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DUALITY IN CONSTRAINED DC-OPTIMIZATION VIA
TOLAND’S DUALITY APPROACH

M. Laghdir, N. Benkenza

Communicated by R. Lucchetti

Abstract. In this paper we reconsider a nonconvex duality theory estab-
lished by B. Lemaire and M. Volle (see [4]), related to a primal problem of
minimizing the difference of two convex functions subject to a DC-constraint.
The purpose of this note is to present a new method based on Toland-Singer
duality principle. Applications to the case when the constraints are vector-
valued are provided.

1. Introduction. It is well known that the theory of DC-optimization
is now very well developed because of its theoretical aspects as well as its wide
range of applications. The developments of this theory has been stimulated by the
diversity of applications in optimization, economics, operations research, optimal
control, mechanics and others(see [2], and references therein).

In a recent work, a duality theory associated with an important large class
of DC-programming problems, was developed by B. Lemaire and M. Volle [4], in
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the setting of locally convex real vector space. That is minimizing a difference
of two extended real-valued convex functions subject to a DC-constraint i.e. it
concerns the primal problem

(P) inf{g1(x) − g2(x) : h1(x) − h2(x) < 0 }

where g1, g2, h1 and h2 are extended real-valued convex functions on the Hausdorff
locally convex real vector space X. This problem covers various situations in
nonconvex and convex optimization.

This duality extends a duality theory initially examined in [3] by B.
Lemaire for the case where g2 ≡ 0 and h1 ≡ 0. This case is usually called
reverse convex programming problem. The technique used in [4] for stating the
duality theory associated with problem (P) makes an intensive use of convex
analysis theory and essentially the” inf sup” theorem of J. J. Moreau [6].

In the presents work, we address a main question, that is: how to obtain
the duality theory in constrained DC-programming via Toland-Singer duality ap-
proach? In fact, the answer of this question presents a new method completely
different from that of [4] for establishing the duality result associated with prob-
lem (P).

The outline of this paper is as follows. In section 2 we recall some de-
finitions and some preliminary results, section 3 is devoted to the main result.
Finally in section 4 we give two illustrations of our main result which consists
in both cases to minimize a DC-objective function subject in the first case to
a vector DC-constraint and in the second case to a mixed constraint composed
by vector convex constraint and a vector reverse constraint. The mappings in-
troduced in the vector constraints take together their values in a partially order
topological vector space.

2. Preliminaries. Let us begin by recalling some definitions, which
can be found in [1]. We suppose throughout this paper that X and Y are two
locally convex topological real linear spaces and X∗ , Y ∗ respectively their dual
spaces. In both cases, we denote the separating duality by 〈 , 〉 understanding
in each case that we consider the duality (X∗,X) or (Y ∗, Y ). We suppose these
spaces are supplied with topologies compatible with this duality. In the sequel, we
assume that the space Y is endowed with a partial order (symbol :≤Y ) induced
by a convex cone Y+ and we denote by Y ∗

+ the dual positive cone of Y ∗ defined
by

Y ∗
+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ Y+}.

The cone Y+ is called the set of nonnegative element of Y . If we adjoint an
abstract maximal element +∞ to Y , a mapping h : X −→ Y ∪ {+∞} is said to
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be Y+−convex if the following inequality

h(αx1 + βx2) ≤Y αh(x1) + βh(x2)

holds whenever x1, x2 ∈ X and α, β are positive numbers with α + β = 1.
A function g : Y −→ R ∪ {+∞} is said to be Y+−nondecreasing on Y if for
each y1, y2 ∈ Y satisfying y1 ≤Y y2 we have g(y1) ≤ g(y2). For a given function
f : X −→ R∪{−∞,+∞}, one usually denotes by domf := {x ∈ X : f(x) < +∞}
its effective domain and by f∗ : X∗ −→ R ∪ {−∞,+∞}, f∗(x∗) = sup{〈x∗, x〉 −
f(x), x ∈ X} its Legendre-Fenchel conjugate function. We recall that f coincides
with its biconjugate f∗∗ = (f∗)∗ whenever f is convex , lower semicontinous
and proper (proper means that f does not take the value −∞ and it is non
identically equal to +∞). By Γ(X) (resp. Γ0(X)) we denote the set of convex
lower semicontinuous proper functions plus the constant +∞ and −∞ (resp. the
set of convex lower semicontinuous proper functions). For a subset C ⊂ X,
we denote by δC the indicator function defined by δC(x) = 0 if x ∈ C and
δC(x) = +∞ otherwise.

In order to state our main result, we shall need the following results
due respectively to C. Combari, M. Laghdir and L. Thibault [1], J. F. Toland
[9] and I. Singer [8]. The first result concerns the composition of conjugate
function of the composition of a nondecreasing convex function with a convex
mapping taking values in a partially ordered topological vector space. The second
result established the dual problem related to an unconstrained DC-mathematical
programming problem.

Proposition 2.1 ([1]). Let X and Y be two Hausdorff locally convex real
vector spaces, F : X −→ R ∪ {+∞} is a convex function, G : Y −→ R ∪ {+∞}
is a convex and Y+−nondecreasing function and H : X −→ Y ∪ {+∞} is a
Y+−convex mapping. If there exists some x ∈ dom F ∩ dom H such that G is
finite and continuous at H(x) ∈ Y , then we have for any x∗ ∈ X∗.

(F + G ◦ H)∗(x∗) = min
y∗∈Y ∗

+

{G∗(y∗) + (F + y∗ ◦ H)∗(x∗)}

Proposition 2.2 ([8],[9]). Let f1 : X −→ R∪{−∞,+∞} be any function
and f2 : X −→ R ∪ {−∞,+∞} be a convex and lower semicontinuous function.
Then we have

inf
x∈X

{f1(x) − f2(x)} = inf
x∗∈X∗

{f∗
2 (x∗) − f∗

1 (x∗)}.
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Throughout, we adopt the following convention

(2.1) x −→ (G ◦ H)(x) :=















G(H(x)) if H(x) ∈ Y

sup
y∈Y

G(y), otherwise,

and the following extensions of the addition and the product in R ∪ {−∞,+∞}

(+∞) + (−∞) = (−∞) + (+∞) = +∞, 0 × (−∞) = 0, 0 × (+∞) = +∞.

3. The main result. Before embarking on the development of duality
theory related to the problem (P), we start with a lemma that will be needed in
the sequel.

Lemma 3.1. Let X be a Hausdorff locally convex real vector space and
let g1, g2, h1, h2 : X −→ R ∪ {−∞,+∞} be convex functions.
i) If g2 is lower semicontinuous and {g2 > −∞}∩ dom g1 ∩ dom h1 6= ∅, then we
have:

inf
h1(x)<0

{g1(x) − g2(x)} = inf
h1(x)≤0

{g1(x) − g2(x)}

ii) If we set for any x∗ ∈ X∗ : x −→ kx∗(x) := h1(x) − 〈x∗, x〉 + h∗
2(x

∗) then we
have:

dom g1 ∩ {x ∈ X : kx∗(x) < 0} 6= Ø ⇐⇒ h∗
2(x

∗) − (δdomg1 + h1)
∗(x∗) < 0.

P r o o f. i) This statement is proved in [4]
ii)(=⇒) We have

dom g1 ∩ {x ∈ X : kx∗(x) < 0} 6= ∅ ⇐⇒ ∃x ∈ dom g1 : kx∗(x) < 0,

which implies

h∗
2(x

∗) < 〈x∗, x〉 − h1(x) − δdomg1(x) ≤ (δdomg1 + h1)
∗(x∗)

i.e.

(3.1) h∗
2(x

∗) < (δdomg1 + h1)
∗(x∗).

(⇐=) Conversely, let us note that, according to the definition of (δdomg1+h1)
∗(x∗),

the above strict inequality (3.1) becomes equivalent to

inf
x∈X

{h∗
2(x

∗) − 〈x∗, x〉 + h1(x) + δdom g1(x)} < 0,
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which yields that there exists some x ∈ X such that

h∗
2(x

∗) − 〈x∗, x〉 + h1(x) + δdomg1(x) < 0

and then, according to convention (+∞) + (−∞) = +∞, it follows that x ∈
dom g1 and h∗

2(x
∗) − 〈x∗, x〉 + h1(x) < 0, i.e.

dom g1 ∩ {x ∈ X : kx∗(x) < 0} 6= ∅,

which completes the proof. �

By setting

α := inf{g1(x) − g2(x) : h1(x) − h2(x) < 0}

we can state, now, the associated dual problem given by

Theorem 3.1. Let X be a Hausdorff locally convex real vector space
and let g1, g2, h2 : X −→ R ∪ {−∞,+∞} and h1 : X −→ R ∪ {+∞} be convex
functions with g2 ∈ Γ(X) and h2 ∈ Γ0(X) or h2 ≡ −∞. Then we have

α= inf
x∗,p∗∈X∗

max
λ≥0

{g∗2(p∗)+λh∗
2(x

∗)−(g1+λh1)
∗(p∗+λx∗): h∗

2(x
∗)−(δdomg1+h1)

∗(x∗)<0}.

P r o o f. First of all, let us note that the following equality

(3.2) {x ∈ X,h1(x) − h2(x) < 0} =
⊔

x∗∈X∗

{x ∈ X : kx∗(x) < 0},

follows merely from the fact that

h2(x) = h∗∗
2 (x) = sup

x∗∈X∗
{〈x∗, x〉 − h∗

2(x
∗)}, ∀x ∈ X.

Therefore, by virtue of the above equality (3.2), we may write

α = inf
x∗∈X∗

inf
x∈X

{g1(x) − g2(x) : kx∗(x) < 0},

which yields according to Lemma 3.1

α = inf
x∗∈X∗

inf
x∈X

{g1(x) − g2(x) : kx∗(x) ≤ 0, dom g1 ∩ {x ∈ X, kx∗(x) < 0} 6= ∅}

= inf
x∗∈X∗

inf
x∈X

{(g1 + δ−R+ ◦ kx∗)(x) − g2(x) : h∗
2(x

∗) − (δdomg1 + h1)
∗(x∗) < 0}.
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Since g2 ∈ Γ(X), we obtain by Proposition 2.2
(3.3)
α = inf

x∗∈X∗
inf

p∗∈X∗
{g∗2(p

∗)−(g1 +δ−R+ ◦kx∗)∗(p∗) : h∗
2(x

∗)−(δdomg1 +h1)
∗(x∗) < 0}.

Let us note that the indicator function y −→ δ−R+(y) is convex and nondecreasing
on the whole space R and by means of the convexity of the function x −→ kx∗(x)
we check easily that the composite function δ−R+ ◦kx∗ is so convex. The condition
dom g1 ∩ {x ∈ X : kx∗(x) < 0} 6= Ø asserts that the indicator function δ−R+ is
finite and continuous at some point of the nonempty subset kx∗(dom g1∩dom kx∗)
and hence by assuming g1 proper, it follows from Proposition 2.1 that for any
p∗ ∈ X∗ :

(g1 + δ−R+ ◦ kx∗)∗(p∗) = min
λ≥0

{δ∗−R+
(λ) + (g1 + λkx∗)∗(p∗)}.

If we assume now there exists some x ∈ X such that g1(x) = −∞, then according
to the previous conventions we obtain obviously

(g1 + δ−R+ ◦ kx∗)∗(p∗) = min
λ≥0

{δ∗−R+
(λ) + (g1 + λkx∗)∗(p∗)} = +∞.

As δ∗−R+
= δR+ , we obtain

(3.4)
(g1 + δ−R+ ◦ kx∗)∗(p∗) = min

λ≥0
(g1 + λkx∗)∗(p∗)

= min
λ≥0

sup
x∈X

{〈p∗, x〉 − g1(x) − λkx∗(x)}

= min
λ≥0

sup
x∈X

{〈p∗ + λx∗, x〉 − g1(x) − λh1(x) − λh∗
2(x

∗)}

= min
λ≥0

{(g1 + λh1)
∗(p∗ + λx∗) − λh∗

2(x
∗)}.

By replacing the expression (3.4) in (3.3), we get our desired result. �

4. Applications. Let us consider the following abstract DC-mathematical
programming problem

(Q) β := inf{g1(x) − g2(x) : h1(x) − h2(x) /∈ Y+},

where g1, g2 : X −→ R∪{−∞,+∞} are two convex functions and h1, h2 : X −→
Y ∪ {+∞} are two convex vector valued mappings taking their values in a real
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partially ordered topological vector space Y . The partial order is induced by a
convex cone Y+ ⊂ Y . Let us note that the problem (P) is a particular case of
(Q) by taking Y = R and Y+ = R+.

In what follows, the aim is to derive from Theorem 3.1 the corresponding
dual problem related to problem(Q).

Before stating our duality result, let us recall a concept of lower semicon-
tinuity adapted to vector valued mappings. For this, let X be a topological space.
Following [7] and [5], one say that a mapping h : X −→ Y ∪{+∞} is lower semi-
continuous (l.s.c) at x ∈ h−1(Y ) if for any neighbourhood V of h(x) ∈ Y there
exists a neighbourhood U of x such that

(4.1) h(U) ⊂ (V + Y+) ∪ {+∞}.

h is said to be l.s.c at x ∈ h−1(+∞) if for any y ∈ Y , any neighborhood V of y
there exists a neighborhood U of x such that(4.1) holds.

In the case when Y = R and Y+ = R+, we recover the usual notion of
lower semicontinuity.

Concerning the lower semicontinuity of a composite function we have

Proposition 4.1. ([5]). Let h : X −→ Y ∪ {+∞} be l.s.c on X and
assume that g : Y −→ R ∪ {−∞,+∞} is Y+−nondecreasing. If dom h = X and
g is l.s.c on h(X), then g ◦ h is l.s.c on X. If dom h 6= X and g is l.s.c on Y
then g ◦ h is l.s.c on X.

Now, we are ready to derive from Theorem 3.1 the dual problem associated
with (Q).

Proposition 4.2. Let X and Y be two Hausdorff localy convex vector
spaces, g1, g2 : X −→ R ∪ {−∞,+∞} two convex functions, and h1, h2 : X −→
Y ∪ {+∞} two Y+−convex mappings. We assume that g2 ∈ Γ(X), dom h1 = X
and h2 is proper and l.s.c., then

β = inf
(x∗,p∗)∈X∗×X∗

y∗∈Y ∗
+

\{0}

max
λ≥0

{g∗2(p∗) + λ(y∗ ◦ h2)
∗(x∗) − (g1 + λy∗ ◦ h1)

∗(p∗ + λx∗) :

(y∗ ◦ h2)
∗(x∗) − (δdomg1 + y∗ ◦ h1)

∗(x∗) < 0}.

P r o o f. It is not difficult to check that:

{x ∈ X : h1(x)−h2(x) /∈ Y+} =
⊔

y∗∈Y ∗
+\{0}

{x ∈ X : (y∗ ◦ h1)(x) − (y∗ ◦ h2)(x) < 0}
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and hence problem (Q) becomes

β = inf
y∗∈Y ∗

+\{0}
inf
x∈X

{g1(x) − g2(x) : (y∗ ◦ h1)(x) − (y∗ ◦ h2)(x) < 0}.

In order to derive our desired duality result from Theorem 3.1, it suffices to prove
that y∗ ◦ h2 is proper, lower semicontinuous and convex for each y∗ ∈ Y ∗

+\ {0}.
For this, let us observe that for any y∗ ∈ Y ∗

+, y∗ is Y+−nondecreasing on the
whole space Y and according to convention (2.1) we have (y∗ ◦ h2)(x) = +∞ for
y∗ 6= 0 and h2(x) = +∞. By continuity of y∗ and the fact that h2 is proper and
lower semicontinuous we easily obtain by Proposition 4.1 that y∗ ◦ h2 is proper
and lower semicontinuous. The convexity of y∗◦h2 follows from the monotonicity
of y∗ ∈ Y ∗

+ combined with the convexity of h2. To conclude the proof, it follows
from Theorem 3.1 that

β = inf
(x∗,p∗)∈X∗×X∗

y∗∈Y ∗
+\{0}

max
λ≥0

{g∗2(p∗) + λ(y∗ ◦ h2)
∗(x∗) − (g1 + λy∗ ◦ h1)

∗(p∗ + λx∗) :

(y∗ ◦ h2)
∗(x∗) − (δdomg1 + y∗ ◦ h1)

∗(x∗) < 0}.

This finishes the proof. �

Let us consider now the case when the D.C objective function g1 − g2 is
subject simultaneously to a vector convex constraint and a vector reverse con-
straint i.e.

(L) γ := inf{g1(x) − g2(x) : h1(x) ∈ −Y+ and h2(x) /∈ −Y+}

where X, Y , g1, g2, h1 and h2 are as in the above Proposition 4.2. This problem
may be rewritten equivalently as

(4.2) γ = inf{g1(x) − g2(x) + (δ−Y+ ◦ h1)(x) : (δ−Y+ ◦ h2)(x) > 0}.

Now, we are in position to state the duality result associated with primal problem
(L).

Proposition 4.3. Let X and Y be two Hausdorff locally convex vector
spaces, g1, g2 : X −→ R ∪ {−∞,+∞} two convex functions and h1, h2 : X −→
Y ∪ {+∞} two Y+−convex mappings. We assume that g2 ∈ Γ(X), h2 is proper
and l.s.c, Y+ is closed and there exist some x ∈ dom g1 ∩ dom h1 ∩h−1

1 (− int Y+)
and u ∈ h−1

2 (− int Y+). Then

γ = inf
(x∗,p∗)∈X∗×X∗

min
y∗∈Y ∗

+\{0}
max

(λ,z∗)∈R+×Y ∗
+

{g∗2(p
∗) + λ(y∗ ◦ h2)

∗(x∗) −

(g1 + z∗ ◦ h1)
∗(p∗ + λx∗) : (y∗ ◦ h2)

∗(x∗) − δ∗
h−1
1 (−Y+)∩domg1

(x∗) < 0}.
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P r o o f. Let us observe that, according to (4.2), the problem (L) is a
particular case of the problem (P). In order to apply Theorem 3.1 for deriving
our duality result, it suffices to prove that δ−Y+ ◦ h2 ∈ Γ0(X) and δ−Y+ ◦ h1 is
convex. For this, let us note that the indicator function y −→ δ−Y+(y) defined
on Y is convex, l.s.c, proper and Y+−nondecreasing on the whole space Y (see
[1]) and by adding the convexity of the mappings h1 and h2, it is straightforward
to see that the composite functions δ−Y+ ◦ h1 and δ−Y+ ◦ h2 are so convex. The
semicontinuity of δ−Y+ ◦ h2 follows from Proposition 4.1. By applying Theorem
3.1 we obtain

γ= inf
(x∗,p∗)∈X∗×X∗

max
λ∈R+

{g∗2(p∗)+λ(δ−Y+ ◦ h2)
∗(x∗)−(g1 + δ−Y+ ◦ h1)

∗(p∗+λx∗) :

(δ−Y+ ◦ h2)
∗(x∗)−δ∗dom(g1+δ−Y+

◦h1)(x
∗) < 0}.

Since there exist some x ∈ dom g1∩dom h1∩h−1
1 (−intY+) and u ∈ h−1

2 (−intY+),
it follows from Proposition 2.1 that

(g1 + δ−Y+ ◦ h1)
∗(p∗ + λx∗) = min

z∗∈Y ∗
+

{δ∗−Y+
(z∗) + (g1 + z∗ ◦ h1)

∗(p∗ + λx∗)}

(δ−Y+ ◦ h2)
∗(x∗) = min

y∗∈Y ∗
+

{δ∗−Y+
(y∗) + (y∗ ◦ h2)

∗(x∗)}

and as δ∗−Y+
= δY ∗

+
and dom(g1 + δ−Y+ ◦ h1) = h−1

1 (−Y+) ∩ dom g1 we obtain

γ = inf
(x∗,p∗)∈X∗×X∗

min
y∗∈Y ∗

+

max
(λ,z∗)∈R+×Y ∗

+

{g∗2(p∗) + λ(y∗ ◦ h2)
∗(x∗) −

(g1 + z∗ ◦ h1)
∗(p∗ + λx∗) : (y∗ ◦ h2)

∗(x∗) − δ∗
h−1
1 (−Y+)∩domg1

(x∗) < 0}.

Now, it remains to claim that the minimum over y∗ ∈ Y ∗
+ is, indeed, taken over

Y ∗
+\{0} i.e. the following strict inequality

(4.3) (y∗ ◦ h2)
∗(x∗) − δ∗

h−1
1 (−Y+)∩domg1

(x∗) < 0

does not hold for y∗ ≡ 0. Suppose the contrary and by taking into account of the
convention (2.1) the strict inequality (4.3) becomes

δ{0}(x
∗) − δ∗

h−1
1 (−Y+)∩domg1

(x∗) < 0,

i.e.
δ∗
h−1
1 (−Y+)∩domg1

(0) = sup
x∈X

{−δh−1
1 (−Y+)∩domg1

(x)} > 0.
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This contradicts the fact that δ∗
h−1
1 (−Y+)∩domg1

(0) ≤ 0 since δ
h−1
1 (−Y+)∩domg1

(x) ≥

0 for any x ∈ X, which completes the proof. �
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[7] J.-P. Penot, M. Théra. Semicontinuous mappings in general topology.
Arch. Math. (Basel) 38 (1982), 158–166.

[8] I. Singer. A Fenchel-Rockafellar type duality theorem for maximisation.
Bull. Austral. Math. Soc. 20 (1979), 193–198.

[9] J. F. Toland. A duality principle for nonconvex optimization and the cal-
culus of variation. Arch. Rational Mech. Anal. 71 (1979), 41–61.
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