a;b]) is an absolutely continuous on [a;b]. In other words (109) takes the
form

b
(111) (A=A f(o(w), f(o(u) = / d(wm)f (o), f(o(w))

for each f € H.
Let us consider now

p
1

(112) Usy(7) = — / (A= (r+iD) ™ + (A= (r —iO)D)™)de (p>0, 5> 0)

)

(7 € [a;b]). Then for each f € Hy from (111) and (112) it follows that

(Usp(T)f, ) = (% z((A— (T +i&) D)~ f + (A - (T—’ii)f)l)f)d&f) =
b
(113) =2 (f o= ,‘lgzdé) dwn)f, f) =
b
= %f(arctan n*LT — arctan %)d(w(n)f, f).

But (w(n)f,f) is an absolutely continuous function for each f € Hy and
\arctannL — arctan n—\ < m. Then (113) together with the Lebesgue con-

vergence theorem implies that

UN)f. )= lim Usp(7)f, f) = (WO, f) = 2(w(n)f, f)-

p—+00
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using the equality (w(a)f, f) = 0 which can be obtained from the form of w(a).
Hence

(114) (W) f, f) = (w®)f, [) = U(T)f, £))/2

for all f € L?(0,1;C") (because the subspace Hy is dense in L2(0,1;C"™)). From
(108) and (114) we have

E7)<T)Wi<AwA>f, Wi(Ay, A)f) = 3(We(Ay, A) fWL(Ay, A) f)—
=l g2 [ (A= (D T Ay =7 =)D TIW Ay, A f, WAy, 4) =

) = %(Wi(A'WA)ﬁWi(A’WA)f)_
—lim %!(Wi(flw A) (A= (r+) 1) H(A—(T—i) 1)) f, Wa(A,, A) f)dé=

™
p——+o0

) = %(Wi(A'WA)ﬁWi(A’WA)f)_
i (A (T (A (r—i€) 1)) £ WE(Ay, AW (Ay, A) f)de=

1

(W (Ay, A)f, Wi (Ay, A)f) = 5(U (1) f, WE(Ay, AW (A5, A) f) =

s(Wa(Ay, A fWe(Ay, A) ) + ((n) f, WE(Ay, YW (Ay, A) )~
—3(w®)f, WE(A), A)WL (A, A)f)

for each f € L?(0,1;C"), where we have used (107). The last equalities show that

(115) (B2 (W ldy AV WAy, A)f) = SWa(Ay, A) 1. W (A, A) )=
(@), WE(Ay, AW (A, A)f) + () f, WE(Aq, AW (A, A)f)

at first for all 7 of a continuity of F,(r) and then for the other 7 € R, us-
ing that w(7) is absolutely continuous and E,(7) is continuous from the right.
Consequently, the equality (115) implies that the function (E,(7)Wi(A,,A)f,
Wi(A,, A)f) is an absolutely continuous function of 7 for each f € L%(0,;C")
because (110) is absolutely continuous. In other words W4 (A,, A) f € Hy, for all
f € L20,I;C"), i. e.

(116) Wi(A,, A): L*(0,1;C") — Hy.

From the obtained asymptotics (80) and (26) for the curves e~ f and
e f it follows that

(117) lim (WA, A)f,g1) = (8,5 f, 1)
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for all f € L?(0,1;C") and for all g; € Hy. But HY is a subspace of L2(0,1;C")
and (116) gives the equality

Wi(Ay,A)g=0 for allge H],
which implies that W (A,, A)g = 0 for all g € HJ and
(118) Wi(A,, A)=8,_S onto L*(0,1;C").

Observe that Wi(A, Ay )Wy (A,, A)f = f Vf € L?(0,1;C")
and Wy(A,, A)Wi(A, Ay)g = g Vg € HJ, hence

(119) Wo (A, A)WL(Ay, A)f = f VfeL*0,1;C"),

(120) Wi (A, AW (A, Ay))g=g Vg€ Hje.

Then (118), (119) and (120) imply that W (A4, A,) = Wi '(A,, A) (defined onto
Hae) and Wi (A, A7)§7;§¢f = f onto L?(0,7; C") and consequently W (4, A,)=
5;15,@. The proof is complete. O

Now using the existence and the explicit form of the wave operators we
introduce a scattering operator defined by the formula

WZHA AW (A A

on the subspace Hg.. Using (100) and (101) the scattering operator takes the
form

WL (A, AW, (A, A)) = 82, 5,578,

where gviv S, and S~! are defined by (98), (29) and (102).
Finally from the equality (105) it follows that

AW (A, A) = We(A,, A)A.

Then the explicitly constructing of the wave operators establishes the similarity
of A and A, and
A= Wi_l(A’Y? A)A’YWﬂ:(AW A),
A= gilgyiA’ygfsigi
onto L?(0,1;C"), where §'Yi7 S+ and 5;1 are defined by (98), (29) and (102).
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