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ABSTRACT. We prove that any Lipschitz mapping from a separable Banach
space into any Banach space can be approximated by uniformly Gateaux
differentiable Lipschitz mapping.

If X is a separable Banach space and Y is a Banach space with RNP,
then any Lipschitz mapping from X to Y can be approximated by a Gateaux
differentiable Lipschitz mapping ([2]; cf. [1], page 155). The aim of this paper
is to show that using a different technique of the proof the assumption on the
target space having RNP can be dropped and moreover the approximation can
be made uniformly Gateaux differentiable.

Let X, Y be Banach spaces, f a mapping f : X — Y. Let us define
the directional derivative of f at € X in the direction h € X as Dy f(x) =

1
}ir% Z( f(z+th)— f(x)). If for any fixed x the directional derivative exists for all
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h € X and Dy f(x) is a bounded linear operator in h, we say that f is Gateaux
differentiable at x. If moreover for all fixed h the limit defining Dy, f(z) is uniform
for x € X we say that f is uniformly Géateaux differentiable (UG for short). For
any other unexplained term we refer to [1].

Theorem. Let X be a separable Banach space, Y a Banach space,
f X — Y be an L-Lipschitz mapping and € > 0. Then there is a mapping
g: X — Y which is L-Lipschitz, UG and ||f — g| < e.

Proof. We will construct the function g by using the metod of integral
convolution in a countable set of directions which was presented in [3].

Let h; be a dense subset of Sy and ¢; : R —> R, 2 =1,2,... be such that

0; >0, p; € C f]RSOZ—landsupp@z [— 2L22 QLQZ]

Define a mapping g, : X - Y, n=1,2,... by

gnl(x) = / (x_zthﬁ[%

]Rn

where we integrate in the Bochner sense with respect to the n-dimensional Lebesgue
measure.

The mappings g, are L-Lipschitz:

lgn(z) = gn (W)l < / f(l“ - Ztihi) - f<y - Ztihi)
‘ i=1

R

< Lz —y] / TT:(t) A, = Liiz — .
R™ =1

ti)

There is a mapping g such that g, — ¢ uniformly on X (and hence g is also

m € €
L-Lipschitz). Indeed, denote by M, the set [——., —] C R™. Then
" }31 21,207 2L2¢

using the Fubini theorem and the fact that [ ¢; = 1 for any ¢ we have for m > n
and any x € X
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9m(z) — ()] = Z( <x—z_:th)

(-
/ Zth Hcpl ) dAm < L M/m

R™ i=n+1 =1

SL( 2. 2L2’) /H% : m—2.€2n'

i=n-+1

m

Moreover, ||f — g|| < e. Pick g, such that ||g, — ¢g|| < % Then

1 (z) = g(@)| < IIf (@) = gn(2)]| + llgn(z) — g(2)]l

</ f(@‘f(l’—zn:tihi)

R

M/(Zw)ﬂ% )Y dAn + <e.

i) dA\p +—

Now it remains to show that g is UG.
First we will show that the directional derivative Dy, gy (z) exists for any
reXandi=1,2,...,n

Dy g (x) = lim 1(gn(:v—|—7h) (@)

T—0 T i =1 j=1
- /f x thhj H%(t])d)\n
R 7=1 7j=1
:}_li%; /f «T_thhj wz(tz'i_T)H(pJ(t])d)‘n
Rn =1 5
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—/f z =Y tih; | []ei(ty) dA
j=1 j=1

R
_ (ti+T t) T
- iy x—Zth Pl 2T =0 T gy 45) an
J =1
J#i
(1) :/f z =Y tihy | @i(t) [T e (ts) drn

e j=1 J'.j
JF#

For the third equality we use the substitution ¢; — ¢;+7. In order to show the last
1

equality, choose 7 > 0. Then there is § > 0 such that ‘—(goi(ti—i-T)—cpi(ti))—cpg(ti)
T

< n for any |7| < 0 and t; € R. (Use Mean Value Theorem and compactness of
the support of ¢;.) Hence, for |7| < 6

wilti+ 7 wilti
/ Zt h; T) ( )Hgoj(tj)d)\n
i e
—/f l’_ztjhj ‘Pz(tz)H%(tJ)
o\ i
= fle Zta J - @5 (ti) H%(t]) n
M = =

ST]/ If @)l +|[f(@) = f| &= t;h HSOJ
M =1

2e

@ <[ |lse \|+L2|t\ H% Yar <1 (IF@I+3) 755
M J#l

; € € € € .
here M =R x (|- | U |- = 7 oo = 7] ) xR* T C R™
where X 2L2’L’ 2L.2¢ U 2L,21 T, YL T X C We
can see that the limit in (1) is uniform with respect to n.
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Our next step is to show that Dy, g, — Dp,g uniformly for z € X. Due to
the Fubini theorem and the fact that [ ¢; = 1 for any ¢ we have for m >n > i
and any x € X

[1Dhgm (x) = Dh;gn(2)]]

m n m

= / Fle=D)_tihy | = Fla=D_tihy | | €ita) [] @i () drm
j=1 j=1 =1
J#i

Rm
m m c
<z [ Swlld@ e anm <55 [1dla
My, I s R

hence Dy, gp converges uniformly on X. Now fix z € X. Then

Dy, g(z) = lim 1 (9(z + 7h;) — g(z)) = lim lim 1 (gn(z + Thi) — gn(x))

7—0 T T—0n—oo T

1
= lim lim — (gn(2 + 7hi) — gn(z)) = lim Dy, gn(x).
n—oo

n—oo7—0 T

The limit (1) is uniform with respect to n and so we can interchange the limits
above. Therefore Dy, g, — Dy, g uniformly for z € X.

Next, the mapping Dy, g, is L;-Lipschitz for any n > ¢, where L; =
L [ 1g;(t)| dt:

n

< / f x—ztjhj —f Z/—thhj @;(ti)H%(tj)d)‘n
j=1 Jj=1

j=1
R i

<Lz —y] /R (0] dt = Lillz — ]|

Thus the mapping Dy, g is L;-Lipschitz for ¢ = 1,2,... (because of the uniform
convergence). This implies that the limit in the definition of the directional
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derivative Dp, g(x) is uniform with respect to x € X. Indeed,

H %(g(w +7hi) — g(x)) — Dp,g(x)

1 T
= |- /Dhig(:v + sh;) ds — Dp,g(x)

L [
< —Z/\s\d8<Li|T\.
7l

Finally, the derivative Dpg(z) exists for any h € Sx and the limit in the defini-
tion is uniform with respect to x € X. To see that, choose > 0 and h;, such that

Byl < 2L Then for any 7 € &, ‘ %(g(l‘ +h) — g(a)) — %(g(az +rhy) — g(x)) |

L
< —|l7(h — h;)|| <n. Thus there is § > 0 such that

7]

Llafa-+ 7ih) = g(o)) = (ol + 7ah) - (o)
<20+ | Ligte+nh) — 9(0)) ~ oo+ oh) - o) <31

forx € X, || <9, || <.

This means that g is UG, provided that for any fixed = the operator Dyg(x) is a
bounded linear operator in h.

The fact that Dypg(x) = ADpg(x) is trivial and the boundedness of the
operator follows easily. Pick any ¢,j € N. Then

Dipin,9() = lim ~ (g(z + 7(hs + hy)) — g(x))

T—0 T

= lim lim 1 (gn(x +7(hi + hj)) — gn(x))

T—0n—oo T

— lim lim = (gn(x + 7(hi + 1)) — gn(x))

n—oo17—0 T

N -
_nlggolli%; / <~T—Ztkhk+7—h —|—h )1:[

n k=1
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—/f<95 - Ztkhk;> 11 wxtr) drn
k=1

+ / f T — tkhk gog (tj) H gok(tk.) d)\n
= lim (D, gn(x) + Dy, gn(2)) = Dn,g(x) + D, g(x).

n—oo

Note that we can show, similarly as in (2), that lim is uniform with respect to

T7—0

n. Hence we can interchange the limits. Now, for arbitrary u,v € X and n > 0,

|

we have

Do) = Dag(o)] < | Duglie) = (oo + ) = g(o)

+|[2ote 47 gta -+ 70)|
+[Dgto) = Sot+ 7o) - )| < -+ Llhu o

for 7 small enough. Thus ||D,g(z) — Dyg(x)|| < L||u—v||. Choose h; and h; such
that ||lu — hs|| <n and ||v — hj|| < 7. Then
[ Dutvg(z) = Dug(x) — Dyg(a)]|
< [Durvg(2) = Dy g(2)|| + 1 Dn,g(x) — Dug(@)|| + [ Dn;g(x) — Dug()||
< L(llu+v = hi = hjll + [lu = hill + [lv = hyll) < 4Ln

for an arbitrary n > 0.
We have shown that the directional derivatives of g form bounded linear
operator and hence g is Gateaux differentiable. Moreover, since the limits defining
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the directional derivatives are uniform for x € X, the mapping g is uniformly
Gateaux differentiable. O
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